[vtkusers] Writing CMake file for VTK+CUDA project
Reza Faieghi
mfaieghi at westerneng.ca
Mon Jun 27 08:47:09 EDT 2016
Hello,
I am trying to write a CMake file for my project which involves using CUDA
and VTK. I generate the code for VS12 but during compilation I receive
couple of errors. In order to find the problem, I have separated my code
into distinct CUDA and VTK sections and ran them as two different VS
Solutions and they work fine. However, when I combine VTK and CUDA in a
same CMake file it fails. Apparently there has been some limitations in
using VTK and CUDA together in a CMake file as mentioned here
<http://www.vtk.org/pipermail/vtk-developers/2013-April/013780.html>.
However, there are some implementations <https://github.com/mrGexogen> that
use these two together properly (I have been able to properly run the
github-rep code in my computer but when I try to apply the same method of
CMake coding for my project, it fails.). Here are the CMake code that I use
to generate CUDA + VTK:
cmake_minimum_required(VERSION 2.8)
project(Test)
find_package(VTK REQUIRED)
include(${VTK_USE_FILE})
find_package(CUDA REQUIRED)
if (CUDA_FOUND)
message("CUDA found!")
else()
message("CUDA not found, doing something alternatively")
endif()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -D_FORCE_INLINES")
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} --gpu-architecture sm_20)
CUDA_ADD_EXECUTABLE(Test source.cu)
target_link_libraries(
Test
${VTK_LIBRARIES}
)
I am using CUDA 7.5, VTK 7.0.0 and CMake 3.6.0. Here is the source.cu. It
is basically combination of VTK Hello World example (Rendering a Cylinder)
and vectorAdd.cu in CUDA samples and both are working separately.
#include <stdio.h>
#include <cuda_runtime.h>
#include "vtkCylinderSource.h"
#include "vtkPolyDataMapper.h"
#include "vtkActor.h"
#include "vtkRenderer.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkProperty.h"
#include "vtkCamera.h"
#include "vtkSmartPointer.h"
/**
* CUDA Kernel Device code
*
* Computes the vector addition of A and B into C. The 3 vectors have the
same
* number of elements numElements.
*/
__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
{
C[i] = A[i] + B[i];
}
}
/**
* Host main routine
*/
int
main(void)
{
// Error code to check return values for CUDA calls
cudaError_t err = cudaSuccess;
// Print the vector length to be used, and compute its size
int numElements = 50000;
size_t size = numElements * sizeof(float);
printf("[Vector addition of %d elements]\n", numElements);
// Allocate the host input vector A
float *h_A = (float *)malloc(size);
// Allocate the host input vector B
float *h_B = (float *)malloc(size);
// Allocate the host output vector C
float *h_C = (float *)malloc(size);
// Verify that allocations succeeded
if (h_A == NULL || h_B == NULL || h_C == NULL)
{
fprintf(stderr, "Failed to allocate host vectors!\n");
exit(EXIT_FAILURE);
}
// Initialize the host input vectors
for (int i = 0; i < numElements; ++i)
{
h_A[i] = rand()/(float)RAND_MAX;
h_B[i] = rand()/(float)RAND_MAX;
}
// Allocate the device input vector A
float *d_A = NULL;
err = cudaMalloc((void **)&d_A, size);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to allocate device vector A (error code
%s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Allocate the device input vector B
float *d_B = NULL;
err = cudaMalloc((void **)&d_B, size);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to allocate device vector B (error code
%s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Allocate the device output vector C
float *d_C = NULL;
err = cudaMalloc((void **)&d_C, size);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to allocate device vector C (error code
%s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Copy the host input vectors A and B in host memory to the device
input vectors in
// device memory
printf("Copy input data from the host memory to the CUDA device\n");
err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to copy vector A from host to device (error
code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to copy vector B from host to device (error
code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;
int blocksPerGrid =(numElements + threadsPerBlock - 1) /
threadsPerBlock;
printf("CUDA kernel launch with %d blocks of %d threads\n",
blocksPerGrid, threadsPerBlock);
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C,
numElements);
err = cudaGetLastError();
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to launch vectorAdd kernel (error code
%s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Copy the device result vector in device memory to the host result
vector
// in host memory.
printf("Copy output data from the CUDA device to the host memory\n");
err = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to copy vector C from device to host (error
code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Verify that the result vector is correct
for (int i = 0; i < numElements; ++i)
{
if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5)
{
fprintf(stderr, "Result verification failed at element %d!\n",
i);
exit(EXIT_FAILURE);
}
}
printf("Test PASSED\n");
// Free device global memory
err = cudaFree(d_A);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to free device vector A (error code
%s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaFree(d_B);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to free device vector B (error code
%s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaFree(d_C);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to free device vector C (error code
%s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Free host memory
free(h_A);
free(h_B);
free(h_C);
// Reset the device and exit
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also
// needed to ensure correct operation when the application is being
// profiled. Calling cudaDeviceReset causes all profile data to be
// flushed before the application exits
err = cudaDeviceReset();
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to deinitialize the device! error=%s\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
printf("Done\n");
// This creates a polygonal cylinder model with eight circumferential
facets
// (i.e, in practice an octagonal prism).
vtkSmartPointer<vtkCylinderSource> cylinder =
vtkSmartPointer<vtkCylinderSource>::New();
cylinder->SetResolution(8);
// The mapper is responsible for pushing the geometry into the graphics
library.
// It may also do color mapping, if scalars or other attributes are
defined.
vtkSmartPointer<vtkPolyDataMapper> cylinderMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
cylinderMapper->SetInputConnection(cylinder->GetOutputPort());
// The actor is a grouping mechanism: besides the geometry (mapper), it
// also has a property, transformation matrix, and/or texture map.
// Here we set its color and rotate it around the X and Y axes.
vtkSmartPointer<vtkActor> cylinderActor =
vtkSmartPointer<vtkActor>::New();
cylinderActor->SetMapper(cylinderMapper);
cylinderActor->GetProperty()->SetColor(1.0000, 0.3882, 0.2784);
cylinderActor->RotateX(30.0);
cylinderActor->RotateY(-45.0);
// The renderer generates the image
// which is then displayed on the render window.
// It can be thought of as a scene to which the actor is added
vtkSmartPointer<vtkRenderer> renderer =
vtkSmartPointer<vtkRenderer>::New();
renderer->AddActor(cylinderActor);
renderer->SetBackground(0.1, 0.2, 0.4);
// Zoom in a little by accessing the camera and invoking its "Zoom"
method.
renderer->ResetCamera();
renderer->GetActiveCamera()->Zoom(1.5);
// The render window is the actual GUI window
// that appears on the computer screen
vtkSmartPointer<vtkRenderWindow> renderWindow =
vtkSmartPointer<vtkRenderWindow>::New();
renderWindow->SetSize(200, 200);
renderWindow->AddRenderer(renderer);
// The render window interactor captures mouse events
// and will perform appropriate camera or actor manipulation
// depending on the nature of the events.
vtkSmartPointer<vtkRenderWindowInteractor> renderWindowInteractor =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
renderWindowInteractor->SetRenderWindow(renderWindow);
// This starts the event loop and as a side effect causes an initial
render.
renderWindowInteractor->Start();
return 0;
}
After the code is generated by CMake, the first error that I am getting
during building the project is:
Error MSB6006: "cmd.exe" exited with code 1. C:\Program
Files(x86)\MSBuild\Microsoft.Cpp\v4.0\V120\Microsoft.CppCommon.targets
I have fixed this by changing the build customization to CUDA and moving
the .cu file into VS project directory. Then, another compilation error
occurs and I do not know how to fix this.
error LNK1104: cannot open file
'C:\Users\Reza\Desktop\cuda_vtk_testing\build\CMakeFiles\Test.dir\Debug\Test_generated_vectorAdd.cu.obj'
C:\Users\Reza\Desktop\cuda_vtk_testing\build\LINK Test
Generally, how do we write a CMake code when we want to combine CUDA and
VTK? What are my mistakes that VS12 cannot find includes of VTK in my codes?
Best Regards,
Reza
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://public.kitware.com/pipermail/vtkusers/attachments/20160627/687c8961/attachment.html>
More information about the vtkusers
mailing list