CCMake 2.8.7 Docs

From KitwarePublic
Jump to navigationJump to search
ccmake version 2.8.7
------------------------------------------------------------------------------
Name

  ccmake - Curses Interface for CMake.

------------------------------------------------------------------------------
Usage

  ccmake <path-to-source>
  ccmake <path-to-existing-build>

------------------------------------------------------------------------------
Description

The "ccmake" executable is the CMake curses interface.  Project configuration
settings may be specified interactively through this GUI.  Brief instructions
are provided at the bottom of the terminal when the program is running.

CMake is a cross-platform build system generator.  Projects specify their
build process with platform-independent CMake listfiles included in each
directory of a source tree with the name CMakeLists.txt.  Users build a
project by using CMake to generate a build system for a native tool on their
platform.

------------------------------------------------------------------------------
Options

  -C <initial-cache>
       Pre-load a script to populate the cache.

       When cmake is first run in an empty build tree, it creates a
       CMakeCache.txt file and populates it with customizable settings for
       the project.  This option may be used to specify a file from which to
       load cache entries before the first pass through the project's cmake
       listfiles.  The loaded entries take priority over the project's
       default values.  The given file should be a CMake script containing
       SET commands that use the CACHE option, not a cache-format file.

  -D <var>:<type>=<value>
       Create a cmake cache entry.

       When cmake is first run in an empty build tree, it creates a
       CMakeCache.txt file and populates it with customizable settings for
       the project.  This option may be used to specify a setting that takes
       priority over the project's default value.  The option may be repeated
       for as many cache entries as desired.

  -U <globbing_expr>
       Remove matching entries from CMake cache.

       This option may be used to remove one or more variables from the
       CMakeCache.txt file, globbing expressions using * and ? are supported.
       The option may be repeated for as many cache entries as desired.

       Use with care, you can make your CMakeCache.txt non-working.

  -G <generator-name>
       Specify a makefile generator.

       CMake may support multiple native build systems on certain platforms.
       A makefile generator is responsible for generating a particular build
       system.  Possible generator names are specified in the Generators
       section.

  -Wno-dev
       Suppress developer warnings.

       Suppress warnings that are meant for the author of the CMakeLists.txt
       files.

  -Wdev
       Enable developer warnings.

       Enable warnings that are meant for the author of the CMakeLists.txt
       files.

  --copyright [file]
       Print the CMake copyright and exit.

       If a file is specified, the copyright is written into it.

  --help,-help,-usage,-h,-H,/?
       Print usage information and exit.

       Usage describes the basic command line interface and its options.

  --help-full [file]
       Print full help and exit.

       Full help displays most of the documentation provided by the UNIX man
       page.  It is provided for use on non-UNIX platforms, but is also
       convenient if the man page is not installed.  If a file is specified,
       the help is written into it.

  --help-html [file]
       Print full help in HTML format.

       This option is used by CMake authors to help produce web pages.  If a
       file is specified, the help is written into it.

  --help-man [file]
       Print full help as a UNIX man page and exit.

       This option is used by the cmake build to generate the UNIX man page.
       If a file is specified, the help is written into it.

  --version,-version,/V [file]
       Show program name/version banner and exit.

       If a file is specified, the version is written into it.

------------------------------------------------------------------------------
Generators

  Unix Makefiles
       Generates standard UNIX makefiles.

       A hierarchy of UNIX makefiles is generated into the build tree.  Any
       standard UNIX-style make program can build the project through the
       default make target.  A "make install" target is also provided.

  CodeBlocks - Unix Makefiles
       Generates CodeBlocks project files.

       Project files for CodeBlocks will be created in the top directory and
       in every subdirectory which features a CMakeLists.txt file containing
       a PROJECT() call.  Additionally a hierarchy of makefiles is generated
       into the build tree.  The appropriate make program can build the
       project through the default make target.  A "make install" target is
       also provided.

  Eclipse CDT4 - Unix Makefiles
       Generates Eclipse CDT 4.0 project files.

       Project files for Eclipse will be created in the top directory.  In
       out of source builds, a linked resource to the top level source
       directory will be created.Additionally a hierarchy of makefiles is
       generated into the build tree.  The appropriate make program can build
       the project through the default make target.  A "make install" target
       is also provided.

  KDevelop3
       Generates KDevelop 3 project files.

       Project files for KDevelop 3 will be created in the top directory and
       in every subdirectory which features a CMakeLists.txt file containing
       a PROJECT() call.  If you change the settings using KDevelop cmake
       will try its best to keep your changes when regenerating the project
       files.  Additionally a hierarchy of UNIX makefiles is generated into
       the build tree.  Any standard UNIX-style make program can build the
       project through the default make target.  A "make install" target is
       also provided.

  KDevelop3 - Unix Makefiles
       Generates KDevelop 3 project files.

       Project files for KDevelop 3 will be created in the top directory and
       in every subdirectory which features a CMakeLists.txt file containing
       a PROJECT() call.  If you change the settings using KDevelop cmake
       will try its best to keep your changes when regenerating the project
       files.  Additionally a hierarchy of UNIX makefiles is generated into
       the build tree.  Any standard UNIX-style make program can build the
       project through the default make target.  A "make install" target is
       also provided.

------------------------------------------------------------------------------
Properties

  CMake Properties - Properties supported by CMake, the Cross-Platform Makefile Generator.

This is the documentation for the properties supported by CMake.  Properties
can have different scopes.  They can either be assigned to a source file, a
directory, a target or globally to CMake.  By modifying the values of
properties the behaviour of the build system can be customized.

------------------------------------------------------------------------------
Command

  add_custom_command
       Add a custom build rule to the generated build system.

       There are two main signatures for add_custom_command The first
       signature is for adding a custom command to produce an output.

         add_custom_command(OUTPUT output1 [output2 ...]
                            COMMAND command1 [ARGS] [args1...]
                            [COMMAND command2 [ARGS] [args2...] ...]
                            [MAIN_DEPENDENCY depend]
                            [DEPENDS [depends...]]
                            [IMPLICIT_DEPENDS <lang1> depend1 ...]
                            [WORKING_DIRECTORY dir]
                            [COMMENT comment] [VERBATIM] [APPEND])

       This defines a command to generate specified OUTPUT file(s).  A target
       created in the same directory (CMakeLists.txt file) that specifies any
       output of the custom command as a source file is given a rule to
       generate the file using the command at build time.  Do not list the
       output in more than one independent target that may build in parallel
       or the two instances of the rule may conflict (instead use
       add_custom_target to drive the command and make the other targets
       depend on that one).  If an output name is a relative path it will be
       interpreted relative to the build tree directory corresponding to the
       current source directory.  Note that MAIN_DEPENDENCY is completely
       optional and is used as a suggestion to visual studio about where to
       hang the custom command.  In makefile terms this creates a new target
       in the following form:

         OUTPUT: MAIN_DEPENDENCY DEPENDS
                 COMMAND

       If more than one command is specified they will be executed in order.
       The optional ARGS argument is for backward compatibility and will be
       ignored.

       The second signature adds a custom command to a target such as a
       library or executable.  This is useful for performing an operation
       before or after building the target.  The command becomes part of the
       target and will only execute when the target itself is built.  If the
       target is already built, the command will not execute.

         add_custom_command(TARGET target
                            PRE_BUILD | PRE_LINK | POST_BUILD
                            COMMAND command1 [ARGS] [args1...]
                            [COMMAND command2 [ARGS] [args2...] ...]
                            [WORKING_DIRECTORY dir]
                            [COMMENT comment] [VERBATIM])

       This defines a new command that will be associated with building the
       specified target.  When the command will happen is determined by which
       of the following is specified:

         PRE_BUILD - run before all other dependencies
         PRE_LINK - run after other dependencies
         POST_BUILD - run after the target has been built

       Note that the PRE_BUILD option is only supported on Visual Studio 7 or
       later.  For all other generators PRE_BUILD will be treated as
       PRE_LINK.

       If WORKING_DIRECTORY is specified the command will be executed in the
       directory given.  If it is a relative path it will be interpreted
       relative to the build tree directory corresponding to the current
       source directory.  If COMMENT is set, the value will be displayed as a
       message before the commands are executed at build time.  If APPEND is
       specified the COMMAND and DEPENDS option values are appended to the
       custom command for the first output specified.  There must have
       already been a previous call to this command with the same output.
       The COMMENT, WORKING_DIRECTORY, and MAIN_DEPENDENCY options are
       currently ignored when APPEND is given, but may be used in the future.

       If VERBATIM is given then all arguments to the commands will be
       escaped properly for the build tool so that the invoked command
       receives each argument unchanged.  Note that one level of escapes is
       still used by the CMake language processor before add_custom_command
       even sees the arguments.  Use of VERBATIM is recommended as it enables
       correct behavior.  When VERBATIM is not given the behavior is platform
       specific because there is no protection of tool-specific special
       characters.

       If the output of the custom command is not actually created as a file
       on disk it should be marked as SYMBOLIC with
       SET_SOURCE_FILES_PROPERTIES.

       The IMPLICIT_DEPENDS option requests scanning of implicit dependencies
       of an input file.  The language given specifies the programming
       language whose corresponding dependency scanner should be used.
       Currently only C and CXX language scanners are supported.
       Dependencies discovered from the scanning are added to those of the
       custom command at build time.  Note that the IMPLICIT_DEPENDS option
       is currently supported only for Makefile generators and will be
       ignored by other generators.

       If COMMAND specifies an executable target (created by ADD_EXECUTABLE)
       it will automatically be replaced by the location of the executable
       created at build time.  Additionally a target-level dependency will be
       added so that the executable target will be built before any target
       using this custom command.  However this does NOT add a file-level
       dependency that would cause the custom command to re-run whenever the
       executable is recompiled.

       Arguments to COMMAND may use "generator expressions" with the syntax
       "$<...>".  Generator expressions are evaluted during build system
       generation to produce information specific to each build
       configuration.  Valid expressions are:

         $<CONFIGURATION>          = configuration name
         $<TARGET_FILE:tgt>        = main file (.exe, .so.1.2, .a)
         $<TARGET_LINKER_FILE:tgt> = file used to link (.a, .lib, .so)
         $<TARGET_SONAME_FILE:tgt> = file with soname (.so.3)

       where "tgt" is the name of a target.  Target file expressions produce
       a full path, but _DIR and _NAME versions can produce the directory and
       file name components:

         $<TARGET_FILE_DIR:tgt>/$<TARGET_FILE_NAME:tgt>
         $<TARGET_LINKER_FILE_DIR:tgt>/$<TARGET_LINKER_FILE_NAME:tgt>
         $<TARGET_SONAME_FILE_DIR:tgt>/$<TARGET_SONAME_FILE_NAME:tgt>

       References to target names in generator expressions imply target-level
       dependencies, but NOT file-level dependencies.  List target names with
       the DEPENDS option to add file dependencies.

       The DEPENDS option specifies files on which the command depends.  If
       any dependency is an OUTPUT of another custom command in the same
       directory (CMakeLists.txt file) CMake automatically brings the other
       custom command into the target in which this command is built.  If
       DEPENDS is not specified the command will run whenever the OUTPUT is
       missing; if the command does not actually create the OUTPUT then the
       rule will always run.  If DEPENDS specifies any target (created by an
       ADD_* command) a target-level dependency is created to make sure the
       target is built before any target using this custom command.
       Additionally, if the target is an executable or library a file-level
       dependency is created to cause the custom command to re-run whenever
       the target is recompiled.


  add_custom_target
       Add a target with no output so it will always be built.

         add_custom_target(Name [ALL] [command1 [args1...]]
                           [COMMAND command2 [args2...] ...]
                           [DEPENDS depend depend depend ... ]
                           [WORKING_DIRECTORY dir]
                           [COMMENT comment] [VERBATIM]
                           [SOURCES src1 [src2...]])

       Adds a target with the given name that executes the given commands.
       The target has no output file and is ALWAYS CONSIDERED OUT OF DATE
       even if the commands try to create a file with the name of the target.
       Use ADD_CUSTOM_COMMAND to generate a file with dependencies.  By
       default nothing depends on the custom target.  Use ADD_DEPENDENCIES to
       add dependencies to or from other targets.  If the ALL option is
       specified it indicates that this target should be added to the default
       build target so that it will be run every time (the command cannot be
       called ALL).  The command and arguments are optional and if not
       specified an empty target will be created.  If WORKING_DIRECTORY is
       set, then the command will be run in that directory.  If it is a
       relative path it will be interpreted relative to the build tree
       directory corresponding to the current source directory.  If COMMENT
       is set, the value will be displayed as a message before the commands
       are executed at build time.  Dependencies listed with the DEPENDS
       argument may reference files and outputs of custom commands created
       with add_custom_command() in the same directory (CMakeLists.txt file).

       If VERBATIM is given then all arguments to the commands will be
       escaped properly for the build tool so that the invoked command
       receives each argument unchanged.  Note that one level of escapes is
       still used by the CMake language processor before add_custom_target
       even sees the arguments.  Use of VERBATIM is recommended as it enables
       correct behavior.  When VERBATIM is not given the behavior is platform
       specific because there is no protection of tool-specific special
       characters.

       The SOURCES option specifies additional source files to be included in
       the custom target.  Specified source files will be added to IDE
       project files for convenience in editing even if they have not build
       rules.

  add_definitions
       Adds -D define flags to the compilation of source files.

         add_definitions(-DFOO -DBAR ...)

       Adds flags to the compiler command line for sources in the current
       directory and below.  This command can be used to add any flags, but
       it was originally intended to add preprocessor definitions.  Flags
       beginning in -D or /D that look like preprocessor definitions are
       automatically added to the COMPILE_DEFINITIONS property for the
       current directory.  Definitions with non-trival values may be left in
       the set of flags instead of being converted for reasons of backwards
       compatibility.  See documentation of the directory, target, and source
       file COMPILE_DEFINITIONS properties for details on adding preprocessor
       definitions to specific scopes and configurations.

  add_dependencies
       Add a dependency between top-level targets.

         add_dependencies(target-name depend-target1
                          depend-target2 ...)

       Make a top-level target depend on other top-level targets.  A
       top-level target is one created by ADD_EXECUTABLE, ADD_LIBRARY, or
       ADD_CUSTOM_TARGET.  Adding dependencies with this command can be used
       to make sure one target is built before another target.  Dependencies
       added to an IMPORTED target are followed transitively in its place
       since the target itself does not build.  See the DEPENDS option of
       ADD_CUSTOM_TARGET and ADD_CUSTOM_COMMAND for adding file-level
       dependencies in custom rules.  See the OBJECT_DEPENDS option in
       SET_SOURCE_FILES_PROPERTIES to add file-level dependencies to object
       files.

  add_executable
       Add an executable to the project using the specified source files.

         add_executable(<name> [WIN32] [MACOSX_BUNDLE]
                        [EXCLUDE_FROM_ALL]
                        source1 source2 ... sourceN)

       Adds an executable target called <name> to be built from the source
       files listed in the command invocation.  The <name> corresponds to the
       logical target name and must be globally unique within a project.  The
       actual file name of the executable built is constructed based on
       conventions of the native platform (such as <name>.exe or just
       <name>).

       By default the executable file will be created in the build tree
       directory corresponding to the source tree directory in which the
       command was invoked.  See documentation of the
       RUNTIME_OUTPUT_DIRECTORY target property to change this location.  See
       documentation of the OUTPUT_NAME target property to change the <name>
       part of the final file name.

       If WIN32 is given the property WIN32_EXECUTABLE will be set on the
       target created.  See documentation of that target property for
       details.

       If MACOSX_BUNDLE is given the corresponding property will be set on
       the created target.  See documentation of the MACOSX_BUNDLE target
       property for details.

       If EXCLUDE_FROM_ALL is given the corresponding property will be set on
       the created target.  See documentation of the EXCLUDE_FROM_ALL target
       property for details.

       The add_executable command can also create IMPORTED executable targets
       using this signature:

         add_executable(<name> IMPORTED)

       An IMPORTED executable target references an executable file located
       outside the project.  No rules are generated to build it.  The target
       name has scope in the directory in which it is created and below.  It
       may be referenced like any target built within the project.  IMPORTED
       executables are useful for convenient reference from commands like
       add_custom_command.  Details about the imported executable are
       specified by setting properties whose names begin in "IMPORTED_".  The
       most important such property is IMPORTED_LOCATION (and its
       per-configuration version IMPORTED_LOCATION_<CONFIG>) which specifies
       the location of the main executable file on disk.  See documentation
       of the IMPORTED_* properties for more information.

  add_library
       Add a library to the project using the specified source files.

         add_library(<name> [STATIC | SHARED | MODULE]
                     [EXCLUDE_FROM_ALL]
                     source1 source2 ... sourceN)

       Adds a library target called <name> to be built from the source files
       listed in the command invocation.  The <name> corresponds to the
       logical target name and must be globally unique within a project.  The
       actual file name of the library built is constructed based on
       conventions of the native platform (such as lib<name>.a or
       <name>.lib).

       STATIC, SHARED, or MODULE may be given to specify the type of library
       to be created.  STATIC libraries are archives of object files for use
       when linking other targets.  SHARED libraries are linked dynamically
       and loaded at runtime.  MODULE libraries are plugins that are not
       linked into other targets but may be loaded dynamically at runtime
       using dlopen-like functionality.  If no type is given explicitly the
       type is STATIC or SHARED based on whether the current value of the
       variable BUILD_SHARED_LIBS is true.

       By default the library file will be created in the build tree
       directory corresponding to the source tree directory in which the
       command was invoked.  See documentation of the
       ARCHIVE_OUTPUT_DIRECTORY, LIBRARY_OUTPUT_DIRECTORY, and
       RUNTIME_OUTPUT_DIRECTORY target properties to change this location.
       See documentation of the OUTPUT_NAME target property to change the
       <name> part of the final file name.

       If EXCLUDE_FROM_ALL is given the corresponding property will be set on
       the created target.  See documentation of the EXCLUDE_FROM_ALL target
       property for details.

       The add_library command can also create IMPORTED library targets using
       this signature:

         add_library(<name> <SHARED|STATIC|MODULE|UNKNOWN> IMPORTED)

       An IMPORTED library target references a library file located outside
       the project.  No rules are generated to build it.  The target name has
       scope in the directory in which it is created and below.  It may be
       referenced like any target built within the project.  IMPORTED
       libraries are useful for convenient reference from commands like
       target_link_libraries.  Details about the imported library are
       specified by setting properties whose names begin in "IMPORTED_".  The
       most important such property is IMPORTED_LOCATION (and its
       per-configuration version IMPORTED_LOCATION_<CONFIG>) which specifies
       the location of the main library file on disk.  See documentation of
       the IMPORTED_* properties for more information.

  add_subdirectory
       Add a subdirectory to the build.

         add_subdirectory(source_dir [binary_dir] 
                          [EXCLUDE_FROM_ALL])

       Add a subdirectory to the build.  The source_dir specifies the
       directory in which the source CmakeLists.txt and code files are
       located.  If it is a relative path it will be evaluated with respect
       to the current directory (the typical usage), but it may also be an
       absolute path.  The binary_dir specifies the directory in which to
       place the output files.  If it is a relative path it will be evaluated
       with respect to the current output directory, but it may also be an
       absolute path.  If binary_dir is not specified, the value of
       source_dir, before expanding any relative path, will be used (the
       typical usage).  The CMakeLists.txt file in the specified source
       directory will be processed immediately by CMake before processing in
       the current input file continues beyond this command.

       If the EXCLUDE_FROM_ALL argument is provided then targets in the
       subdirectory will not be included in the ALL target of the parent
       directory by default, and will be excluded from IDE project files.
       Users must explicitly build targets in the subdirectory.  This is
       meant for use when the subdirectory contains a separate part of the
       project that is useful but not necessary, such as a set of examples.
       Typically the subdirectory should contain its own project() command
       invocation so that a full build system will be generated in the
       subdirectory (such as a VS IDE solution file).  Note that inter-target
       dependencies supercede this exclusion.  If a target built by the
       parent project depends on a target in the subdirectory, the dependee
       target will be included in the parent project build system to satisfy
       the dependency.

  add_test
       Add a test to the project with the specified arguments.

         add_test(testname Exename arg1 arg2 ... )

       If the ENABLE_TESTING command has been run, this command adds a test
       target to the current directory.  If ENABLE_TESTING has not been run,
       this command does nothing.  The tests are run by the testing subsystem
       by executing Exename with the specified arguments.  Exename can be
       either an executable built by this project or an arbitrary executable
       on the system (like tclsh).  The test will be run with the current
       working directory set to the CMakeList.txt files corresponding
       directory in the binary tree.

       

         add_test(NAME <name> [CONFIGURATIONS [Debug|Release|...]]
                  [WORKING_DIRECTORY dir]
                  COMMAND <command> [arg1 [arg2 ...]])

       If COMMAND specifies an executable target (created by add_executable)
       it will automatically be replaced by the location of the executable
       created at build time.  If a CONFIGURATIONS option is given then the
       test will be executed only when testing under one of the named
       configurations.  If a WORKING_DIRECTORY option is given then the test
       will be executed in the given directory.

       Arguments after COMMAND may use "generator expressions" with the
       syntax "$<...>".  Generator expressions are evaluted during build
       system generation to produce information specific to each build
       configuration.  Valid expressions are:

         $<CONFIGURATION>          = configuration name
         $<TARGET_FILE:tgt>        = main file (.exe, .so.1.2, .a)
         $<TARGET_LINKER_FILE:tgt> = file used to link (.a, .lib, .so)
         $<TARGET_SONAME_FILE:tgt> = file with soname (.so.3)

       where "tgt" is the name of a target.  Target file expressions produce
       a full path, but _DIR and _NAME versions can produce the directory and
       file name components:

         $<TARGET_FILE_DIR:tgt>/$<TARGET_FILE_NAME:tgt>
         $<TARGET_LINKER_FILE_DIR:tgt>/$<TARGET_LINKER_FILE_NAME:tgt>
         $<TARGET_SONAME_FILE_DIR:tgt>/$<TARGET_SONAME_FILE_NAME:tgt>

       Example usage:

         add_test(NAME mytest
                  COMMAND testDriver --config $<CONFIGURATION>
                                     --exe $<TARGET_FILE:myexe>)

       This creates a test "mytest" whose command runs a testDriver tool
       passing the configuration name and the full path to the executable
       file produced by target "myexe".

  aux_source_directory
       Find all source files in a directory.

         aux_source_directory(<dir> <variable>)

       Collects the names of all the source files in the specified directory
       and stores the list in the <variable> provided.  This command is
       intended to be used by projects that use explicit template
       instantiation.  Template instantiation files can be stored in a
       "Templates" subdirectory and collected automatically using this
       command to avoid manually listing all instantiations.

       It is tempting to use this command to avoid writing the list of source
       files for a library or executable target.  While this seems to work,
       there is no way for CMake to generate a build system that knows when a
       new source file has been added.  Normally the generated build system
       knows when it needs to rerun CMake because the CMakeLists.txt file is
       modified to add a new source.  When the source is just added to the
       directory without modifying this file, one would have to manually
       rerun CMake to generate a build system incorporating the new file.

  break
       Break from an enclosing foreach or while loop.

         break()

       Breaks from an enclosing foreach loop or while loop

  build_command
       Get the command line to build this project.

         build_command(<variable>
                       [CONFIGURATION <config>]
                       [PROJECT_NAME <projname>]
                       [TARGET <target>])

       Sets the given <variable> to a string containing the command line for
       building one configuration of a target in a project using the build
       tool appropriate for the current CMAKE_GENERATOR.

       If CONFIGURATION is omitted, CMake chooses a reasonable default value
       for multi-configuration generators.  CONFIGURATION is ignored for
       single-configuration generators.

       If PROJECT_NAME is omitted, the resulting command line will build the
       top level PROJECT in the current build tree.

       If TARGET is omitted, the resulting command line will build
       everything, effectively using build target 'all' or 'ALL_BUILD'.

         build_command(<cachevariable> <makecommand>)

       This second signature is deprecated, but still available for backwards
       compatibility.  Use the first signature instead.

       Sets the given <cachevariable> to a string containing the command to
       build this project from the root of the build tree using the build
       tool given by <makecommand>.  <makecommand> should be the full path to
       msdev, devenv, nmake, make or one of the end user build tools.

  cmake_minimum_required
       Set the minimum required version of cmake for a project.

         cmake_minimum_required(VERSION major[.minor[.patch[.tweak]]]
                                [FATAL_ERROR])

       If the current version of CMake is lower than that required it will
       stop processing the project and report an error.  When a version
       higher than 2.4 is specified the command implicitly invokes

         cmake_policy(VERSION major[.minor[.patch[.tweak]]])

       which sets the cmake policy version level to the version specified.
       When version 2.4 or lower is given the command implicitly invokes

         cmake_policy(VERSION 2.4)

       which enables compatibility features for CMake 2.4 and lower.

       The FATAL_ERROR option is accepted but ignored by CMake 2.6 and
       higher.  It should be specified so CMake versions 2.4 and lower fail
       with an error instead of just a warning.

  cmake_policy
       Manage CMake Policy settings.

       As CMake evolves it is sometimes necessary to change existing behavior
       in order to fix bugs or improve implementations of existing features.
       The CMake Policy mechanism is designed to help keep existing projects
       building as new versions of CMake introduce changes in behavior.  Each
       new policy (behavioral change) is given an identifier of the form
       "CMP<NNNN>" where "<NNNN>" is an integer index.  Documentation
       associated with each policy describes the OLD and NEW behavior and the
       reason the policy was introduced.  Projects may set each policy to
       select the desired behavior.  When CMake needs to know which behavior
       to use it checks for a setting specified by the project.  If no
       setting is available the OLD behavior is assumed and a warning is
       produced requesting that the policy be set.

       The cmake_policy command is used to set policies to OLD or NEW
       behavior.  While setting policies individually is supported, we
       encourage projects to set policies based on CMake versions.

         cmake_policy(VERSION major.minor[.patch[.tweak]])

       Specify that the current CMake list file is written for the given
       version of CMake.  All policies introduced in the specified version or
       earlier will be set to use NEW behavior.  All policies introduced
       after the specified version will be unset (unless variable
       CMAKE_POLICY_DEFAULT_CMP<NNNN> sets a default).  This effectively
       requests behavior preferred as of a given CMake version and tells
       newer CMake versions to warn about their new policies.  The policy
       version specified must be at least 2.4 or the command will report an
       error.  In order to get compatibility features supporting versions
       earlier than 2.4 see documentation of policy CMP0001.

         cmake_policy(SET CMP<NNNN> NEW)
         cmake_policy(SET CMP<NNNN> OLD)

       Tell CMake to use the OLD or NEW behavior for a given policy.
       Projects depending on the old behavior of a given policy may silence a
       policy warning by setting the policy state to OLD.  Alternatively one
       may fix the project to work with the new behavior and set the policy
       state to NEW.

         cmake_policy(GET CMP<NNNN> <variable>)

       Check whether a given policy is set to OLD or NEW behavior.  The
       output variable value will be "OLD" or "NEW" if the policy is set, and
       empty otherwise.

       CMake keeps policy settings on a stack, so changes made by the
       cmake_policy command affect only the top of the stack.  A new entry on
       the policy stack is managed automatically for each subdirectory to
       protect its parents and siblings.  CMake also manages a new entry for
       scripts loaded by include() and find_package() commands except when
       invoked with the NO_POLICY_SCOPE option (see also policy CMP0011).
       The cmake_policy command provides an interface to manage custom
       entries on the policy stack:

         cmake_policy(PUSH)
         cmake_policy(POP)

       Each PUSH must have a matching POP to erase any changes.  This is
       useful to make temporary changes to policy settings.

       Functions and macros record policy settings when they are created and
       use the pre-record policies when they are invoked.  If the function or
       macro implementation sets policies, the changes automatically
       propagate up through callers until they reach the closest nested
       policy stack entry.

  configure_file
       Copy a file to another location and modify its contents.

         configure_file(<input> <output>
                        [COPYONLY] [ESCAPE_QUOTES] [@ONLY] 
                        [NEWLINE_STYLE [UNIX|DOS|WIN32|LF|CRLF] ])

       Copies a file <input> to file <output> and substitutes variable values
       referenced in the file content.  If <input> is a relative path it is
       evaluated with respect to the current source directory.  The <input>
       must be a file, not a directory.  If <output> is a relative path it is
       evaluated with respect to the current binary directory.  If <output>
       names an existing directory the input file is placed in that directory
       with its original name.

       This command replaces any variables in the input file referenced as
       ${VAR} or @VAR@ with their values as determined by CMake.  If a
       variable is not defined, it will be replaced with nothing.  If
       COPYONLY is specified, then no variable expansion will take place.  If
       ESCAPE_QUOTES is specified then any substituted quotes will be C-style
       escaped.  The file will be configured with the current values of CMake
       variables.  If @ONLY is specified, only variables of the form @VAR@
       will be replaces and ${VAR} will be ignored.  This is useful for
       configuring scripts that use ${VAR}.  Any occurrences of #cmakedefine
       VAR will be replaced with either #define VAR or /* #undef VAR */
       depending on the setting of VAR in CMake.  Any occurrences of
       #cmakedefine01 VAR will be replaced with either #define VAR 1 or
       #define VAR 0 depending on whether VAR evaluates to TRUE or FALSE in
       CMake.

       With NEWLINE_STYLE the line ending could be adjusted:

           'UNIX' or 'LF' for \n, 'DOS', 'WIN32' or 'CRLF' for \r\n.

       COPYONLY must not be used with NEWLINE_STYLE.


  create_test_sourcelist
       Create a test driver and source list for building test programs.

         create_test_sourcelist(sourceListName driverName
                                test1 test2 test3
                                EXTRA_INCLUDE include.h
                                FUNCTION function)

       A test driver is a program that links together many small tests into a
       single executable.  This is useful when building static executables
       with large libraries to shrink the total required size.  The list of
       source files needed to build the test driver will be in
       sourceListName.  DriverName is the name of the test driver program.
       The rest of the arguments consist of a list of test source files, can
       be semicolon separated.  Each test source file should have a function
       in it that is the same name as the file with no extension (foo.cxx
       should have int foo(int, char*[]);) DriverName will be able to call
       each of the tests by name on the command line.  If EXTRA_INCLUDE is
       specified, then the next argument is included into the generated file.
       If FUNCTION is specified, then the next argument is taken as a
       function name that is passed a pointer to ac and av.  This can be used
       to add extra command line processing to each test.  The cmake variable
       CMAKE_TESTDRIVER_BEFORE_TESTMAIN can be set to have code that will be
       placed directly before calling the test main function.
       CMAKE_TESTDRIVER_AFTER_TESTMAIN can be set to have code that will be
       placed directly after the call to the test main function.

  define_property
       Define and document custom properties.

         define_property(<GLOBAL | DIRECTORY | TARGET | SOURCE |
                          TEST | VARIABLE | CACHED_VARIABLE>
                          PROPERTY <name> [INHERITED]
                          BRIEF_DOCS <brief-doc> [docs...]
                          FULL_DOCS <full-doc> [docs...])

       Define one property in a scope for use with the set_property and
       get_property commands.  This is primarily useful to associate
       documentation with property names that may be retrieved with the
       get_property command.  The first argument determines the kind of scope
       in which the property should be used.  It must be one of the
       following:

         GLOBAL    = associated with the global namespace
         DIRECTORY = associated with one directory
         TARGET    = associated with one target
         SOURCE    = associated with one source file
         TEST      = associated with a test named with add_test
         VARIABLE  = documents a CMake language variable
         CACHED_VARIABLE = documents a CMake cache variable

       Note that unlike set_property and get_property no actual scope needs
       to be given; only the kind of scope is important.

       The required PROPERTY option is immediately followed by the name of
       the property being defined.

       If the INHERITED option then the get_property command will chain up to
       the next higher scope when the requested property is not set in the
       scope given to the command.  DIRECTORY scope chains to GLOBAL.
       TARGET, SOURCE, and TEST chain to DIRECTORY.

       The BRIEF_DOCS and FULL_DOCS options are followed by strings to be
       associated with the property as its brief and full documentation.
       Corresponding options to the get_property command will retrieve the
       documentation.

  else
       Starts the else portion of an if block.

         else(expression)

       See the if command.

  elseif
       Starts the elseif portion of an if block.

         elseif(expression)

       See the if command.

  enable_language
       Enable a language (CXX/C/Fortran/etc)

         enable_language(languageName [OPTIONAL] )

       This command enables support for the named language in CMake.  This is
       the same as the project command but does not create any of the extra
       variables that are created by the project command.  Example languages
       are CXX, C, Fortran.  If OPTIONAL is used, use the
       CMAKE_<languageName>_COMPILER_WORKS variable to check whether the
       language has been enabled successfully.

  enable_testing
       Enable testing for current directory and below.

         enable_testing()

       Enables testing for this directory and below.  See also the add_test
       command.  Note that ctest expects to find a test file in the build
       directory root.  Therefore, this command should be in the source
       directory root.

  endforeach
       Ends a list of commands in a FOREACH block.

         endforeach(expression)

       See the FOREACH command.

  endfunction
       Ends a list of commands in a function block.

         endfunction(expression)

       See the function command.

  endif
       Ends a list of commands in an if block.

         endif(expression)

       See the if command.

  endmacro
       Ends a list of commands in a macro block.

         endmacro(expression)

       See the macro command.

  endwhile
       Ends a list of commands in a while block.

         endwhile(expression)

       See the while command.

  execute_process
       Execute one or more child processes.

         execute_process(COMMAND <cmd1> [args1...]]
                         [COMMAND <cmd2> [args2...] [...]]
                         [WORKING_DIRECTORY <directory>]
                         [TIMEOUT <seconds>]
                         [RESULT_VARIABLE <variable>]
                         [OUTPUT_VARIABLE <variable>]
                         [ERROR_VARIABLE <variable>]
                         [INPUT_FILE <file>]
                         [OUTPUT_FILE <file>]
                         [ERROR_FILE <file>]
                         [OUTPUT_QUIET]
                         [ERROR_QUIET]
                         [OUTPUT_STRIP_TRAILING_WHITESPACE]
                         [ERROR_STRIP_TRAILING_WHITESPACE])

       Runs the given sequence of one or more commands with the standard
       output of each process piped to the standard input of the next.  A
       single standard error pipe is used for all processes.  If
       WORKING_DIRECTORY is given the named directory will be set as the
       current working directory of the child processes.  If TIMEOUT is given
       the child processes will be terminated if they do not finish in the
       specified number of seconds (fractions are allowed).  If
       RESULT_VARIABLE is given the variable will be set to contain the
       result of running the processes.  This will be an integer return code
       from the last child or a string describing an error condition.  If
       OUTPUT_VARIABLE or ERROR_VARIABLE are given the variable named will be
       set with the contents of the standard output and standard error pipes
       respectively.  If the same variable is named for both pipes their
       output will be merged in the order produced.  If INPUT_FILE,
       OUTPUT_FILE, or ERROR_FILE is given the file named will be attached to
       the standard input of the first process, standard output of the last
       process, or standard error of all processes respectively.  If
       OUTPUT_QUIET or ERROR_QUIET is given then the standard output or
       standard error results will be quietly ignored.  If more than one
       OUTPUT_* or ERROR_* option is given for the same pipe the precedence
       is not specified.  If no OUTPUT_* or ERROR_* options are given the
       output will be shared with the corresponding pipes of the CMake
       process itself.

       The execute_process command is a newer more powerful version of
       exec_program, but the old command has been kept for compatibility.

  export
       Export targets from the build tree for use by outside projects.

         export(TARGETS [target1 [target2 [...]]] [NAMESPACE <namespace>]
                [APPEND] FILE <filename>)

       Create a file <filename> that may be included by outside projects to
       import targets from the current project's build tree.  This is useful
       during cross-compiling to build utility executables that can run on
       the host platform in one project and then import them into another
       project being compiled for the target platform.  If the NAMESPACE
       option is given the <namespace> string will be prepended to all target
       names written to the file.  If the APPEND option is given the
       generated code will be appended to the file instead of overwriting it.
       If a library target is included in the export but a target to which it
       links is not included the behavior is unspecified.

       The file created by this command is specific to the build tree and
       should never be installed.  See the install(EXPORT) command to export
       targets from an installation tree.

       Do not set properties that affect the location of a target after
       passing it to this command.  These include properties whose names
       match "(RUNTIME|LIBRARY|ARCHIVE)_OUTPUT_(NAME|DIRECTORY)(_<CONFIG>)?"
       or "(IMPLIB_)?(PREFIX|SUFFIX)".  Failure to follow this rule is not
       diagnosed and leaves the location of the target undefined.

         export(PACKAGE <name>)

       Store the current build directory in the CMake user package registry
       for package <name>.  The find_package command may consider the
       directory while searching for package <name>.  This helps dependent
       projects find and use a package from the current project's build tree
       without help from the user.  Note that the entry in the package
       registry that this command creates works only in conjunction with a
       package configuration file (<name>Config.cmake) that works with the
       build tree.

  file
       File manipulation command.

         file(WRITE filename "message to write"... )
         file(APPEND filename "message to write"... )
         file(READ filename variable [LIMIT numBytes] [OFFSET offset] [HEX])
         file(<MD5|SHA1|SHA224|SHA256|SHA384|SHA512> filename variable)
         file(STRINGS filename variable [LIMIT_COUNT num]
              [LIMIT_INPUT numBytes] [LIMIT_OUTPUT numBytes]
              [LENGTH_MINIMUM numBytes] [LENGTH_MAXIMUM numBytes]
              [NEWLINE_CONSUME] [REGEX regex]
              [NO_HEX_CONVERSION])
         file(GLOB variable [RELATIVE path] [globbing expressions]...)
         file(GLOB_RECURSE variable [RELATIVE path] 
              [FOLLOW_SYMLINKS] [globbing expressions]...)
         file(RENAME <oldname> <newname>)
         file(REMOVE [file1 ...])
         file(REMOVE_RECURSE [file1 ...])
         file(MAKE_DIRECTORY [directory1 directory2 ...])
         file(RELATIVE_PATH variable directory file)
         file(TO_CMAKE_PATH path result)
         file(TO_NATIVE_PATH path result)
         file(DOWNLOAD url file [INACTIVITY_TIMEOUT timeout]
              [TIMEOUT timeout] [STATUS status] [LOG log] [SHOW_PROGRESS]
              [EXPECTED_MD5 sum])
         file(UPLOAD filename url [INACTIVITY_TIMEOUT timeout]
              [TIMEOUT timeout] [STATUS status] [LOG log] [SHOW_PROGRESS])

       WRITE will write a message into a file called 'filename'.  It
       overwrites the file if it already exists, and creates the file if it
       does not exist.

       APPEND will write a message into a file same as WRITE, except it will
       append it to the end of the file

       READ will read the content of a file and store it into the variable.
       It will start at the given offset and read up to numBytes.  If the
       argument HEX is given, the binary data will be converted to
       hexadecimal representation and this will be stored in the variable.

       MD5, SHA1, SHA224, SHA256, SHA384, and SHA512 will compute a
       cryptographic hash of the content of a file.

       STRINGS will parse a list of ASCII strings from a file and store it in
       a variable.  Binary data in the file are ignored.  Carriage return
       (CR) characters are ignored.  It works also for Intel Hex and Motorola
       S-record files, which are automatically converted to binary format
       when reading them.  Disable this using NO_HEX_CONVERSION.

       LIMIT_COUNT sets the maximum number of strings to return.  LIMIT_INPUT
       sets the maximum number of bytes to read from the input file.
       LIMIT_OUTPUT sets the maximum number of bytes to store in the output
       variable.  LENGTH_MINIMUM sets the minimum length of a string to
       return.  Shorter strings are ignored.  LENGTH_MAXIMUM sets the maximum
       length of a string to return.  Longer strings are split into strings
       no longer than the maximum length.  NEWLINE_CONSUME allows newlines to
       be included in strings instead of terminating them.

       REGEX specifies a regular expression that a string must match to be
       returned.  Typical usage

         file(STRINGS myfile.txt myfile)

       stores a list in the variable "myfile" in which each item is a line
       from the input file.

       GLOB will generate a list of all files that match the globbing
       expressions and store it into the variable.  Globbing expressions are
       similar to regular expressions, but much simpler.  If RELATIVE flag is
       specified for an expression, the results will be returned as a
       relative path to the given path.  (We do not recommend using GLOB to
       collect a list of source files from your source tree.  If no
       CMakeLists.txt file changes when a source is added or removed then the
       generated build system cannot know when to ask CMake to regenerate.)

       Examples of globbing expressions include:

          *.cxx      - match all files with extension cxx
          *.vt?      - match all files with extension vta,...,vtz
          f[3-5].txt - match files f3.txt, f4.txt, f5.txt

       GLOB_RECURSE will generate a list similar to the regular GLOB, except
       it will traverse all the subdirectories of the matched directory and
       match the files.  Subdirectories that are symlinks are only traversed
       if FOLLOW_SYMLINKS is given or cmake policy CMP0009 is not set to NEW.
       See cmake --help-policy CMP0009 for more information.

       Examples of recursive globbing include:

          /dir/*.py  - match all python files in /dir and subdirectories

       MAKE_DIRECTORY will create the given directories, also if their parent
       directories don't exist yet

       RENAME moves a file or directory within a filesystem, replacing the
       destination atomically.

       REMOVE will remove the given files, also in subdirectories

       REMOVE_RECURSE will remove the given files and directories, also
       non-empty directories

       RELATIVE_PATH will determine relative path from directory to the given
       file.

       TO_CMAKE_PATH will convert path into a cmake style path with unix /.
       The input can be a single path or a system path like "$ENV{PATH}".
       Note the double quotes around the ENV call TO_CMAKE_PATH only takes
       one argument.

       TO_NATIVE_PATH works just like TO_CMAKE_PATH, but will convert from a
       cmake style path into the native path style \ for windows and / for
       UNIX.

       DOWNLOAD will download the given URL to the given file.  If LOG var is
       specified a log of the download will be put in var.  If STATUS var is
       specified the status of the operation will be put in var.  The status
       is returned in a list of length 2.  The first element is the numeric
       return value for the operation, and the second element is a string
       value for the error.  A 0 numeric error means no error in the
       operation.  If TIMEOUT time is specified, the operation will timeout
       after time seconds, time should be specified as an integer.  The
       INACTIVITY_TIMEOUT specifies an integer number of seconds of
       inactivity after which the operation should terminate.  If
       EXPECTED_MD5 sum is specified, the operation will verify that the
       downloaded file's actual md5 sum matches the expected value.  If it
       does not match, the operation fails with an error.  If SHOW_PROGRESS
       is specified, progress information will be printed as status messages
       until the operation is complete.

       UPLOAD will upload the given file to the given URL.  If LOG var is
       specified a log of the upload will be put in var.  If STATUS var is
       specified the status of the operation will be put in var.  The status
       is returned in a list of length 2.  The first element is the numeric
       return value for the operation, and the second element is a string
       value for the error.  A 0 numeric error means no error in the
       operation.  If TIMEOUT time is specified, the operation will timeout
       after time seconds, time should be specified as an integer.  The
       INACTIVITY_TIMEOUT specifies an integer number of seconds of
       inactivity after which the operation should terminate.  If
       SHOW_PROGRESS is specified, progress information will be printed as
       status messages until the operation is complete.

       The file() command also provides COPY and INSTALL signatures:

         file(<COPY|INSTALL> files... DESTINATION <dir>
              [FILE_PERMISSIONS permissions...]
              [DIRECTORY_PERMISSIONS permissions...]
              [NO_SOURCE_PERMISSIONS] [USE_SOURCE_PERMISSIONS]
              [FILES_MATCHING]
              [[PATTERN <pattern> | REGEX <regex>]
               [EXCLUDE] [PERMISSIONS permissions...]] [...])

       The COPY signature copies files, directories, and symlinks to a
       destination folder.  Relative input paths are evaluated with respect
       to the current source directory, and a relative destination is
       evaluated with respect to the current build directory.  Copying
       preserves input file timestamps, and optimizes out a file if it exists
       at the destination with the same timestamp.  Copying preserves input
       permissions unless explicit permissions or NO_SOURCE_PERMISSIONS are
       given (default is USE_SOURCE_PERMISSIONS).  See the install(DIRECTORY)
       command for documentation of permissions, PATTERN, REGEX, and EXCLUDE
       options.

       The INSTALL signature differs slightly from COPY: it prints status
       messages, and NO_SOURCE_PERMISSIONS is default.  Installation scripts
       generated by the install() command use this signature (with some
       undocumented options for internal use).

  find_file
       Find the full path to a file.

          find_file(<VAR> name1 [path1 path2 ...])

       This is the short-hand signature for the command that is sufficient in
       many cases.  It is the same as find_file(<VAR> name1 [PATHS path1
       path2 ...])

          find_file(
                    <VAR>
                    name | NAMES name1 [name2 ...]
                    [HINTS path1 [path2 ... ENV var]]
                    [PATHS path1 [path2 ... ENV var]]
                    [PATH_SUFFIXES suffix1 [suffix2 ...]]
                    [DOC "cache documentation string"]
                    [NO_DEFAULT_PATH]
                    [NO_CMAKE_ENVIRONMENT_PATH]
                    [NO_CMAKE_PATH]
                    [NO_SYSTEM_ENVIRONMENT_PATH]
                    [NO_CMAKE_SYSTEM_PATH]
                    [CMAKE_FIND_ROOT_PATH_BOTH |
                     ONLY_CMAKE_FIND_ROOT_PATH |
                     NO_CMAKE_FIND_ROOT_PATH]
                   )

       This command is used to find a full path to named file.  A cache entry
       named by <VAR> is created to store the result of this command.  If the
       full path to a file is found the result is stored in the variable and
       the search will not be repeated unless the variable is cleared.  If
       nothing is found, the result will be <VAR>-NOTFOUND, and the search
       will be attempted again the next time find_file is invoked with the
       same variable.  The name of the full path to a file that is searched
       for is specified by the names listed after the NAMES argument.
       Additional search locations can be specified after the PATHS argument.
       If ENV var is found in the HINTS or PATHS section the environment
       variable var will be read and converted from a system environment
       variable to a cmake style list of paths.  For example ENV PATH would
       be a way to list the system path variable.  The argument after DOC
       will be used for the documentation string in the cache.  PATH_SUFFIXES
       specifies additional subdirectories to check below each search path.

       If NO_DEFAULT_PATH is specified, then no additional paths are added to
       the search.  If NO_DEFAULT_PATH is not specified, the search process
       is as follows:

       1.  Search paths specified in cmake-specific cache variables.  These
       are intended to be used on the command line with a -DVAR=value.  This
       can be skipped if NO_CMAKE_PATH is passed.

          <prefix>/include for each <prefix> in CMAKE_PREFIX_PATH
          CMAKE_INCLUDE_PATH
          CMAKE_FRAMEWORK_PATH

       2.  Search paths specified in cmake-specific environment variables.
       These are intended to be set in the user's shell configuration.  This
       can be skipped if NO_CMAKE_ENVIRONMENT_PATH is passed.

          <prefix>/include for each <prefix> in CMAKE_PREFIX_PATH
          CMAKE_INCLUDE_PATH
          CMAKE_FRAMEWORK_PATH

       3.  Search the paths specified by the HINTS option.  These should be
       paths computed by system introspection, such as a hint provided by the
       location of another item already found.  Hard-coded guesses should be
       specified with the PATHS option.

       4.  Search the standard system environment variables.  This can be
       skipped if NO_SYSTEM_ENVIRONMENT_PATH is an argument.

          PATH
          INCLUDE

       5.  Search cmake variables defined in the Platform files for the
       current system.  This can be skipped if NO_CMAKE_SYSTEM_PATH is
       passed.

          <prefix>/include for each <prefix> in CMAKE_SYSTEM_PREFIX_PATH
          CMAKE_SYSTEM_INCLUDE_PATH
          CMAKE_SYSTEM_FRAMEWORK_PATH

       6.  Search the paths specified by the PATHS option or in the
       short-hand version of the command.  These are typically hard-coded
       guesses.

       On Darwin or systems supporting OS X Frameworks, the cmake variable
       CMAKE_FIND_FRAMEWORK can be set to empty or one of the following:

          "FIRST"  - Try to find frameworks before standard
                     libraries or headers. This is the default on Darwin.
          "LAST"   - Try to find frameworks after standard
                     libraries or headers.
          "ONLY"   - Only try to find frameworks.
          "NEVER" - Never try to find frameworks.

       On Darwin or systems supporting OS X Application Bundles, the cmake
       variable CMAKE_FIND_APPBUNDLE can be set to empty or one of the
       following:

          "FIRST"  - Try to find application bundles before standard
                     programs. This is the default on Darwin.
          "LAST"   - Try to find application bundles after standard
                     programs.
          "ONLY"   - Only try to find application bundles.
          "NEVER" - Never try to find application bundles.

       The CMake variable CMAKE_FIND_ROOT_PATH specifies one or more
       directories to be prepended to all other search directories.  This
       effectively "re-roots" the entire search under given locations.  By
       default it is empty.  It is especially useful when cross-compiling to
       point to the root directory of the target environment and CMake will
       search there too.  By default at first the directories listed in
       CMAKE_FIND_ROOT_PATH and then the non-rooted directories will be
       searched.  The default behavior can be adjusted by setting
       CMAKE_FIND_ROOT_PATH_MODE_INCLUDE.  This behavior can be manually
       overridden on a per-call basis.  By using CMAKE_FIND_ROOT_PATH_BOTH
       the search order will be as described above.  If
       NO_CMAKE_FIND_ROOT_PATH is used then CMAKE_FIND_ROOT_PATH will not be
       used.  If ONLY_CMAKE_FIND_ROOT_PATH is used then only the re-rooted
       directories will be searched.

       The default search order is designed to be most-specific to
       least-specific for common use cases.  Projects may override the order
       by simply calling the command multiple times and using the NO_*
       options:

          find_file(<VAR> NAMES name PATHS paths... NO_DEFAULT_PATH)
          find_file(<VAR> NAMES name)

       Once one of the calls succeeds the result variable will be set and
       stored in the cache so that no call will search again.

  find_library
       Find a library.

          find_library(<VAR> name1 [path1 path2 ...])

       This is the short-hand signature for the command that is sufficient in
       many cases.  It is the same as find_library(<VAR> name1 [PATHS path1
       path2 ...])

          find_library(
                    <VAR>
                    name | NAMES name1 [name2 ...]
                    [HINTS path1 [path2 ... ENV var]]
                    [PATHS path1 [path2 ... ENV var]]
                    [PATH_SUFFIXES suffix1 [suffix2 ...]]
                    [DOC "cache documentation string"]
                    [NO_DEFAULT_PATH]
                    [NO_CMAKE_ENVIRONMENT_PATH]
                    [NO_CMAKE_PATH]
                    [NO_SYSTEM_ENVIRONMENT_PATH]
                    [NO_CMAKE_SYSTEM_PATH]
                    [CMAKE_FIND_ROOT_PATH_BOTH |
                     ONLY_CMAKE_FIND_ROOT_PATH |
                     NO_CMAKE_FIND_ROOT_PATH]
                   )

       This command is used to find a library.  A cache entry named by <VAR>
       is created to store the result of this command.  If the library is
       found the result is stored in the variable and the search will not be
       repeated unless the variable is cleared.  If nothing is found, the
       result will be <VAR>-NOTFOUND, and the search will be attempted again
       the next time find_library is invoked with the same variable.  The
       name of the library that is searched for is specified by the names
       listed after the NAMES argument.  Additional search locations can be
       specified after the PATHS argument.  If ENV var is found in the HINTS
       or PATHS section the environment variable var will be read and
       converted from a system environment variable to a cmake style list of
       paths.  For example ENV PATH would be a way to list the system path
       variable.  The argument after DOC will be used for the documentation
       string in the cache.  PATH_SUFFIXES specifies additional
       subdirectories to check below each search path.

       If NO_DEFAULT_PATH is specified, then no additional paths are added to
       the search.  If NO_DEFAULT_PATH is not specified, the search process
       is as follows:

       1.  Search paths specified in cmake-specific cache variables.  These
       are intended to be used on the command line with a -DVAR=value.  This
       can be skipped if NO_CMAKE_PATH is passed.

          <prefix>/lib/<arch> if CMAKE_LIBRARY_ARCHITECTURE is set, and
          <prefix>/lib for each <prefix> in CMAKE_PREFIX_PATH
          CMAKE_LIBRARY_PATH
          CMAKE_FRAMEWORK_PATH

       2.  Search paths specified in cmake-specific environment variables.
       These are intended to be set in the user's shell configuration.  This
       can be skipped if NO_CMAKE_ENVIRONMENT_PATH is passed.

          <prefix>/lib/<arch> if CMAKE_LIBRARY_ARCHITECTURE is set, and
          <prefix>/lib for each <prefix> in CMAKE_PREFIX_PATH
          CMAKE_LIBRARY_PATH
          CMAKE_FRAMEWORK_PATH

       3.  Search the paths specified by the HINTS option.  These should be
       paths computed by system introspection, such as a hint provided by the
       location of another item already found.  Hard-coded guesses should be
       specified with the PATHS option.

       4.  Search the standard system environment variables.  This can be
       skipped if NO_SYSTEM_ENVIRONMENT_PATH is an argument.

          PATH
          LIB

       5.  Search cmake variables defined in the Platform files for the
       current system.  This can be skipped if NO_CMAKE_SYSTEM_PATH is
       passed.

          <prefix>/lib/<arch> if CMAKE_LIBRARY_ARCHITECTURE is set, and
          <prefix>/lib for each <prefix> in CMAKE_SYSTEM_PREFIX_PATH
          CMAKE_SYSTEM_LIBRARY_PATH
          CMAKE_SYSTEM_FRAMEWORK_PATH

       6.  Search the paths specified by the PATHS option or in the
       short-hand version of the command.  These are typically hard-coded
       guesses.

       On Darwin or systems supporting OS X Frameworks, the cmake variable
       CMAKE_FIND_FRAMEWORK can be set to empty or one of the following:

          "FIRST"  - Try to find frameworks before standard
                     libraries or headers. This is the default on Darwin.
          "LAST"   - Try to find frameworks after standard
                     libraries or headers.
          "ONLY"   - Only try to find frameworks.
          "NEVER" - Never try to find frameworks.

       On Darwin or systems supporting OS X Application Bundles, the cmake
       variable CMAKE_FIND_APPBUNDLE can be set to empty or one of the
       following:

          "FIRST"  - Try to find application bundles before standard
                     programs. This is the default on Darwin.
          "LAST"   - Try to find application bundles after standard
                     programs.
          "ONLY"   - Only try to find application bundles.
          "NEVER" - Never try to find application bundles.

       The CMake variable CMAKE_FIND_ROOT_PATH specifies one or more
       directories to be prepended to all other search directories.  This
       effectively "re-roots" the entire search under given locations.  By
       default it is empty.  It is especially useful when cross-compiling to
       point to the root directory of the target environment and CMake will
       search there too.  By default at first the directories listed in
       CMAKE_FIND_ROOT_PATH and then the non-rooted directories will be
       searched.  The default behavior can be adjusted by setting
       CMAKE_FIND_ROOT_PATH_MODE_LIBRARY.  This behavior can be manually
       overridden on a per-call basis.  By using CMAKE_FIND_ROOT_PATH_BOTH
       the search order will be as described above.  If
       NO_CMAKE_FIND_ROOT_PATH is used then CMAKE_FIND_ROOT_PATH will not be
       used.  If ONLY_CMAKE_FIND_ROOT_PATH is used then only the re-rooted
       directories will be searched.

       The default search order is designed to be most-specific to
       least-specific for common use cases.  Projects may override the order
       by simply calling the command multiple times and using the NO_*
       options:

          find_library(<VAR> NAMES name PATHS paths... NO_DEFAULT_PATH)
          find_library(<VAR> NAMES name)

       Once one of the calls succeeds the result variable will be set and
       stored in the cache so that no call will search again.

       If the library found is a framework, then VAR will be set to the full
       path to the framework <fullPath>/A.framework.  When a full path to a
       framework is used as a library, CMake will use a -framework A, and a
       -F<fullPath> to link the framework to the target.

  find_package
       Load settings for an external project.

         find_package(<package> [version] [EXACT] [QUIET]
                      [[REQUIRED|COMPONENTS] [components...]]
                      [NO_POLICY_SCOPE])

       Finds and loads settings from an external project.  <package>_FOUND
       will be set to indicate whether the package was found.  When the
       package is found package-specific information is provided through
       variables documented by the package itself.  The QUIET option disables
       messages if the package cannot be found.  The REQUIRED option stops
       processing with an error message if the package cannot be found.  A
       package-specific list of components may be listed after the REQUIRED
       option or after the COMPONENTS option if no REQUIRED option is given.
       The [version] argument requests a version with which the package found
       should be compatible (format is major[.minor[.patch[.tweak]]]).  The
       EXACT option requests that the version be matched exactly.  If no
       [version] and/or component list is given to a recursive invocation
       inside a find-module, the corresponding arguments are forwarded
       automatically from the outer call (including the EXACT flag for
       [version]).  Version support is currently provided only on a
       package-by-package basis (details below).

       User code should generally look for packages using the above simple
       signature.  The remainder of this command documentation specifies the
       full command signature and details of the search process.  Project
       maintainers wishing to provide a package to be found by this command
       are encouraged to read on.

       The command has two modes by which it searches for packages: "Module"
       mode and "Config" mode.  Module mode is available when the command is
       invoked with the above reduced signature.  CMake searches for a file
       called "Find<package>.cmake" in the CMAKE_MODULE_PATH followed by the
       CMake installation.  If the file is found, it is read and processed by
       CMake.  It is responsible for finding the package, checking the
       version, and producing any needed messages.  Many find-modules provide
       limited or no support for versioning; check the module documentation.
       If no module is found the command proceeds to Config mode.

       The complete Config mode command signature is:

         find_package(<package> [version] [EXACT] [QUIET]
                      [[REQUIRED|COMPONENTS] [components...]] [NO_MODULE]
                      [NO_POLICY_SCOPE]
                      [NAMES name1 [name2 ...]]
                      [CONFIGS config1 [config2 ...]]
                      [HINTS path1 [path2 ... ]]
                      [PATHS path1 [path2 ... ]]
                      [PATH_SUFFIXES suffix1 [suffix2 ...]]
                      [NO_DEFAULT_PATH]
                      [NO_CMAKE_ENVIRONMENT_PATH]
                      [NO_CMAKE_PATH]
                      [NO_SYSTEM_ENVIRONMENT_PATH]
                      [NO_CMAKE_PACKAGE_REGISTRY]
                      [NO_CMAKE_BUILDS_PATH]
                      [NO_CMAKE_SYSTEM_PATH]
                      [NO_CMAKE_SYSTEM_PACKAGE_REGISTRY]
                      [CMAKE_FIND_ROOT_PATH_BOTH |
                       ONLY_CMAKE_FIND_ROOT_PATH |
                       NO_CMAKE_FIND_ROOT_PATH])

       The NO_MODULE option may be used to skip Module mode explicitly.  It
       is also implied by use of options not specified in the reduced
       signature.

       Config mode attempts to locate a configuration file provided by the
       package to be found.  A cache entry called <package>_DIR is created to
       hold the directory containing the file.  By default the command
       searches for a package with the name <package>.  If the NAMES option
       is given the names following it are used instead of <package>.  The
       command searches for a file called "<name>Config.cmake" or
       "<lower-case-name>-config.cmake" for each name specified.  A
       replacement set of possible configuration file names may be given
       using the CONFIGS option.  The search procedure is specified below.
       Once found, the configuration file is read and processed by CMake.
       Since the file is provided by the package it already knows the
       location of package contents.  The full path to the configuration file
       is stored in the cmake variable <package>_CONFIG.

       All configuration files which have been considered by CMake while
       searching for an installation of the package with an appropriate
       version are stored in the cmake variable <package>_CONSIDERED_CONFIGS,
       the associated versions in <package>_CONSIDERED_VERSIONS.

       If the package configuration file cannot be found CMake will generate
       an error describing the problem unless the QUIET argument is
       specified.  If REQUIRED is specified and the package is not found a
       fatal error is generated and the configure step stops executing.  If
       <package>_DIR has been set to a directory not containing a
       configuration file CMake will ignore it and search from scratch.

       When the [version] argument is given Config mode will only find a
       version of the package that claims compatibility with the requested
       version (format is major[.minor[.patch[.tweak]]]).  If the EXACT
       option is given only a version of the package claiming an exact match
       of the requested version may be found.  CMake does not establish any
       convention for the meaning of version numbers.  Package version
       numbers are checked by "version" files provided by the packages
       themselves.  For a candidate package configuration file
       "<config-file>.cmake" the corresponding version file is located next
       to it and named either "<config-file>-version.cmake" or
       "<config-file>Version.cmake".  If no such version file is available
       then the configuration file is assumed to not be compatible with any
       requested version.  A basic version file containing generic version
       matching code can be created using the macro
       write_basic_config_version_file(), see its documentation for more
       details.  When a version file is found it is loaded to check the
       requested version number.  The version file is loaded in a nested
       scope in which the following variables have been defined:

         PACKAGE_FIND_NAME          = the <package> name
         PACKAGE_FIND_VERSION       = full requested version string
         PACKAGE_FIND_VERSION_MAJOR = major version if requested, else 0
         PACKAGE_FIND_VERSION_MINOR = minor version if requested, else 0
         PACKAGE_FIND_VERSION_PATCH = patch version if requested, else 0
         PACKAGE_FIND_VERSION_TWEAK = tweak version if requested, else 0
         PACKAGE_FIND_VERSION_COUNT = number of version components, 0 to 4

       The version file checks whether it satisfies the requested version and
       sets these variables:

         PACKAGE_VERSION            = full provided version string
         PACKAGE_VERSION_EXACT      = true if version is exact match
         PACKAGE_VERSION_COMPATIBLE = true if version is compatible
         PACKAGE_VERSION_UNSUITABLE = true if unsuitable as any version

       These variables are checked by the find_package command to determine
       whether the configuration file provides an acceptable version.  They
       are not available after the find_package call returns.  If the version
       is acceptable the following variables are set:

         <package>_VERSION       = full provided version string
         <package>_VERSION_MAJOR = major version if provided, else 0
         <package>_VERSION_MINOR = minor version if provided, else 0
         <package>_VERSION_PATCH = patch version if provided, else 0
         <package>_VERSION_TWEAK = tweak version if provided, else 0
         <package>_VERSION_COUNT = number of version components, 0 to 4

       and the corresponding package configuration file is loaded.  When
       multiple package configuration files are available whose version files
       claim compatibility with the version requested it is unspecified which
       one is chosen.  No attempt is made to choose a highest or closest
       version number.

       Config mode provides an elaborate interface and search procedure.
       Much of the interface is provided for completeness and for use
       internally by find-modules loaded by Module mode.  Most user code
       should simply call

         find_package(<package> [major[.minor]] [EXACT] [REQUIRED|QUIET])

       in order to find a package.  Package maintainers providing CMake
       package configuration files are encouraged to name and install them
       such that the procedure outlined below will find them without
       requiring use of additional options.

       CMake constructs a set of possible installation prefixes for the
       package.  Under each prefix several directories are searched for a
       configuration file.  The tables below show the directories searched.
       Each entry is meant for installation trees following Windows (W), UNIX
       (U), or Apple (A) conventions.

         <prefix>/                                               (W)
         <prefix>/(cmake|CMake)/                                 (W)
         <prefix>/<name>*/                                       (W)
         <prefix>/<name>*/(cmake|CMake)/                         (W)
         <prefix>/(lib/<arch>|lib|share)/cmake/<name>*/          (U)
         <prefix>/(lib/<arch>|lib|share)/<name>*/                (U)
         <prefix>/(lib/<arch>|lib|share)/<name>*/(cmake|CMake)/  (U)

       On systems supporting OS X Frameworks and Application Bundles the
       following directories are searched for frameworks or bundles
       containing a configuration file:

         <prefix>/<name>.framework/Resources/                    (A)
         <prefix>/<name>.framework/Resources/CMake/              (A)
         <prefix>/<name>.framework/Versions/*/Resources/         (A)
         <prefix>/<name>.framework/Versions/*/Resources/CMake/   (A)
         <prefix>/<name>.app/Contents/Resources/                 (A)
         <prefix>/<name>.app/Contents/Resources/CMake/           (A)

       In all cases the <name> is treated as case-insensitive and corresponds
       to any of the names specified (<package> or names given by NAMES).
       Paths with lib/<arch> are enabled if CMAKE_LIBRARY_ARCHITECTURE is
       set.  If PATH_SUFFIXES is specified the suffixes are appended to each
       (W) or (U) directory entry one-by-one.

       This set of directories is intended to work in cooperation with
       projects that provide configuration files in their installation trees.
       Directories above marked with (W) are intended for installations on
       Windows where the prefix may point at the top of an application's
       installation directory.  Those marked with (U) are intended for
       installations on UNIX platforms where the prefix is shared by multiple
       packages.  This is merely a convention, so all (W) and (U) directories
       are still searched on all platforms.  Directories marked with (A) are
       intended for installations on Apple platforms.  The cmake variables
       CMAKE_FIND_FRAMEWORK and CMAKE_FIND_APPBUNDLE determine the order of
       preference as specified below.

       The set of installation prefixes is constructed using the following
       steps.  If NO_DEFAULT_PATH is specified all NO_* options are enabled.

       1.  Search paths specified in cmake-specific cache variables.  These
       are intended to be used on the command line with a -DVAR=value.  This
       can be skipped if NO_CMAKE_PATH is passed.

          CMAKE_PREFIX_PATH
          CMAKE_FRAMEWORK_PATH
          CMAKE_APPBUNDLE_PATH

       2.  Search paths specified in cmake-specific environment variables.
       These are intended to be set in the user's shell configuration.  This
       can be skipped if NO_CMAKE_ENVIRONMENT_PATH is passed.

          <package>_DIR
          CMAKE_PREFIX_PATH
          CMAKE_FRAMEWORK_PATH
          CMAKE_APPBUNDLE_PATH

       3.  Search paths specified by the HINTS option.  These should be paths
       computed by system introspection, such as a hint provided by the
       location of another item already found.  Hard-coded guesses should be
       specified with the PATHS option.

       4.  Search the standard system environment variables.  This can be
       skipped if NO_SYSTEM_ENVIRONMENT_PATH is passed.  Path entries ending
       in "/bin" or "/sbin" are automatically converted to their parent
       directories.

          PATH

       5.  Search project build trees recently configured in a CMake GUI.
       This can be skipped if NO_CMAKE_BUILDS_PATH is passed.  It is intended
       for the case when a user is building multiple dependent projects one
       after another.

       6.  Search paths stored in the CMake user package registry.  This can
       be skipped if NO_CMAKE_PACKAGE_REGISTRY is passed.  On Windows a
       <package> may appear under registry key

         HKEY_CURRENT_USER\Software\Kitware\CMake\Packages\<package>

       as a REG_SZ value, with arbitrary name, that specifies the directory
       containing the package configuration file.  On UNIX platforms a
       <package> may appear under the directory

         ~/.cmake/packages/<package>

       as a file, with arbitrary name, whose content specifies the directory
       containing the package configuration file.  See the export(PACKAGE)
       command to create user package registry entries for project build
       trees.

       7.  Search cmake variables defined in the Platform files for the
       current system.  This can be skipped if NO_CMAKE_SYSTEM_PATH is
       passed.

          CMAKE_SYSTEM_PREFIX_PATH
          CMAKE_SYSTEM_FRAMEWORK_PATH
          CMAKE_SYSTEM_APPBUNDLE_PATH

       8.  Search paths stored in the CMake system package registry.  This
       can be skipped if NO_CMAKE_SYSTEM_PACKAGE_REGISTRY is passed.  On
       Windows a <package> may appear under registry key

         HKEY_LOCAL_MACHINE\Software\Kitware\CMake\Packages\<package>

       as a REG_SZ value, with arbitrary name, that specifies the directory
       containing the package configuration file.  There is no system package
       registry on non-Windows platforms.

       9.  Search paths specified by the PATHS option.  These are typically
       hard-coded guesses.

       On Darwin or systems supporting OS X Frameworks, the cmake variable
       CMAKE_FIND_FRAMEWORK can be set to empty or one of the following:

          "FIRST"  - Try to find frameworks before standard
                     libraries or headers. This is the default on Darwin.
          "LAST"   - Try to find frameworks after standard
                     libraries or headers.
          "ONLY"   - Only try to find frameworks.
          "NEVER" - Never try to find frameworks.

       On Darwin or systems supporting OS X Application Bundles, the cmake
       variable CMAKE_FIND_APPBUNDLE can be set to empty or one of the
       following:

          "FIRST"  - Try to find application bundles before standard
                     programs. This is the default on Darwin.
          "LAST"   - Try to find application bundles after standard
                     programs.
          "ONLY"   - Only try to find application bundles.
          "NEVER" - Never try to find application bundles.

       The CMake variable CMAKE_FIND_ROOT_PATH specifies one or more
       directories to be prepended to all other search directories.  This
       effectively "re-roots" the entire search under given locations.  By
       default it is empty.  It is especially useful when cross-compiling to
       point to the root directory of the target environment and CMake will
       search there too.  By default at first the directories listed in
       CMAKE_FIND_ROOT_PATH and then the non-rooted directories will be
       searched.  The default behavior can be adjusted by setting
       CMAKE_FIND_ROOT_PATH_MODE_PACKAGE.  This behavior can be manually
       overridden on a per-call basis.  By using CMAKE_FIND_ROOT_PATH_BOTH
       the search order will be as described above.  If
       NO_CMAKE_FIND_ROOT_PATH is used then CMAKE_FIND_ROOT_PATH will not be
       used.  If ONLY_CMAKE_FIND_ROOT_PATH is used then only the re-rooted
       directories will be searched.

       The default search order is designed to be most-specific to
       least-specific for common use cases.  Projects may override the order
       by simply calling the command multiple times and using the NO_*
       options:

          find_package(<package> PATHS paths... NO_DEFAULT_PATH)
          find_package(<package>)

       Once one of the calls succeeds the result variable will be set and
       stored in the cache so that no call will search again.

       Every non-REQUIRED find_package() call can be disabled by setting the
       variable CMAKE_DISABLE_FIND_PACKAGE_<package> to TRUE.  See the
       documentation for the CMAKE_DISABLE_FIND_PACKAGE_<package> variable
       for more information.

       See the cmake_policy() command documentation for discussion of the
       NO_POLICY_SCOPE option.

  find_path
       Find the directory containing a file.

          find_path(<VAR> name1 [path1 path2 ...])

       This is the short-hand signature for the command that is sufficient in
       many cases.  It is the same as find_path(<VAR> name1 [PATHS path1
       path2 ...])

          find_path(
                    <VAR>
                    name | NAMES name1 [name2 ...]
                    [HINTS path1 [path2 ... ENV var]]
                    [PATHS path1 [path2 ... ENV var]]
                    [PATH_SUFFIXES suffix1 [suffix2 ...]]
                    [DOC "cache documentation string"]
                    [NO_DEFAULT_PATH]
                    [NO_CMAKE_ENVIRONMENT_PATH]
                    [NO_CMAKE_PATH]
                    [NO_SYSTEM_ENVIRONMENT_PATH]
                    [NO_CMAKE_SYSTEM_PATH]
                    [CMAKE_FIND_ROOT_PATH_BOTH |
                     ONLY_CMAKE_FIND_ROOT_PATH |
                     NO_CMAKE_FIND_ROOT_PATH]
                   )

       This command is used to find a directory containing the named file.  A
       cache entry named by <VAR> is created to store the result of this
       command.  If the file in a directory is found the result is stored in
       the variable and the search will not be repeated unless the variable
       is cleared.  If nothing is found, the result will be <VAR>-NOTFOUND,
       and the search will be attempted again the next time find_path is
       invoked with the same variable.  The name of the file in a directory
       that is searched for is specified by the names listed after the NAMES
       argument.  Additional search locations can be specified after the
       PATHS argument.  If ENV var is found in the HINTS or PATHS section the
       environment variable var will be read and converted from a system
       environment variable to a cmake style list of paths.  For example ENV
       PATH would be a way to list the system path variable.  The argument
       after DOC will be used for the documentation string in the cache.
       PATH_SUFFIXES specifies additional subdirectories to check below each
       search path.

       If NO_DEFAULT_PATH is specified, then no additional paths are added to
       the search.  If NO_DEFAULT_PATH is not specified, the search process
       is as follows:

       1.  Search paths specified in cmake-specific cache variables.  These
       are intended to be used on the command line with a -DVAR=value.  This
       can be skipped if NO_CMAKE_PATH is passed.

          <prefix>/include for each <prefix> in CMAKE_PREFIX_PATH
          CMAKE_INCLUDE_PATH
          CMAKE_FRAMEWORK_PATH

       2.  Search paths specified in cmake-specific environment variables.
       These are intended to be set in the user's shell configuration.  This
       can be skipped if NO_CMAKE_ENVIRONMENT_PATH is passed.

          <prefix>/include for each <prefix> in CMAKE_PREFIX_PATH
          CMAKE_INCLUDE_PATH
          CMAKE_FRAMEWORK_PATH

       3.  Search the paths specified by the HINTS option.  These should be
       paths computed by system introspection, such as a hint provided by the
       location of another item already found.  Hard-coded guesses should be
       specified with the PATHS option.

       4.  Search the standard system environment variables.  This can be
       skipped if NO_SYSTEM_ENVIRONMENT_PATH is an argument.

          PATH
          INCLUDE

       5.  Search cmake variables defined in the Platform files for the
       current system.  This can be skipped if NO_CMAKE_SYSTEM_PATH is
       passed.

          <prefix>/include for each <prefix> in CMAKE_SYSTEM_PREFIX_PATH
          CMAKE_SYSTEM_INCLUDE_PATH
          CMAKE_SYSTEM_FRAMEWORK_PATH

       6.  Search the paths specified by the PATHS option or in the
       short-hand version of the command.  These are typically hard-coded
       guesses.

       On Darwin or systems supporting OS X Frameworks, the cmake variable
       CMAKE_FIND_FRAMEWORK can be set to empty or one of the following:

          "FIRST"  - Try to find frameworks before standard
                     libraries or headers. This is the default on Darwin.
          "LAST"   - Try to find frameworks after standard
                     libraries or headers.
          "ONLY"   - Only try to find frameworks.
          "NEVER" - Never try to find frameworks.

       On Darwin or systems supporting OS X Application Bundles, the cmake
       variable CMAKE_FIND_APPBUNDLE can be set to empty or one of the
       following:

          "FIRST"  - Try to find application bundles before standard
                     programs. This is the default on Darwin.
          "LAST"   - Try to find application bundles after standard
                     programs.
          "ONLY"   - Only try to find application bundles.
          "NEVER" - Never try to find application bundles.

       The CMake variable CMAKE_FIND_ROOT_PATH specifies one or more
       directories to be prepended to all other search directories.  This
       effectively "re-roots" the entire search under given locations.  By
       default it is empty.  It is especially useful when cross-compiling to
       point to the root directory of the target environment and CMake will
       search there too.  By default at first the directories listed in
       CMAKE_FIND_ROOT_PATH and then the non-rooted directories will be
       searched.  The default behavior can be adjusted by setting
       CMAKE_FIND_ROOT_PATH_MODE_INCLUDE.  This behavior can be manually
       overridden on a per-call basis.  By using CMAKE_FIND_ROOT_PATH_BOTH
       the search order will be as described above.  If
       NO_CMAKE_FIND_ROOT_PATH is used then CMAKE_FIND_ROOT_PATH will not be
       used.  If ONLY_CMAKE_FIND_ROOT_PATH is used then only the re-rooted
       directories will be searched.

       The default search order is designed to be most-specific to
       least-specific for common use cases.  Projects may override the order
       by simply calling the command multiple times and using the NO_*
       options:

          find_path(<VAR> NAMES name PATHS paths... NO_DEFAULT_PATH)
          find_path(<VAR> NAMES name)

       Once one of the calls succeeds the result variable will be set and
       stored in the cache so that no call will search again.

       When searching for frameworks, if the file is specified as A/b.h, then
       the framework search will look for A.framework/Headers/b.h.  If that
       is found the path will be set to the path to the framework.  CMake
       will convert this to the correct -F option to include the file.

  find_program
       Find an executable program.

          find_program(<VAR> name1 [path1 path2 ...])

       This is the short-hand signature for the command that is sufficient in
       many cases.  It is the same as find_program(<VAR> name1 [PATHS path1
       path2 ...])

          find_program(
                    <VAR>
                    name | NAMES name1 [name2 ...]
                    [HINTS path1 [path2 ... ENV var]]
                    [PATHS path1 [path2 ... ENV var]]
                    [PATH_SUFFIXES suffix1 [suffix2 ...]]
                    [DOC "cache documentation string"]
                    [NO_DEFAULT_PATH]
                    [NO_CMAKE_ENVIRONMENT_PATH]
                    [NO_CMAKE_PATH]
                    [NO_SYSTEM_ENVIRONMENT_PATH]
                    [NO_CMAKE_SYSTEM_PATH]
                    [CMAKE_FIND_ROOT_PATH_BOTH |
                     ONLY_CMAKE_FIND_ROOT_PATH |
                     NO_CMAKE_FIND_ROOT_PATH]
                   )

       This command is used to find a program.  A cache entry named by <VAR>
       is created to store the result of this command.  If the program is
       found the result is stored in the variable and the search will not be
       repeated unless the variable is cleared.  If nothing is found, the
       result will be <VAR>-NOTFOUND, and the search will be attempted again
       the next time find_program is invoked with the same variable.  The
       name of the program that is searched for is specified by the names
       listed after the NAMES argument.  Additional search locations can be
       specified after the PATHS argument.  If ENV var is found in the HINTS
       or PATHS section the environment variable var will be read and
       converted from a system environment variable to a cmake style list of
       paths.  For example ENV PATH would be a way to list the system path
       variable.  The argument after DOC will be used for the documentation
       string in the cache.  PATH_SUFFIXES specifies additional
       subdirectories to check below each search path.

       If NO_DEFAULT_PATH is specified, then no additional paths are added to
       the search.  If NO_DEFAULT_PATH is not specified, the search process
       is as follows:

       1.  Search paths specified in cmake-specific cache variables.  These
       are intended to be used on the command line with a -DVAR=value.  This
       can be skipped if NO_CMAKE_PATH is passed.

          <prefix>/[s]bin for each <prefix> in CMAKE_PREFIX_PATH
          CMAKE_PROGRAM_PATH
          CMAKE_APPBUNDLE_PATH

       2.  Search paths specified in cmake-specific environment variables.
       These are intended to be set in the user's shell configuration.  This
       can be skipped if NO_CMAKE_ENVIRONMENT_PATH is passed.

          <prefix>/[s]bin for each <prefix> in CMAKE_PREFIX_PATH
          CMAKE_PROGRAM_PATH
          CMAKE_APPBUNDLE_PATH

       3.  Search the paths specified by the HINTS option.  These should be
       paths computed by system introspection, such as a hint provided by the
       location of another item already found.  Hard-coded guesses should be
       specified with the PATHS option.

       4.  Search the standard system environment variables.  This can be
       skipped if NO_SYSTEM_ENVIRONMENT_PATH is an argument.

          PATH
          

       5.  Search cmake variables defined in the Platform files for the
       current system.  This can be skipped if NO_CMAKE_SYSTEM_PATH is
       passed.

          <prefix>/[s]bin for each <prefix> in CMAKE_SYSTEM_PREFIX_PATH
          CMAKE_SYSTEM_PROGRAM_PATH
          CMAKE_SYSTEM_APPBUNDLE_PATH

       6.  Search the paths specified by the PATHS option or in the
       short-hand version of the command.  These are typically hard-coded
       guesses.

       On Darwin or systems supporting OS X Frameworks, the cmake variable
       CMAKE_FIND_FRAMEWORK can be set to empty or one of the following:

          "FIRST"  - Try to find frameworks before standard
                     libraries or headers. This is the default on Darwin.
          "LAST"   - Try to find frameworks after standard
                     libraries or headers.
          "ONLY"   - Only try to find frameworks.
          "NEVER" - Never try to find frameworks.

       On Darwin or systems supporting OS X Application Bundles, the cmake
       variable CMAKE_FIND_APPBUNDLE can be set to empty or one of the
       following:

          "FIRST"  - Try to find application bundles before standard
                     programs. This is the default on Darwin.
          "LAST"   - Try to find application bundles after standard
                     programs.
          "ONLY"   - Only try to find application bundles.
          "NEVER" - Never try to find application bundles.

       The CMake variable CMAKE_FIND_ROOT_PATH specifies one or more
       directories to be prepended to all other search directories.  This
       effectively "re-roots" the entire search under given locations.  By
       default it is empty.  It is especially useful when cross-compiling to
       point to the root directory of the target environment and CMake will
       search there too.  By default at first the directories listed in
       CMAKE_FIND_ROOT_PATH and then the non-rooted directories will be
       searched.  The default behavior can be adjusted by setting
       CMAKE_FIND_ROOT_PATH_MODE_PROGRAM.  This behavior can be manually
       overridden on a per-call basis.  By using CMAKE_FIND_ROOT_PATH_BOTH
       the search order will be as described above.  If
       NO_CMAKE_FIND_ROOT_PATH is used then CMAKE_FIND_ROOT_PATH will not be
       used.  If ONLY_CMAKE_FIND_ROOT_PATH is used then only the re-rooted
       directories will be searched.

       The default search order is designed to be most-specific to
       least-specific for common use cases.  Projects may override the order
       by simply calling the command multiple times and using the NO_*
       options:

          find_program(<VAR> NAMES name PATHS paths... NO_DEFAULT_PATH)
          find_program(<VAR> NAMES name)

       Once one of the calls succeeds the result variable will be set and
       stored in the cache so that no call will search again.

  fltk_wrap_ui
       Create FLTK user interfaces Wrappers.

         fltk_wrap_ui(resultingLibraryName source1
                      source2 ... sourceN )

       Produce .h and .cxx files for all the .fl and .fld files listed.  The
       resulting .h and .cxx files will be added to a variable named
       resultingLibraryName_FLTK_UI_SRCS which should be added to your
       library.

  foreach
       Evaluate a group of commands for each value in a list.

         foreach(loop_var arg1 arg2 ...)
           COMMAND1(ARGS ...)
           COMMAND2(ARGS ...)
           ...
         endforeach(loop_var)

       All commands between foreach and the matching endforeach are recorded
       without being invoked.  Once the endforeach is evaluated, the recorded
       list of commands is invoked once for each argument listed in the
       original foreach command.  Before each iteration of the loop
       "${loop_var}" will be set as a variable with the current value in the
       list.

         foreach(loop_var RANGE total)
         foreach(loop_var RANGE start stop [step])

       Foreach can also iterate over a generated range of numbers.  There are
       three types of this iteration:

       * When specifying single number, the range will have elements 0 to
       "total".

       * When specifying two numbers, the range will have elements from the
       first number to the second number.

       * The third optional number is the increment used to iterate from the
       first number to the second number.

         foreach(loop_var IN [LISTS [list1 [...]]]
                             [ITEMS [item1 [...]]])

       Iterates over a precise list of items.  The LISTS option names
       list-valued variables to be traversed, including empty elements (an
       empty string is a zero-length list).  The ITEMS option ends argument
       parsing and includes all arguments following it in the iteration.

  function
       Start recording a function for later invocation as a command.

         function(<name> [arg1 [arg2 [arg3 ...]]])
           COMMAND1(ARGS ...)
           COMMAND2(ARGS ...)
           ...
         endfunction(<name>)

       Define a function named <name> that takes arguments named arg1 arg2
       arg3 (...).  Commands listed after function, but before the matching
       endfunction, are not invoked until the function is invoked.  When it
       is invoked, the commands recorded in the function are first modified
       by replacing formal parameters (${arg1}) with the arguments passed,
       and then invoked as normal commands.  In addition to referencing the
       formal parameters you can reference the variable ARGC which will be
       set to the number of arguments passed into the function as well as
       ARGV0 ARGV1 ARGV2 ...  which will have the actual values of the
       arguments passed in.  This facilitates creating functions with
       optional arguments.  Additionally ARGV holds the list of all arguments
       given to the function and ARGN holds the list of argument past the
       last expected argument.

       See the cmake_policy() command documentation for the behavior of
       policies inside functions.

  get_cmake_property
       Get a property of the CMake instance.

         get_cmake_property(VAR property)

       Get a property from the CMake instance.  The value of the property is
       stored in the variable VAR.  If the property is not found, VAR will be
       set to "NOTFOUND".  Some supported properties include: VARIABLES,
       CACHE_VARIABLES, COMMANDS, MACROS, and COMPONENTS.

       See also the more general get_property() command.

  get_directory_property
       Get a property of DIRECTORY scope.

         get_directory_property(<variable> [DIRECTORY <dir>] <prop-name>)

       Store a property of directory scope in the named variable.  If the
       property is not defined the empty-string is returned.  The DIRECTORY
       argument specifies another directory from which to retrieve the
       property value.  The specified directory must have already been
       traversed by CMake.

         get_directory_property(<variable> [DIRECTORY <dir>]
                                DEFINITION <var-name>)

       Get a variable definition from a directory.  This form is useful to
       get a variable definition from another directory.

       See also the more general get_property() command.

  get_filename_component
       Get a specific component of a full filename.

         get_filename_component(<VAR> FileName
                                PATH|ABSOLUTE|NAME|EXT|NAME_WE|REALPATH
                                [CACHE])

       Set <VAR> to be the path (PATH), file name (NAME), file extension
       (EXT), file name without extension (NAME_WE) of FileName, the full
       path (ABSOLUTE), or the full path with all symlinks resolved
       (REALPATH).  Note that the path is converted to Unix slashes format
       and has no trailing slashes.  The longest file extension is always
       considered.  If the optional CACHE argument is specified, the result
       variable is added to the cache.

         get_filename_component(<VAR> FileName
                                PROGRAM [PROGRAM_ARGS <ARG_VAR>]
                                [CACHE])

       The program in FileName will be found in the system search path or
       left as a full path.  If PROGRAM_ARGS is present with PROGRAM, then
       any command-line arguments present in the FileName string are split
       from the program name and stored in <ARG_VAR>.  This is used to
       separate a program name from its arguments in a command line string.

  get_property
       Get a property.

         get_property(<variable>
                      <GLOBAL             |
                       DIRECTORY [dir]    |
                       TARGET    <target> |
                       SOURCE    <source> |
                       TEST      <test>   |
                       CACHE     <entry>  |
                       VARIABLE>
                      PROPERTY <name>
                      [SET | DEFINED | BRIEF_DOCS | FULL_DOCS])

       Get one property from one object in a scope.  The first argument
       specifies the variable in which to store the result.  The second
       argument determines the scope from which to get the property.  It must
       be one of the following:

       GLOBAL scope is unique and does not accept a name.

       DIRECTORY scope defaults to the current directory but another
       directory (already processed by CMake) may be named by full or
       relative path.

       TARGET scope must name one existing target.

       SOURCE scope must name one source file.

       TEST scope must name one existing test.

       CACHE scope must name one cache entry.

       VARIABLE scope is unique and does not accept a name.

       The required PROPERTY option is immediately followed by the name of
       the property to get.  If the property is not set an empty value is
       returned.  If the SET option is given the variable is set to a boolean
       value indicating whether the property has been set.  If the DEFINED
       option is given the variable is set to a boolean value indicating
       whether the property has been defined such as with define_property.
       If BRIEF_DOCS or FULL_DOCS is given then the variable is set to a
       string containing documentation for the requested property.  If
       documentation is requested for a property that has not been defined
       NOTFOUND is returned.

  get_source_file_property
       Get a property for a source file.

         get_source_file_property(VAR file property)

       Get a property from a source file.  The value of the property is
       stored in the variable VAR.  If the property is not found, VAR will be
       set to "NOTFOUND".  Use set_source_files_properties to set property
       values.  Source file properties usually control how the file is built.
       One property that is always there is LOCATION

       See also the more general get_property() command.

  get_target_property
       Get a property from a target.

         get_target_property(VAR target property)

       Get a property from a target.  The value of the property is stored in
       the variable VAR.  If the property is not found, VAR will be set to
       "NOTFOUND".  Use set_target_properties to set property values.
       Properties are usually used to control how a target is built, but some
       query the target instead.  This command can get properties for any
       target so far created.  The targets do not need to be in the current
       CMakeLists.txt file.

       See also the more general get_property() command.

  get_test_property
       Get a property of the test.

         get_test_property(test property VAR)

       Get a property from the Test.  The value of the property is stored in
       the variable VAR.  If the property is not found, VAR will be set to
       "NOTFOUND".  For a list of standard properties you can type cmake
       --help-property-list

       See also the more general get_property() command.

  if
       Conditionally execute a group of commands.

         if(expression)
           # then section.
           COMMAND1(ARGS ...)
           COMMAND2(ARGS ...)
           ...
         elseif(expression2)
           # elseif section.
           COMMAND1(ARGS ...)
           COMMAND2(ARGS ...)
           ...
         else(expression)
           # else section.
           COMMAND1(ARGS ...)
           COMMAND2(ARGS ...)
           ...
         endif(expression)

       Evaluates the given expression.  If the result is true, the commands
       in the THEN section are invoked.  Otherwise, the commands in the else
       section are invoked.  The elseif and else sections are optional.  You
       may have multiple elseif clauses.  Note that the expression in the
       else and endif clause is optional.  Long expressions can be used and
       there is a traditional order of precedence.  Parenthetical expressions
       are evaluated first followed by unary operators such as EXISTS,
       COMMAND, and DEFINED.  Then any EQUAL, LESS, GREATER, STRLESS,
       STRGREATER, STREQUAL, MATCHES will be evaluated.  Then NOT operators
       and finally AND, OR operators will be evaluated.  Possible expressions
       are:

         if(<constant>)

       True if the constant is 1, ON, YES, TRUE, Y, or a non-zero number.
       False if the constant is 0, OFF, NO, FALSE, N, IGNORE, "", or ends in
       the suffix '-NOTFOUND'.  Named boolean constants are case-insensitive.
       If the argument is not one of these constants, it is treated as a
       variable:

         if(<variable>)

       True if the variable is defined to a value that is not a false
       constant.  False otherwise.

         if(NOT <expression>)

       True if the expression is not true.

         if(<expr1> AND <expr2>)

       True if both expressions would be considered true individually.

         if(<expr1> OR <expr2>)

       True if either expression would be considered true individually.

         if(COMMAND command-name)

       True if the given name is a command, macro or function that can be
       invoked.

         if(POLICY policy-id)

       True if the given name is an existing policy (of the form CMP<NNNN>).

         if(TARGET target-name)

       True if the given name is an existing target, built or imported.

         if(EXISTS file-name)
         if(EXISTS directory-name)

       True if the named file or directory exists.  Behavior is well-defined
       only for full paths.

         if(file1 IS_NEWER_THAN file2)

       True if file1 is newer than file2 or if one of the two files doesn't
       exist.  Behavior is well-defined only for full paths.

         if(IS_DIRECTORY directory-name)

       True if the given name is a directory.  Behavior is well-defined only
       for full paths.

         if(IS_SYMLINK file-name)

       True if the given name is a symbolic link.  Behavior is well-defined
       only for full paths.

         if(IS_ABSOLUTE path)

       True if the given path is an absolute path.

         if(<variable|string> MATCHES regex)

       True if the given string or variable's value matches the given regular
       expression.

         if(<variable|string> LESS <variable|string>)
         if(<variable|string> GREATER <variable|string>)
         if(<variable|string> EQUAL <variable|string>)

       True if the given string or variable's value is a valid number and the
       inequality or equality is true.

         if(<variable|string> STRLESS <variable|string>)
         if(<variable|string> STRGREATER <variable|string>)
         if(<variable|string> STREQUAL <variable|string>)

       True if the given string or variable's value is lexicographically less
       (or greater, or equal) than the string or variable on the right.

         if(<variable|string> VERSION_LESS <variable|string>)
         if(<variable|string> VERSION_EQUAL <variable|string>)
         if(<variable|string> VERSION_GREATER <variable|string>)

       Component-wise integer version number comparison (version format is
       major[.minor[.patch[.tweak]]]).

         if(DEFINED <variable>)

       True if the given variable is defined.  It does not matter if the
       variable is true or false just if it has been set.

         if((expression) AND (expression OR (expression)))

       The expressions inside the parenthesis are evaluated first and then
       the remaining expression is evaluated as in the previous examples.
       Where there are nested parenthesis the innermost are evaluated as part
       of evaluating the expression that contains them.

       The if command was written very early in CMake's history, predating
       the ${} variable evaluation syntax, and for convenience evaluates
       variables named by its arguments as shown in the above signatures.
       Note that normal variable evaluation with ${} applies before the if
       command even receives the arguments.  Therefore code like

         set(var1 OFF)
         set(var2 "var1")
         if(${var2})

       appears to the if command as

         if(var1)

       and is evaluated according to the if(<variable>) case documented
       above.  The result is OFF which is false.  However, if we remove the
       ${} from the example then the command sees

         if(var2)

       which is true because var2 is defined to "var1" which is not a false
       constant.

       Automatic evaluation applies in the other cases whenever the
       above-documented signature accepts <variable|string>:

       1) The left hand argument to MATCHES is first checked to see if it is
       a defined variable, if so the variable's value is used, otherwise the
       original value is used.

       2) If the left hand argument to MATCHES is missing it returns false
       without error

       3) Both left and right hand arguments to LESS GREATER EQUAL are
       independently tested to see if they are defined variables, if so their
       defined values are used otherwise the original value is used.

       4) Both left and right hand arguments to STRLESS STREQUAL STRGREATER
       are independently tested to see if they are defined variables, if so
       their defined values are used otherwise the original value is used.

       5) Both left and right hand argumemnts to VERSION_LESS VERSION_EQUAL
       VERSION_GREATER are independently tested to see if they are defined
       variables, if so their defined values are used otherwise the original
       value is used.

       6) The right hand argument to NOT is tested to see if it is a boolean
       constant, if so the value is used, otherwise it is assumed to be a
       variable and it is dereferenced.

       7) The left and right hand arguments to AND OR are independently
       tested to see if they are boolean constants, if so they are used as
       such, otherwise they are assumed to be variables and are dereferenced.



  include
       Read CMake listfile code from the given file.

         include(<file|module> [OPTIONAL] [RESULT_VARIABLE <VAR>]
                               [NO_POLICY_SCOPE])

       Reads CMake listfile code from the given file.  Commands in the file
       are processed immediately as if they were written in place of the
       include command.  If OPTIONAL is present, then no error is raised if
       the file does not exist.  If RESULT_VARIABLE is given the variable
       will be set to the full filename which has been included or NOTFOUND
       if it failed.

       If a module is specified instead of a file, the file with name
       <modulename>.cmake is searched first in CMAKE_MODULE_PATH, then in the
       CMake module directory.  There is one exception to this: if the file
       which calls include() is located itself in the CMake module directory,
       then first the CMake module directory is searched and
       CMAKE_MODULE_PATH afterwards.  See also policy CMP0017.

       See the cmake_policy() command documentation for discussion of the
       NO_POLICY_SCOPE option.

  include_directories
       Add include directories to the build.

         include_directories([AFTER|BEFORE] [SYSTEM] dir1 dir2 ...)

       Add the given directories to those searched by the compiler for
       include files.  By default the directories are appended onto the
       current list of directories.  This default behavior can be changed by
       setting CMAKE_INCLUDE_DIRECTORIES_BEFORE to ON.  By using BEFORE or
       AFTER you can select between appending and prepending, independent
       from the default.  If the SYSTEM option is given the compiler will be
       told that the directories are meant as system include directories on
       some platforms.

  include_external_msproject
       Include an external Microsoft project file in a workspace.

         include_external_msproject(projectname location
                                    dep1 dep2 ...)

       Includes an external Microsoft project in the generated workspace
       file.  Currently does nothing on UNIX.  This will create a target
       named [projectname].  This can be used in the add_dependencies command
       to make things depend on the external project.

  include_regular_expression
       Set the regular expression used for dependency checking.

         include_regular_expression(regex_match [regex_complain])

       Set the regular expressions used in dependency checking.  Only files
       matching regex_match will be traced as dependencies.  Only files
       matching regex_complain will generate warnings if they cannot be found
       (standard header paths are not searched).  The defaults are:

         regex_match    = "^.*$" (match everything)
         regex_complain = "^$" (match empty string only)

  install
       Specify rules to run at install time.

       This command generates installation rules for a project.  Rules
       specified by calls to this command within a source directory are
       executed in order during installation.  The order across directories
       is not defined.

       There are multiple signatures for this command.  Some of them define
       installation properties for files and targets.  Properties common to
       multiple signatures are covered here but they are valid only for
       signatures that specify them.

       DESTINATION arguments specify the directory on disk to which a file
       will be installed.  If a full path (with a leading slash or drive
       letter) is given it is used directly.  If a relative path is given it
       is interpreted relative to the value of CMAKE_INSTALL_PREFIX.

       PERMISSIONS arguments specify permissions for installed files.  Valid
       permissions are OWNER_READ, OWNER_WRITE, OWNER_EXECUTE, GROUP_READ,
       GROUP_WRITE, GROUP_EXECUTE, WORLD_READ, WORLD_WRITE, WORLD_EXECUTE,
       SETUID, and SETGID.  Permissions that do not make sense on certain
       platforms are ignored on those platforms.

       The CONFIGURATIONS argument specifies a list of build configurations
       for which the install rule applies (Debug, Release, etc.).

       The COMPONENT argument specifies an installation component name with
       which the install rule is associated, such as "runtime" or
       "development".  During component-specific installation only install
       rules associated with the given component name will be executed.
       During a full installation all components are installed.

       The RENAME argument specifies a name for an installed file that may be
       different from the original file.  Renaming is allowed only when a
       single file is installed by the command.

       The OPTIONAL argument specifies that it is not an error if the file to
       be installed does not exist.

       The TARGETS signature:

         install(TARGETS targets... [EXPORT <export-name>]
                 [[ARCHIVE|LIBRARY|RUNTIME|FRAMEWORK|BUNDLE|
                   PRIVATE_HEADER|PUBLIC_HEADER|RESOURCE]
                  [DESTINATION <dir>]
                  [PERMISSIONS permissions...]
                  [CONFIGURATIONS [Debug|Release|...]]
                  [COMPONENT <component>]
                  [OPTIONAL] [NAMELINK_ONLY|NAMELINK_SKIP]
                 ] [...])

       The TARGETS form specifies rules for installing targets from a
       project.  There are five kinds of target files that may be installed:
       ARCHIVE, LIBRARY, RUNTIME, FRAMEWORK, and BUNDLE.  Executables are
       treated as RUNTIME targets, except that those marked with the
       MACOSX_BUNDLE property are treated as BUNDLE targets on OS X.  Static
       libraries are always treated as ARCHIVE targets.  Module libraries are
       always treated as LIBRARY targets.  For non-DLL platforms shared
       libraries are treated as LIBRARY targets, except that those marked
       with the FRAMEWORK property are treated as FRAMEWORK targets on OS X.
       For DLL platforms the DLL part of a shared library is treated as a
       RUNTIME target and the corresponding import library is treated as an
       ARCHIVE target.  All Windows-based systems including Cygwin are DLL
       platforms.  The ARCHIVE, LIBRARY, RUNTIME, and FRAMEWORK arguments
       change the type of target to which the subsequent properties apply.
       If none is given the installation properties apply to all target
       types.  If only one is given then only targets of that type will be
       installed (which can be used to install just a DLL or just an import
       library).

       The PRIVATE_HEADER, PUBLIC_HEADER, and RESOURCE arguments cause
       subsequent properties to be applied to installing a FRAMEWORK shared
       library target's associated files on non-Apple platforms.  Rules
       defined by these arguments are ignored on Apple platforms because the
       associated files are installed into the appropriate locations inside
       the framework folder.  See documentation of the PRIVATE_HEADER,
       PUBLIC_HEADER, and RESOURCE target properties for details.

       Either NAMELINK_ONLY or NAMELINK_SKIP may be specified as a LIBRARY
       option.  On some platforms a versioned shared library has a symbolic
       link such as

         lib<name>.so -> lib<name>.so.1

       where "lib<name>.so.1" is the soname of the library and "lib<name>.so"
       is a "namelink" allowing linkers to find the library when given
       "-l<name>".  The NAMELINK_ONLY option causes installation of only the
       namelink when a library target is installed.  The NAMELINK_SKIP option
       causes installation of library files other than the namelink when a
       library target is installed.  When neither option is given both
       portions are installed.  On platforms where versioned shared libraries
       do not have namelinks or when a library is not versioned the
       NAMELINK_SKIP option installs the library and the NAMELINK_ONLY option
       installs nothing.  See the VERSION and SOVERSION target properties for
       details on creating versioned shared libraries.

       One or more groups of properties may be specified in a single call to
       the TARGETS form of this command.  A target may be installed more than
       once to different locations.  Consider hypothetical targets "myExe",
       "mySharedLib", and "myStaticLib".  The code

           install(TARGETS myExe mySharedLib myStaticLib
                   RUNTIME DESTINATION bin
                   LIBRARY DESTINATION lib
                   ARCHIVE DESTINATION lib/static)
           install(TARGETS mySharedLib DESTINATION /some/full/path)

       will install myExe to <prefix>/bin and myStaticLib to
       <prefix>/lib/static.  On non-DLL platforms mySharedLib will be
       installed to <prefix>/lib and /some/full/path.  On DLL platforms the
       mySharedLib DLL will be installed to <prefix>/bin and /some/full/path
       and its import library will be installed to <prefix>/lib/static and
       /some/full/path.  On non-DLL platforms mySharedLib will be installed
       to <prefix>/lib and /some/full/path.

       The EXPORT option associates the installed target files with an export
       called <export-name>.  It must appear before any RUNTIME, LIBRARY, or
       ARCHIVE options.  To actually install the export file itself, call
       install(EXPORT).  See documentation of the install(EXPORT ...)
       signature below for details.

       Installing a target with EXCLUDE_FROM_ALL set to true has undefined
       behavior.

       The FILES signature:

         install(FILES files... DESTINATION <dir>
                 [PERMISSIONS permissions...]
                 [CONFIGURATIONS [Debug|Release|...]]
                 [COMPONENT <component>]
                 [RENAME <name>] [OPTIONAL])

       The FILES form specifies rules for installing files for a project.
       File names given as relative paths are interpreted with respect to the
       current source directory.  Files installed by this form are by default
       given permissions OWNER_WRITE, OWNER_READ, GROUP_READ, and WORLD_READ
       if no PERMISSIONS argument is given.

       The PROGRAMS signature:

         install(PROGRAMS files... DESTINATION <dir>
                 [PERMISSIONS permissions...]
                 [CONFIGURATIONS [Debug|Release|...]]
                 [COMPONENT <component>]
                 [RENAME <name>] [OPTIONAL])

       The PROGRAMS form is identical to the FILES form except that the
       default permissions for the installed file also include OWNER_EXECUTE,
       GROUP_EXECUTE, and WORLD_EXECUTE.  This form is intended to install
       programs that are not targets, such as shell scripts.  Use the TARGETS
       form to install targets built within the project.

       The DIRECTORY signature:

         install(DIRECTORY dirs... DESTINATION <dir>
                 [FILE_PERMISSIONS permissions...]
                 [DIRECTORY_PERMISSIONS permissions...]
                 [USE_SOURCE_PERMISSIONS] [OPTIONAL]
                 [CONFIGURATIONS [Debug|Release|...]]
                 [COMPONENT <component>] [FILES_MATCHING]
                 [[PATTERN <pattern> | REGEX <regex>]
                  [EXCLUDE] [PERMISSIONS permissions...]] [...])

       The DIRECTORY form installs contents of one or more directories to a
       given destination.  The directory structure is copied verbatim to the
       destination.  The last component of each directory name is appended to
       the destination directory but a trailing slash may be used to avoid
       this because it leaves the last component empty.  Directory names
       given as relative paths are interpreted with respect to the current
       source directory.  If no input directory names are given the
       destination directory will be created but nothing will be installed
       into it.  The FILE_PERMISSIONS and DIRECTORY_PERMISSIONS options
       specify permissions given to files and directories in the destination.
       If USE_SOURCE_PERMISSIONS is specified and FILE_PERMISSIONS is not,
       file permissions will be copied from the source directory structure.
       If no permissions are specified files will be given the default
       permissions specified in the FILES form of the command, and the
       directories will be given the default permissions specified in the
       PROGRAMS form of the command.

       Installation of directories may be controlled with fine granularity
       using the PATTERN or REGEX options.  These "match" options specify a
       globbing pattern or regular expression to match directories or files
       encountered within input directories.  They may be used to apply
       certain options (see below) to a subset of the files and directories
       encountered.  The full path to each input file or directory (with
       forward slashes) is matched against the expression.  A PATTERN will
       match only complete file names: the portion of the full path matching
       the pattern must occur at the end of the file name and be preceded by
       a slash.  A REGEX will match any portion of the full path but it may
       use '/' and '$' to simulate the PATTERN behavior.  By default all
       files and directories are installed whether or not they are matched.
       The FILES_MATCHING option may be given before the first match option
       to disable installation of files (but not directories) not matched by
       any expression.  For example, the code

         install(DIRECTORY src/ DESTINATION include/myproj
                 FILES_MATCHING PATTERN "*.h")

       will extract and install header files from a source tree.

       Some options may follow a PATTERN or REGEX expression and are applied
       only to files or directories matching them.  The EXCLUDE option will
       skip the matched file or directory.  The PERMISSIONS option overrides
       the permissions setting for the matched file or directory.  For
       example the code

         install(DIRECTORY icons scripts/ DESTINATION share/myproj
                 PATTERN "CVS" EXCLUDE
                 PATTERN "scripts/*"
                 PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ
                             GROUP_EXECUTE GROUP_READ)

       will install the icons directory to share/myproj/icons and the scripts
       directory to share/myproj.  The icons will get default file
       permissions, the scripts will be given specific permissions, and any
       CVS directories will be excluded.

       The SCRIPT and CODE signature:

         install([[SCRIPT <file>] [CODE <code>]] [...])

       The SCRIPT form will invoke the given CMake script files during
       installation.  If the script file name is a relative path it will be
       interpreted with respect to the current source directory.  The CODE
       form will invoke the given CMake code during installation.  Code is
       specified as a single argument inside a double-quoted string.  For
       example, the code

         install(CODE "MESSAGE(\"Sample install message.\")")

       will print a message during installation.

       The EXPORT signature:

         install(EXPORT <export-name> DESTINATION <dir>
                 [NAMESPACE <namespace>] [FILE <name>.cmake]
                 [PERMISSIONS permissions...]
                 [CONFIGURATIONS [Debug|Release|...]]
                 [COMPONENT <component>])

       The EXPORT form generates and installs a CMake file containing code to
       import targets from the installation tree into another project.
       Target installations are associated with the export <export-name>
       using the EXPORT option of the install(TARGETS ...) signature
       documented above.  The NAMESPACE option will prepend <namespace> to
       the target names as they are written to the import file.  By default
       the generated file will be called <export-name>.cmake but the FILE
       option may be used to specify a different name.  The value given to
       the FILE option must be a file name with the ".cmake" extension.  If a
       CONFIGURATIONS option is given then the file will only be installed
       when one of the named configurations is installed.  Additionally, the
       generated import file will reference only the matching target
       configurations.  If a COMPONENT option is specified that does not
       match that given to the targets associated with <export-name> the
       behavior is undefined.  If a library target is included in the export
       but a target to which it links is not included the behavior is
       unspecified.

       The EXPORT form is useful to help outside projects use targets built
       and installed by the current project.  For example, the code

         install(TARGETS myexe EXPORT myproj DESTINATION bin)
         install(EXPORT myproj NAMESPACE mp_ DESTINATION lib/myproj)

       will install the executable myexe to <prefix>/bin and code to import
       it in the file "<prefix>/lib/myproj/myproj.cmake".  An outside project
       may load this file with the include command and reference the myexe
       executable from the installation tree using the imported target name
       mp_myexe as if the target were built in its own tree.

       NOTE: This command supercedes the INSTALL_TARGETS command and the
       target properties PRE_INSTALL_SCRIPT and POST_INSTALL_SCRIPT.  It also
       replaces the FILES forms of the INSTALL_FILES and INSTALL_PROGRAMS
       commands.  The processing order of these install rules relative to
       those generated by INSTALL_TARGETS, INSTALL_FILES, and
       INSTALL_PROGRAMS commands is not defined.


  link_directories
       Specify directories in which the linker will look for libraries.

         link_directories(directory1 directory2 ...)

       Specify the paths in which the linker should search for libraries.
       The command will apply only to targets created after it is called.
       For historical reasons, relative paths given to this command are
       passed to the linker unchanged (unlike many CMake commands which
       interpret them relative to the current source directory).

       Note that this command is rarely necessary.  Library locations
       returned by find_package() and find_library() are absolute paths.
       Pass these absolute library file paths directly to the
       target_link_libraries() command.  CMake will ensure the linker finds
       them.

  list
       List operations.

         list(LENGTH <list> <output variable>)
         list(GET <list> <element index> [<element index> ...]
              <output variable>)
         list(APPEND <list> <element> [<element> ...])
         list(FIND <list> <value> <output variable>)
         list(INSERT <list> <element_index> <element> [<element> ...])
         list(REMOVE_ITEM <list> <value> [<value> ...])
         list(REMOVE_AT <list> <index> [<index> ...])
         list(REMOVE_DUPLICATES <list>)
         list(REVERSE <list>)
         list(SORT <list>)

       LENGTH will return a given list's length.

       GET will return list of elements specified by indices from the list.

       APPEND will append elements to the list.

       FIND will return the index of the element specified in the list or -1
       if it wasn't found.

       INSERT will insert elements to the list to the specified location.

       REMOVE_AT and REMOVE_ITEM will remove items from the list.  The
       difference is that REMOVE_ITEM will remove the given items, while
       REMOVE_AT will remove the items at the given indices.

       REMOVE_DUPLICATES will remove duplicated items in the list.

       REVERSE reverses the contents of the list in-place.

       SORT sorts the list in-place alphabetically.

       The list subcommands APPEND, INSERT, REMOVE_AT, REMOVE_ITEM,
       REMOVE_DUPLICATES, REVERSE and SORT may create new values for the list
       within the current CMake variable scope.  Similar to the SET command,
       the LIST command creates new variable values in the current scope,
       even if the list itself is actually defined in a parent scope.  To
       propagate the results of these operations upwards, use SET with
       PARENT_SCOPE, SET with CACHE INTERNAL, or some other means of value
       propagation.

       NOTES: A list in cmake is a ; separated group of strings.  To create a
       list the set command can be used.  For example, set(var a b c d e)
       creates a list with a;b;c;d;e, and set(var "a b c d e") creates a
       string or a list with one item in it.

       When specifying index values, if <element index> is 0 or greater, it
       is indexed from the beginning of the list, with 0 representing the
       first list element.  If <element index> is -1 or lesser, it is indexed
       from the end of the list, with -1 representing the last list element.
       Be careful when counting with negative indices: they do not start from
       0.  -0 is equivalent to 0, the first list element.


  load_cache
       Load in the values from another project's CMake cache.

         load_cache(pathToCacheFile READ_WITH_PREFIX
                    prefix entry1...)

       Read the cache and store the requested entries in variables with their
       name prefixed with the given prefix.  This only reads the values, and
       does not create entries in the local project's cache.

         load_cache(pathToCacheFile [EXCLUDE entry1...]
                    [INCLUDE_INTERNALS entry1...])

       Load in the values from another cache and store them in the local
       project's cache as internal entries.  This is useful for a project
       that depends on another project built in a different tree.  EXCLUDE
       option can be used to provide a list of entries to be excluded.
       INCLUDE_INTERNALS can be used to provide a list of internal entries to
       be included.  Normally, no internal entries are brought in.  Use of
       this form of the command is strongly discouraged, but it is provided
       for backward compatibility.

  load_command
       Load a command into a running CMake.

         load_command(COMMAND_NAME <loc1> [loc2 ...])

       The given locations are searched for a library whose name is
       cmCOMMAND_NAME.  If found, it is loaded as a module and the command is
       added to the set of available CMake commands.  Usually, TRY_COMPILE is
       used before this command to compile the module.  If the command is
       successfully loaded a variable named

         CMAKE_LOADED_COMMAND_<COMMAND_NAME>

       will be set to the full path of the module that was loaded.  Otherwise
       the variable will not be set.

  macro
       Start recording a macro for later invocation as a command.

         macro(<name> [arg1 [arg2 [arg3 ...]]])
           COMMAND1(ARGS ...)
           COMMAND2(ARGS ...)
           ...
         endmacro(<name>)

       Define a macro named <name> that takes arguments named arg1 arg2 arg3
       (...).  Commands listed after macro, but before the matching endmacro,
       are not invoked until the macro is invoked.  When it is invoked, the
       commands recorded in the macro are first modified by replacing formal
       parameters (${arg1}) with the arguments passed, and then invoked as
       normal commands.  In addition to referencing the formal parameters you
       can reference the values ${ARGC} which will be set to the number of
       arguments passed into the function as well as ${ARGV0} ${ARGV1}
       ${ARGV2} ...  which will have the actual values of the arguments
       passed in.  This facilitates creating macros with optional arguments.
       Additionally ${ARGV} holds the list of all arguments given to the
       macro and ${ARGN} holds the list of argument past the last expected
       argument.  Note that the parameters to a macro and values such as ARGN
       are not variables in the usual CMake sense.  They are string
       replacements much like the c preprocessor would do with a macro.  If
       you want true CMake variables you should look at the function command.

       See the cmake_policy() command documentation for the behavior of
       policies inside macros.

  mark_as_advanced
       Mark cmake cached variables as advanced.

         mark_as_advanced([CLEAR|FORCE] VAR VAR2 VAR...)

       Mark the named cached variables as advanced.  An advanced variable
       will not be displayed in any of the cmake GUIs unless the show
       advanced option is on.  If CLEAR is the first argument advanced
       variables are changed back to unadvanced.  If FORCE is the first
       argument, then the variable is made advanced.  If neither FORCE nor
       CLEAR is specified, new values will be marked as advanced, but if the
       variable already has an advanced/non-advanced state, it will not be
       changed.

       It does nothing in script mode.

  math
       Mathematical expressions.

         math(EXPR <output variable> <math expression>)

       EXPR evaluates mathematical expression and return result in the output
       variable.  Example mathematical expression is '5 * ( 10 + 13 )'.
       Supported operators are + - * / % | & ^ ~ << >> * / %.  They have the
       same meaning as they do in c code.

  message
       Display a message to the user.

         message([STATUS|WARNING|AUTHOR_WARNING|FATAL_ERROR|SEND_ERROR]
                 "message to display" ...)

       The optional keyword determines the type of message:

         (none)         = Important information
         STATUS         = Incidental information
         WARNING        = CMake Warning, continue processing
         AUTHOR_WARNING = CMake Warning (dev), continue processing
         SEND_ERROR     = CMake Error, continue but skip generation
         FATAL_ERROR    = CMake Error, stop all processing

       The CMake command-line tool displays STATUS messages on stdout and all
       other message types on stderr.  The CMake GUI displays all messages in
       its log area.  The interactive dialogs (ccmake and CMakeSetup) show
       STATUS messages one at a time on a status line and other messages in
       interactive pop-up boxes.

       CMake Warning and Error message text displays using a simple markup
       language.  Non-indented text is formatted in line-wrapped paragraphs
       delimited by newlines.  Indented text is considered pre-formatted.

  option
       Provides an option that the user can optionally select.

         option(<option_variable> "help string describing option"
                [initial value])

       Provide an option for the user to select as ON or OFF.  If no initial
       value is provided, OFF is used.

       If you have options that depend on the values of other options, see
       the module help for CMakeDependentOption.

  project
       Set a name for the entire project.

         project(<projectname> [languageName1 languageName2 ... ] )

       Sets the name of the project.  Additionally this sets the variables
       <projectName>_BINARY_DIR and <projectName>_SOURCE_DIR to the
       respective values.

       Optionally you can specify which languages your project supports.
       Example languages are CXX (i.e.  C++), C, Fortran, etc.  By default C
       and CXX are enabled.  E.g.  if you do not have a C++ compiler, you can
       disable the check for it by explicitly listing the languages you want
       to support, e.g.  C.  By using the special language "NONE" all checks
       for any language can be disabled.

  qt_wrap_cpp
       Create Qt Wrappers.

         qt_wrap_cpp(resultingLibraryName DestName
                     SourceLists ...)

       Produce moc files for all the .h files listed in the SourceLists.  The
       moc files will be added to the library using the DestName source list.

  qt_wrap_ui
       Create Qt user interfaces Wrappers.

         qt_wrap_ui(resultingLibraryName HeadersDestName
                    SourcesDestName SourceLists ...)

       Produce .h and .cxx files for all the .ui files listed in the
       SourceLists.  The .h files will be added to the library using the
       HeadersDestNamesource list.  The .cxx files will be added to the
       library using the SourcesDestNamesource list.

  remove_definitions
       Removes -D define flags added by add_definitions.

         remove_definitions(-DFOO -DBAR ...)

       Removes flags (added by add_definitions) from the compiler command
       line for sources in the current directory and below.

  return
       Return from a file, directory or function.

         return()

       Returns from a file, directory or function.  When this command is
       encountered in an included file (via include() or find_package()), it
       causes processing of the current file to stop and control is returned
       to the including file.  If it is encountered in a file which is not
       included by another file, e.g.  a CMakeLists.txt, control is returned
       to the parent directory if there is one.  If return is called in a
       function, control is returned to the caller of the function.  Note
       that a macro is not a function and does not handle return like a
       function does.

  separate_arguments
       Parse space-separated arguments into a semicolon-separated list.

         separate_arguments(<var> <UNIX|WINDOWS>_COMMAND "<args>")

       Parses a unix- or windows-style command-line string "<args>" and
       stores a semicolon-separated list of the arguments in <var>.  The
       entire command line must be given in one "<args>" argument.

       The UNIX_COMMAND mode separates arguments by unquoted whitespace.  It
       recognizes both single-quote and double-quote pairs.  A backslash
       escapes the next literal character (\" is "); there are no special
       escapes (\n is just n).

       The WINDOWS_COMMAND mode parses a windows command-line using the same
       syntax the runtime library uses to construct argv at startup.  It
       separates arguments by whitespace that is not double-quoted.
       Backslashes are literal unless they precede double-quotes.  See the
       MSDN article "Parsing C Command-Line Arguments" for details.

         separate_arguments(VARIABLE)

       Convert the value of VARIABLE to a semi-colon separated list.  All
       spaces are replaced with ';'.  This helps with generating command
       lines.

  set
       Set a CMAKE variable to a given value.

         set(<variable> <value>
             [[CACHE <type> <docstring> [FORCE]] | PARENT_SCOPE])

       Within CMake sets <variable> to the value <value>.  <value> is
       expanded before <variable> is set to it.  If CACHE is present, then
       the <variable> is put in the cache.  <type> and <docstring> are then
       required.  <type> is used by the CMake GUI to choose a widget with
       which the user sets a value.  The value for <type> may be one of

         FILEPATH = File chooser dialog.
         PATH     = Directory chooser dialog.
         STRING   = Arbitrary string.
         BOOL     = Boolean ON/OFF checkbox.
         INTERNAL = No GUI entry (used for persistent variables).

       If <type> is INTERNAL, then the <value> is always written into the
       cache, replacing any values existing in the cache.  If it is not a
       cache variable, then this always writes into the current makefile.
       The FORCE option will overwrite the cache value removing any changes
       by the user.

       If PARENT_SCOPE is present, the variable will be set in the scope
       above the current scope.  Each new directory or function creates a new
       scope.  This command will set the value of a variable into the parent
       directory or calling function (whichever is applicable to the case at
       hand).

       If <value> is not specified then the variable is removed instead of
       set.  See also: the unset() command.

         set(<variable> <value1> ... <valueN>)

       In this case <variable> is set to a semicolon separated list of
       values.

       <variable> can be an environment variable such as:

         set( ENV{PATH} /home/martink )

       in which case the environment variable will be set.

  set_directory_properties
       Set a property of the directory.

         set_directory_properties(PROPERTIES prop1 value1 prop2 value2)

       Set a property for the current directory and subdirectories.  If the
       property is not found, CMake will report an error.  The properties
       include: INCLUDE_DIRECTORIES, LINK_DIRECTORIES,
       INCLUDE_REGULAR_EXPRESSION, and ADDITIONAL_MAKE_CLEAN_FILES.
       ADDITIONAL_MAKE_CLEAN_FILES is a list of files that will be cleaned as
       a part of "make clean" stage.

  set_property
       Set a named property in a given scope.

         set_property(<GLOBAL                            |
                       DIRECTORY [dir]                   |
                       TARGET    [target1 [target2 ...]] |
                       SOURCE    [src1 [src2 ...]]       |
                       TEST      [test1 [test2 ...]]     |
                       CACHE     [entry1 [entry2 ...]]>
                      [APPEND] [APPEND_STRING]
                      PROPERTY <name> [value1 [value2 ...]])

       Set one property on zero or more objects of a scope.  The first
       argument determines the scope in which the property is set.  It must
       be one of the following:

       GLOBAL scope is unique and does not accept a name.

       DIRECTORY scope defaults to the current directory but another
       directory (already processed by CMake) may be named by full or
       relative path.

       TARGET scope may name zero or more existing targets.

       SOURCE scope may name zero or more source files.  Note that source
       file properties are visible only to targets added in the same
       directory (CMakeLists.txt).

       TEST scope may name zero or more existing tests.

       CACHE scope must name zero or more cache existing entries.

       The required PROPERTY option is immediately followed by the name of
       the property to set.  Remaining arguments are used to compose the
       property value in the form of a semicolon-separated list.  If the
       APPEND option is given the list is appended to any existing property
       value.If the APPEND_STRING option is given the string is append to any
       existing property value as string, i.e.  it results in a longer string
       and not a list of strings.

  set_source_files_properties
       Source files can have properties that affect how they are built.

         set_source_files_properties([file1 [file2 [...]]]
                                     PROPERTIES prop1 value1
                                     [prop2 value2 [...]])

       Set properties associated with source files using a key/value paired
       list.  See properties documentation for those known to CMake.
       Unrecognized properties are ignored.  Source file properties are
       visible only to targets added in the same directory (CMakeLists.txt).

  set_target_properties
       Targets can have properties that affect how they are built.

         set_target_properties(target1 target2 ...
                               PROPERTIES prop1 value1
                               prop2 value2 ...)

       Set properties on a target.  The syntax for the command is to list all
       the files you want to change, and then provide the values you want to
       set next.  You can use any prop value pair you want and extract it
       later with the GET_TARGET_PROPERTY command.

       Properties that affect the name of a target's output file are as
       follows.  The PREFIX and SUFFIX properties override the default target
       name prefix (such as "lib") and suffix (such as ".so").  IMPORT_PREFIX
       and IMPORT_SUFFIX are the equivalent properties for the import library
       corresponding to a DLL (for SHARED library targets).  OUTPUT_NAME sets
       the real name of a target when it is built and can be used to help
       create two targets of the same name even though CMake requires unique
       logical target names.  There is also a <CONFIG>_OUTPUT_NAME that can
       set the output name on a per-configuration basis.  <CONFIG>_POSTFIX
       sets a postfix for the real name of the target when it is built under
       the configuration named by <CONFIG> (in upper-case, such as
       "DEBUG_POSTFIX").  The value of this property is initialized when the
       target is created to the value of the variable CMAKE_<CONFIG>_POSTFIX
       (except for executable targets because earlier CMake versions which
       did not use this variable for executables).

       The LINK_FLAGS property can be used to add extra flags to the link
       step of a target.  LINK_FLAGS_<CONFIG> will add to the configuration
       <CONFIG>, for example, DEBUG, RELEASE, MINSIZEREL, RELWITHDEBINFO.
       DEFINE_SYMBOL sets the name of the preprocessor symbol defined when
       compiling sources in a shared library.  If not set here then it is set
       to target_EXPORTS by default (with some substitutions if the target is
       not a valid C identifier).  This is useful for headers to know whether
       they are being included from inside their library or outside to
       properly setup dllexport/dllimport decorations.  The COMPILE_FLAGS
       property sets additional compiler flags used to build sources within
       the target.  It may also be used to pass additional preprocessor
       definitions.

       The LINKER_LANGUAGE property is used to change the tool used to link
       an executable or shared library.  The default is set the language to
       match the files in the library.  CXX and C are common values for this
       property.

       For shared libraries VERSION and SOVERSION can be used to specify the
       build version and api version respectively.  When building or
       installing appropriate symlinks are created if the platform supports
       symlinks and the linker supports so-names.  If only one of both is
       specified the missing is assumed to have the same version number.  For
       executables VERSION can be used to specify the build version.  When
       building or installing appropriate symlinks are created if the
       platform supports symlinks.  For shared libraries and executables on
       Windows the VERSION attribute is parsed to extract a "major.minor"
       version number.  These numbers are used as the image version of the
       binary.

       There are a few properties used to specify RPATH rules.  INSTALL_RPATH
       is a semicolon-separated list specifying the rpath to use in installed
       targets (for platforms that support it).  INSTALL_RPATH_USE_LINK_PATH
       is a boolean that if set to true will append directories in the linker
       search path and outside the project to the INSTALL_RPATH.
       SKIP_BUILD_RPATH is a boolean specifying whether to skip automatic
       generation of an rpath allowing the target to run from the build tree.
       BUILD_WITH_INSTALL_RPATH is a boolean specifying whether to link the
       target in the build tree with the INSTALL_RPATH.  This takes
       precedence over SKIP_BUILD_RPATH and avoids the need for relinking
       before installation.  INSTALL_NAME_DIR is a string specifying the
       directory portion of the "install_name" field of shared libraries on
       Mac OSX to use in the installed targets.  When the target is created
       the values of the variables CMAKE_INSTALL_RPATH,
       CMAKE_INSTALL_RPATH_USE_LINK_PATH, CMAKE_SKIP_BUILD_RPATH,
       CMAKE_BUILD_WITH_INSTALL_RPATH, and CMAKE_INSTALL_NAME_DIR are used to
       initialize these properties.

       PROJECT_LABEL can be used to change the name of the target in an IDE
       like visual studio.  VS_KEYWORD can be set to change the visual studio
       keyword, for example QT integration works better if this is set to
       Qt4VSv1.0.

       VS_SCC_PROJECTNAME, VS_SCC_LOCALPATH, VS_SCC_PROVIDER and
       VS_SCC_AUXPATH can be set to add support for source control bindings
       in a Visual Studio project file.

       VS_GLOBAL_<variable> can be set to add a Visual Studio
       project-specific global variable.  Qt integration works better if
       VS_GLOBAL_QtVersion is set to the Qt version FindQt4.cmake found.  For
       example, "4.7.3"

       The PRE_INSTALL_SCRIPT and POST_INSTALL_SCRIPT properties are the old
       way to specify CMake scripts to run before and after installing a
       target.  They are used only when the old INSTALL_TARGETS command is
       used to install the target.  Use the INSTALL command instead.

       The EXCLUDE_FROM_DEFAULT_BUILD property is used by the visual studio
       generators.  If it is set to 1 the target will not be part of the
       default build when you select "Build Solution".

  set_tests_properties
       Set a property of the tests.

         set_tests_properties(test1 [test2...] PROPERTIES prop1 value1 prop2 value2)

       Set a property for the tests.  If the property is not found, CMake
       will report an error.  The properties include:

       WILL_FAIL: If set to true, this will invert the pass/fail flag of the
       test.

       PASS_REGULAR_EXPRESSION: If set, the test output will be checked
       against the specified regular expressions and at least one of the
       regular expressions has to match, otherwise the test will fail.

         Example: PASS_REGULAR_EXPRESSION "TestPassed;All ok"

       FAIL_REGULAR_EXPRESSION: If set, if the output will match to one of
       specified regular expressions, the test will fail.

         Example: PASS_REGULAR_EXPRESSION "[^a-z]Error;ERROR;Failed"

       Both PASS_REGULAR_EXPRESSION and FAIL_REGULAR_EXPRESSION expect a list
       of regular expressions.

       TIMEOUT: Setting this will limit the test runtime to the number of
       seconds specified.


  site_name
       Set the given variable to the name of the computer.

         site_name(variable)


  source_group
       Define a grouping for sources in the makefile.

         source_group(name [REGULAR_EXPRESSION regex] [FILES src1 src2 ...])

       Defines a group into which sources will be placed in project files.
       This is mainly used to setup file tabs in Visual Studio.  Any file
       whose name is listed or matches the regular expression will be placed
       in this group.  If a file matches multiple groups, the LAST group that
       explicitly lists the file will be favored, if any.  If no group
       explicitly lists the file, the LAST group whose regular expression
       matches the file will be favored.

       The name of the group may contain backslashes to specify subgroups:

         source_group(outer\\inner ...)

       For backwards compatibility, this command is also supports the format:

         source_group(name regex)

  string
       String operations.

         string(REGEX MATCH <regular_expression>
                <output variable> <input> [<input>...])
         string(REGEX MATCHALL <regular_expression>
                <output variable> <input> [<input>...])
         string(REGEX REPLACE <regular_expression>
                <replace_expression> <output variable>
                <input> [<input>...])
         string(REPLACE <match_string>
                <replace_string> <output variable>
                <input> [<input>...])
         string(<MD5|SHA1|SHA224|SHA256|SHA384|SHA512>
                <output variable> <input>)
         string(COMPARE EQUAL <string1> <string2> <output variable>)
         string(COMPARE NOTEQUAL <string1> <string2> <output variable>)
         string(COMPARE LESS <string1> <string2> <output variable>)
         string(COMPARE GREATER <string1> <string2> <output variable>)
         string(ASCII <number> [<number> ...] <output variable>)
         string(CONFIGURE <string1> <output variable>
                [@ONLY] [ESCAPE_QUOTES])
         string(TOUPPER <string1> <output variable>)
         string(TOLOWER <string1> <output variable>)
         string(LENGTH <string> <output variable>)
         string(SUBSTRING <string> <begin> <length> <output variable>)
         string(STRIP <string> <output variable>)
         string(RANDOM [LENGTH <length>] [ALPHABET <alphabet>]
                [RANDOM_SEED <seed>] <output variable>)
         string(FIND <string> <substring> <output variable> [REVERSE])

       REGEX MATCH will match the regular expression once and store the match
       in the output variable.

       REGEX MATCHALL will match the regular expression as many times as
       possible and store the matches in the output variable as a list.

       REGEX REPLACE will match the regular expression as many times as
       possible and substitute the replacement expression for the match in
       the output.  The replace expression may refer to paren-delimited
       subexpressions of the match using \1, \2, ..., \9.  Note that two
       backslashes (\\1) are required in CMake code to get a backslash
       through argument parsing.

       REPLACE will replace all occurrences of match_string in the input with
       replace_string and store the result in the output.

       MD5, SHA1, SHA224, SHA256, SHA384, and SHA512 will compute a
       cryptographic hash of the input string.

       COMPARE EQUAL/NOTEQUAL/LESS/GREATER will compare the strings and store
       true or false in the output variable.

       ASCII will convert all numbers into corresponding ASCII characters.

       CONFIGURE will transform a string like CONFIGURE_FILE transforms a
       file.

       TOUPPER/TOLOWER will convert string to upper/lower characters.

       LENGTH will return a given string's length.

       SUBSTRING will return a substring of a given string.  If length is -1
       the remainder of the string starting at begin will be returned.

       STRIP will return a substring of a given string with leading and
       trailing spaces removed.

       RANDOM will return a random string of given length consisting of
       characters from the given alphabet.  Default length is 5 characters
       and default alphabet is all numbers and upper and lower case letters.
       If an integer RANDOM_SEED is given, its value will be used to seed the
       random number generator.

       FIND will return the position where the given substring was found in
       the supplied string.  If the REVERSE flag was used, the command will
       search for the position of the last occurrence of the specified
       substring.

       The following characters have special meaning in regular expressions:

          ^         Matches at beginning of a line
          $         Matches at end of a line
          .         Matches any single character
          [ ]       Matches any character(s) inside the brackets
          [^ ]      Matches any character(s) not inside the brackets
           -        Matches any character in range on either side of a dash
          *         Matches preceding pattern zero or more times
          +         Matches preceding pattern one or more times
          ?         Matches preceding pattern zero or once only
          |         Matches a pattern on either side of the |
          ()        Saves a matched subexpression, which can be referenced 
                    in the REGEX REPLACE operation. Additionally it is saved
                    by all regular expression-related commands, including 
                    e.g. if( MATCHES ), in the variables CMAKE_MATCH_(0..9).

  target_link_libraries
       Link a target to given libraries.

         target_link_libraries(<target> [item1 [item2 [...]]]
                               [[debug|optimized|general] <item>] ...)

       Specify libraries or flags to use when linking a given target.  The
       named <target> must have been created in the current directory by a
       command such as add_executable or add_library.  The remaining
       arguments specify library names or flags.

       If a library name matches that of another target in the project a
       dependency will automatically be added in the build system to make
       sure the library being linked is up-to-date before the target links.
       Item names starting with '-', but not '-l' or '-framework', are
       treated as linker flags.

       A "debug", "optimized", or "general" keyword indicates that the
       library immediately following it is to be used only for the
       corresponding build configuration.  The "debug" keyword corresponds to
       the Debug configuration (or to configurations named in the
       DEBUG_CONFIGURATIONS global property if it is set).  The "optimized"
       keyword corresponds to all other configurations.  The "general"
       keyword corresponds to all configurations, and is purely optional
       (assumed if omitted).  Higher granularity may be achieved for
       per-configuration rules by creating and linking to IMPORTED library
       targets.  See the IMPORTED mode of the add_library command for more
       information.

       Library dependencies are transitive by default.  When this target is
       linked into another target then the libraries linked to this target
       will appear on the link line for the other target too.  See the
       LINK_INTERFACE_LIBRARIES target property to override the set of
       transitive link dependencies for a target.

         target_link_libraries(<target> LINK_INTERFACE_LIBRARIES
                               [[debug|optimized|general] <lib>] ...)

       The LINK_INTERFACE_LIBRARIES mode appends the libraries to the
       LINK_INTERFACE_LIBRARIES and its per-configuration equivalent target
       properties instead of using them for linking.  Libraries specified as
       "debug" are appended to the the LINK_INTERFACE_LIBRARIES_DEBUG
       property (or to the properties corresponding to configurations listed
       in the DEBUG_CONFIGURATIONS global property if it is set).  Libraries
       specified as "optimized" are appended to the the
       LINK_INTERFACE_LIBRARIES property.  Libraries specified as "general"
       (or without any keyword) are treated as if specified for both "debug"
       and "optimized".

         target_link_libraries(<target>
                               <LINK_PRIVATE|LINK_PUBLIC>
                                 [[debug|optimized|general] <lib>] ...
                               [<LINK_PRIVATE|LINK_PUBLIC>
                                 [[debug|optimized|general] <lib>] ...])

       The LINK_PUBLIC and LINK_PRIVATE modes can be used to specify both the
       link dependencies and the link interface in one command.  Libraries
       and targets following LINK_PUBLIC are linked to, and are made part of
       the LINK_INTERFACE_LIBRARIES.  Libraries and targets following
       LINK_PRIVATE are linked to, but are not made part of the
       LINK_INTERFACE_LIBRARIES.

       The library dependency graph is normally acyclic (a DAG), but in the
       case of mutually-dependent STATIC libraries CMake allows the graph to
       contain cycles (strongly connected components).  When another target
       links to one of the libraries CMake repeats the entire connected
       component.  For example, the code

         add_library(A STATIC a.c)
         add_library(B STATIC b.c)
         target_link_libraries(A B)
         target_link_libraries(B A)
         add_executable(main main.c)
         target_link_libraries(main A)

       links 'main' to 'A B A B'.  (While one repetition is usually
       sufficient, pathological object file and symbol arrangements can
       require more.  One may handle such cases by manually repeating the
       component in the last target_link_libraries call.  However, if two
       archives are really so interdependent they should probably be combined
       into a single archive.)

  try_compile
       Try building some code.

         try_compile(RESULT_VAR <bindir> <srcdir>
                     <projectName> [targetName] [CMAKE_FLAGS flags...]
                     [OUTPUT_VARIABLE <var>])

       Try building a project.  In this form, srcdir should contain a
       complete CMake project with a CMakeLists.txt file and all sources.
       The bindir and srcdir will not be deleted after this command is run.
       Specify targetName to build a specific target instead of the 'all' or
       'ALL_BUILD' target.

         try_compile(RESULT_VAR <bindir> <srcfile>
                     [CMAKE_FLAGS flags...]
                     [COMPILE_DEFINITIONS flags...]
                     [OUTPUT_VARIABLE <var>]
                     [COPY_FILE <fileName>])

       Try building a source file into an executable.  In this form the user
       need only supply a source file that defines a 'main'.  CMake will
       create a CMakeLists.txt file to build the source as an executable.
       Specify COPY_FILE to get a copy of the linked executable at the given
       fileName.

       In this version all files in bindir/CMakeFiles/CMakeTmp will be
       cleaned automatically.  For debugging, --debug-trycompile can be
       passed to cmake to avoid this clean.  However, multiple sequential
       try_compile operations reuse this single output directory.  If you use
       --debug-trycompile, you can only debug one try_compile call at a time.
       The recommended procedure is to configure with cmake all the way
       through once, then delete the cache entry associated with the
       try_compile call of interest, and then re-run cmake again with
       --debug-trycompile.

       Some extra flags that can be included are, INCLUDE_DIRECTORIES,
       LINK_DIRECTORIES, and LINK_LIBRARIES.  COMPILE_DEFINITIONS are
       -Ddefinition that will be passed to the compile line.  try_compile
       creates a CMakeList.txt file on the fly that looks like this:

         add_definitions( <expanded COMPILE_DEFINITIONS from calling cmake>)
         include_directories(${INCLUDE_DIRECTORIES})
         link_directories(${LINK_DIRECTORIES})
         add_executable(cmTryCompileExec sources)
         target_link_libraries(cmTryCompileExec ${LINK_LIBRARIES})

       In both versions of the command, if OUTPUT_VARIABLE is specified, then
       the output from the build process is stored in the given variable.
       The success or failure of the try_compile, i.e.  TRUE or FALSE
       respectively, is returned in RESULT_VAR.  CMAKE_FLAGS can be used to
       pass -DVAR:TYPE=VALUE flags to the cmake that is run during the build.
       Set variable CMAKE_TRY_COMPILE_CONFIGURATION to choose a build
       configuration.

  try_run
       Try compiling and then running some code.

         try_run(RUN_RESULT_VAR COMPILE_RESULT_VAR
                 bindir srcfile [CMAKE_FLAGS <Flags>]
                 [COMPILE_DEFINITIONS <flags>]
                 [COMPILE_OUTPUT_VARIABLE comp]
                 [RUN_OUTPUT_VARIABLE run]
                 [OUTPUT_VARIABLE var]
                 [ARGS <arg1> <arg2>...])

       Try compiling a srcfile.  Return TRUE or FALSE for success or failure
       in COMPILE_RESULT_VAR.  Then if the compile succeeded, run the
       executable and return its exit code in RUN_RESULT_VAR.  If the
       executable was built, but failed to run, then RUN_RESULT_VAR will be
       set to FAILED_TO_RUN.  COMPILE_OUTPUT_VARIABLE specifies the variable
       where the output from the compile step goes.  RUN_OUTPUT_VARIABLE
       specifies the variable where the output from the running executable
       goes.

       For compatibility reasons OUTPUT_VARIABLE is still supported, which
       gives you the output from the compile and run step combined.

       Cross compiling issues

       When cross compiling, the executable compiled in the first step
       usually cannot be run on the build host.  try_run() checks the
       CMAKE_CROSSCOMPILING variable to detect whether CMake is in
       crosscompiling mode.  If that's the case, it will still try to compile
       the executable, but it will not try to run the executable.  Instead it
       will create cache variables which must be filled by the user or by
       presetting them in some CMake script file to the values the executable
       would have produced if it would have been run on its actual target
       platform.  These variables are RUN_RESULT_VAR (explanation see above)
       and if RUN_OUTPUT_VARIABLE (or OUTPUT_VARIABLE) was used, an
       additional cache variable
       RUN_RESULT_VAR__COMPILE_RESULT_VAR__TRYRUN_OUTPUT.This is intended to
       hold stdout and stderr from the executable.

       In order to make cross compiling your project easier, use try_run only
       if really required.  If you use try_run, use RUN_OUTPUT_VARIABLE (or
       OUTPUT_VARIABLE) only if really required.  Using them will require
       that when crosscompiling, the cache variables will have to be set
       manually to the output of the executable.  You can also "guard" the
       calls to try_run with if(CMAKE_CROSSCOMPILING) and provide an
       easy-to-preset alternative for this case.

       Set variable CMAKE_TRY_COMPILE_CONFIGURATION to choose a build
       configuration.

  unset
       Unset a variable, cache variable, or environment variable.

         unset(<variable> [CACHE])

       Removes the specified variable causing it to become undefined.  If
       CACHE is present then the variable is removed from the cache instead
       of the current scope.

       <variable> can be an environment variable such as:

         unset(ENV{LD_LIBRARY_PATH})

       in which case the variable will be removed from the current
       environment.

  variable_watch
       Watch the CMake variable for change.

         variable_watch(<variable name> [<command to execute>])

       If the specified variable changes, the message will be printed about
       the variable being changed.  If the command is specified, the command
       will be executed.  The command will receive the following arguments:
       COMMAND(<variable> <access> <value> <current list file> <stack>)

  while
       Evaluate a group of commands while a condition is true

         while(condition)
           COMMAND1(ARGS ...)
           COMMAND2(ARGS ...)
           ...
         endwhile(condition)

       All commands between while and the matching endwhile are recorded
       without being invoked.  Once the endwhile is evaluated, the recorded
       list of commands is invoked as long as the condition is true.  The
       condition is evaluated using the same logic as the if command.

------------------------------------------------------------------------------
Compatibility Commands

  build_name
       Deprecated.  Use ${CMAKE_SYSTEM} and ${CMAKE_CXX_COMPILER} instead.

         build_name(variable)

       Sets the specified variable to a string representing the platform and
       compiler settings.  These values are now available through the
       CMAKE_SYSTEM and CMAKE_CXX_COMPILER variables.

  exec_program
       Deprecated.  Use the execute_process() command instead.

       Run an executable program during the processing of the CMakeList.txt
       file.

         exec_program(Executable [directory in which to run]
                      [ARGS <arguments to executable>]
                      [OUTPUT_VARIABLE <var>]
                      [RETURN_VALUE <var>])

       The executable is run in the optionally specified directory.  The
       executable can include arguments if it is double quoted, but it is
       better to use the optional ARGS argument to specify arguments to the
       program.  This is because cmake will then be able to escape spaces in
       the executable path.  An optional argument OUTPUT_VARIABLE specifies a
       variable in which to store the output.  To capture the return value of
       the execution, provide a RETURN_VALUE.  If OUTPUT_VARIABLE is
       specified, then no output will go to the stdout/stderr of the console
       running cmake.


  export_library_dependencies
       Deprecated.  Use INSTALL(EXPORT) or EXPORT command.

       This command generates an old-style library dependencies file.
       Projects requiring CMake 2.6 or later should not use the command.  Use
       instead the install(EXPORT) command to help export targets from an
       installation tree and the export() command to export targets from a
       build tree.

       The old-style library dependencies file does not take into account
       per-configuration names of libraries or the LINK_INTERFACE_LIBRARIES
       target property.

         export_library_dependencies(<file> [APPEND])

       Create a file named <file> that can be included into a CMake listfile
       with the INCLUDE command.  The file will contain a number of SET
       commands that will set all the variables needed for library dependency
       information.  This should be the last command in the top level
       CMakeLists.txt file of the project.  If the APPEND option is
       specified, the SET commands will be appended to the given file instead
       of replacing it.

  install_files
       Deprecated.  Use the install(FILES ) command instead.

       This command has been superceded by the install command.  It is
       provided for compatibility with older CMake code.  The FILES form is
       directly replaced by the FILES form of the install command.  The
       regexp form can be expressed more clearly using the GLOB form of the
       file command.

         install_files(<dir> extension file file ...)

       Create rules to install the listed files with the given extension into
       the given directory.  Only files existing in the current source tree
       or its corresponding location in the binary tree may be listed.  If a
       file specified already has an extension, that extension will be
       removed first.  This is useful for providing lists of source files
       such as foo.cxx when you want the corresponding foo.h to be installed.
       A typical extension is '.h'.

         install_files(<dir> regexp)

       Any files in the current source directory that match the regular
       expression will be installed.

         install_files(<dir> FILES file file ...)

       Any files listed after the FILES keyword will be installed explicitly
       from the names given.  Full paths are allowed in this form.

       The directory <dir> is relative to the installation prefix, which is
       stored in the variable CMAKE_INSTALL_PREFIX.

  install_programs
       Deprecated.  Use the install(PROGRAMS ) command instead.

       This command has been superceded by the install command.  It is
       provided for compatibility with older CMake code.  The FILES form is
       directly replaced by the PROGRAMS form of the INSTALL command.  The
       regexp form can be expressed more clearly using the GLOB form of the
       FILE command.

         install_programs(<dir> file1 file2 [file3 ...])
         install_programs(<dir> FILES file1 [file2 ...])

       Create rules to install the listed programs into the given directory.
       Use the FILES argument to guarantee that the file list version of the
       command will be used even when there is only one argument.

         install_programs(<dir> regexp)

       In the second form any program in the current source directory that
       matches the regular expression will be installed.

       This command is intended to install programs that are not built by
       cmake, such as shell scripts.  See the TARGETS form of the INSTALL
       command to create installation rules for targets built by cmake.

       The directory <dir> is relative to the installation prefix, which is
       stored in the variable CMAKE_INSTALL_PREFIX.

  install_targets
       Deprecated.  Use the install(TARGETS ) command instead.

       This command has been superceded by the install command.  It is
       provided for compatibility with older CMake code.

         install_targets(<dir> [RUNTIME_DIRECTORY dir] target target)

       Create rules to install the listed targets into the given directory.
       The directory <dir> is relative to the installation prefix, which is
       stored in the variable CMAKE_INSTALL_PREFIX.  If RUNTIME_DIRECTORY is
       specified, then on systems with special runtime files (Windows DLL),
       the files will be copied to that directory.

  link_libraries
       Deprecated.  Use the target_link_libraries() command instead.

       Link libraries to all targets added later.

         link_libraries(library1 <debug | optimized> library2 ...)

       Specify a list of libraries to be linked into any following targets
       (typically added with the add_executable or add_library calls).  This
       command is passed down to all subdirectories.  The debug and optimized
       strings may be used to indicate that the next library listed is to be
       used only for that specific type of build.

  make_directory
       Deprecated.  Use the file(MAKE_DIRECTORY ) command instead.

         make_directory(directory)

       Creates the specified directory.  Full paths should be given.  Any
       parent directories that do not exist will also be created.  Use with
       care.

  output_required_files
       Deprecated.  Approximate C preprocessor dependency scanning.

       This command exists only because ancient CMake versions provided it.
       CMake handles preprocessor dependency scanning automatically using a
       more advanced scanner.

         output_required_files(srcfile outputfile)

       Outputs a list of all the source files that are required by the
       specified srcfile.  This list is written into outputfile.  This is
       similar to writing out the dependencies for srcfile except that it
       jumps from .h files into .cxx, .c and .cpp files if possible.

  remove
       Deprecated.  Use the list(REMOVE_ITEM ) command instead.

         remove(VAR VALUE VALUE ...)

       Removes VALUE from the variable VAR.  This is typically used to remove
       entries from a vector (e.g.  semicolon separated list).  VALUE is
       expanded.

  subdir_depends
       Deprecated.  Does nothing.

         subdir_depends(subdir dep1 dep2 ...)

       Does not do anything.  This command used to help projects order
       parallel builds correctly.  This functionality is now automatic.

  subdirs
       Deprecated.  Use the add_subdirectory() command instead.

       Add a list of subdirectories to the build.

         subdirs(dir1 dir2 ...[EXCLUDE_FROM_ALL exclude_dir1 exclude_dir2 ...]
                 [PREORDER] )

       Add a list of subdirectories to the build.  The add_subdirectory
       command should be used instead of subdirs although subdirs will still
       work.  This will cause any CMakeLists.txt files in the sub directories
       to be processed by CMake.  Any directories after the PREORDER flag are
       traversed first by makefile builds, the PREORDER flag has no effect on
       IDE projects.  Any directories after the EXCLUDE_FROM_ALL marker will
       not be included in the top level makefile or project file.  This is
       useful for having CMake create makefiles or projects for a set of
       examples in a project.  You would want CMake to generate makefiles or
       project files for all the examples at the same time, but you would not
       want them to show up in the top level project or be built each time
       make is run from the top.

  use_mangled_mesa
       Copy mesa headers for use in combination with system GL.

         use_mangled_mesa(PATH_TO_MESA OUTPUT_DIRECTORY)

       The path to mesa includes, should contain gl_mangle.h.  The mesa
       headers are copied to the specified output directory.  This allows
       mangled mesa headers to override other GL headers by being added to
       the include directory path earlier.

  utility_source
       Specify the source tree of a third-party utility.

         utility_source(cache_entry executable_name
                        path_to_source [file1 file2 ...])

       When a third-party utility's source is included in the distribution,
       this command specifies its location and name.  The cache entry will
       not be set unless the path_to_source and all listed files exist.  It
       is assumed that the source tree of the utility will have been built
       before it is needed.

       When cross compiling CMake will print a warning if a utility_source()
       command is executed, because in many cases it is used to build an
       executable which is executed later on.  This doesn't work when cross
       compiling, since the executable can run only on their target platform.
       So in this case the cache entry has to be adjusted manually so it
       points to an executable which is runnable on the build host.

  variable_requires
       Deprecated.  Use the if() command instead.

       Assert satisfaction of an option's required variables.

         variable_requires(TEST_VARIABLE RESULT_VARIABLE
                           REQUIRED_VARIABLE1
                           REQUIRED_VARIABLE2 ...)

       The first argument (TEST_VARIABLE) is the name of the variable to be
       tested, if that variable is false nothing else is done.  If
       TEST_VARIABLE is true, then the next argument (RESULT_VARIABLE) is a
       variable that is set to true if all the required variables are set.
       The rest of the arguments are variables that must be true or not set
       to NOTFOUND to avoid an error.  If any are not true, an error is
       reported.

  write_file
       Deprecated.  Use the file(WRITE ) command instead.

         write_file(filename "message to write"... [APPEND])

       The first argument is the file name, the rest of the arguments are
       messages to write.  If the argument APPEND is specified, then the
       message will be appended.

       NOTE 1: file(WRITE ...  and file(APPEND ...  do exactly the same as
       this one but add some more functionality.

       NOTE 2: When using write_file the produced file cannot be used as an
       input to CMake (CONFIGURE_FILE, source file ...) because it will lead
       to an infinite loop.  Use configure_file if you want to generate input
       files to CMake.

------------------------------------------------------------------------------
Standard CMake Modules

------------------------------------------------------------------------------
Copyright

Copyright 2000-2009 Kitware, Inc., Insight Software Consortium.  All rights
reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

Neither the names of Kitware, Inc., the Insight Software Consortium, nor the
names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

------------------------------------------------------------------------------
See Also

The following resources are available to get help using CMake:

  Home Page
       http://www.cmake.org

       The primary starting point for learning about CMake.

  Frequently Asked Questions
       http://www.cmake.org/Wiki/CMake_FAQ

       A Wiki is provided containing answers to frequently asked questions.

  Online Documentation
       http://www.cmake.org/HTML/Documentation.html

       Links to available documentation may be found on this web page.

  Mailing List
       http://www.cmake.org/HTML/MailingLists.html

       For help and discussion about using cmake, a mailing list is provided
       at cmake@cmake.org.  The list is member-post-only but one may sign up
       on the CMake web page.  Please first read the full documentation at
       http://www.cmake.org before posting questions to the list.

Summary of helpful links:

  Home: http://www.cmake.org
  Docs: http://www.cmake.org/HTML/Documentation.html
  Mail: http://www.cmake.org/HTML/MailingLists.html
  FAQ:  http://www.cmake.org/Wiki/CMake_FAQ