[vtkusers] SetDisplayExtent?

Bill Lorensen bill.lorensen at gmail.com
Mon Nov 30 08:52:28 EST 2009


The extents are the min and max in each image dimension.

imin,imax,jmin,jmax,kmin,kmax

This dataset's extents are
0,63,0,63,0,92

so a display extent of

10,10,0,63,0,92 would display a plane passing through 10,10.

On Mon, Nov 30, 2009 at 6:14 AM, hajung lee <white2332 at gmail.com> wrote:
> I try to make project which is simillar with example Medical3.cxx
> (I want to make another plane in Medical3.cxx)
> but I don't know what is the SetDisplayExtent. there are 6 numbers behind
> that
> so I try to change but there is nothing to happen.
> this is the source of Medical3.cxx please tell me what is SetDisplayExtent
> and how do they perform in that program?
>
> #include "vtkRenderer.h"
> #include "vtkRenderWindow.h"
> #include "vtkRenderWindowInteractor.h"
> #include "vtkVolume16Reader.h"
> #include "vtkPolyDataMapper.h"
> #include "vtkActor.h"
> #include "vtkOutlineFilter.h"
> #include "vtkCamera.h"
> #include "vtkStripper.h"
> #include "vtkLookupTable.h"
> #include "vtkImageDataGeometryFilter.h"
> #include "vtkProperty.h"
> #include "vtkPolyDataNormals.h"
> #include "vtkContourFilter.h"
> #include "vtkImageData.h"
> #include "vtkImageMapToColors.h"
> #include "vtkImageActor.h"
> int main (int argc, char **argv)
> {
>   if (argc < 2)
>     {
>       cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
>     return 1;
>     }
>   // Create the renderer, the render window, and the interactor. The
>   // renderer draws into the render window, the interactor enables
>   // mouse- and keyboard-based interaction with the data within the
>   // render window.
>   //
>   vtkRenderer *aRenderer = vtkRenderer::New();
>   vtkRenderWindow *renWin = vtkRenderWindow::New();
>     renWin->AddRenderer(aRenderer);
>   vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
>     iren->SetRenderWindow(renWin);
>   // The following reader is used to read a series of 2D slices (images)
>   // that compose the volume. The slice dimensions are set, and the
>   // pixel spacing. The data Endianness must also be specified. The
>   // reader usese the FilePrefix in combination with the slice number to
>   // construct filenames using the format FilePrefix.%d. (In this case
>   // the FilePrefix is the root name of the file: quarter.)
>   vtkVolume16Reader *v16 = vtkVolume16Reader::New();
>     v16->SetDataDimensions(64,64);
>     v16->SetDataByteOrderToLittleEndian();
>     v16->SetFilePrefix (argv[1]);
>     v16->SetImageRange(1, 93);
>     v16->SetDataSpacing (3.2, 3.2, 1.5);
>   // An isosurface, or contour value of 500 is known to correspond to
>   // the skin of the patient. Once generated, a vtkPolyDataNormals
>   // filter is is used to create normals for smooth surface shading
>   // during rendering.  The triangle stripper is used to create triangle
>   // strips from the isosurface; these render much faster on may
>   // systems.
>   vtkContourFilter *skinExtractor = vtkContourFilter::New();
>     skinExtractor->SetInputConnection( v16->GetOutputPort());
>     skinExtractor->SetValue(0, 500);
>   vtkPolyDataNormals *skinNormals = vtkPolyDataNormals::New();
>     skinNormals->SetInputConnection(skinExtractor->GetOutputPort());
>     skinNormals->SetFeatureAngle(60.0);
>   vtkStripper *skinStripper = vtkStripper::New();
>     skinStripper->SetInputConnection(skinNormals->GetOutputPort());
>   vtkPolyDataMapper *skinMapper = vtkPolyDataMapper::New();
>     skinMapper->SetInputConnection(skinStripper->GetOutputPort());
>     skinMapper->ScalarVisibilityOff();
>   vtkActor *skin = vtkActor::New();
>     skin->SetMapper(skinMapper);
>     skin->GetProperty()->SetDiffuseColor(1, .49, .25);
>     skin->GetProperty()->SetSpecular(.3);
>     skin->GetProperty()->SetSpecularPower(20);
>   // An isosurface, or contour value of 1150 is known to correspond to
>   // the skin of the patient. Once generated, a vtkPolyDataNormals
>   // filter is is used to create normals for smooth surface shading
>   // during rendering.  The triangle stripper is used to create triangle
>   // strips from the isosurface; these render much faster on may
>   // systems.
>   vtkContourFilter *boneExtractor = vtkContourFilter::New();
>     boneExtractor->SetInputConnection(v16->GetOutputPort());
>     boneExtractor->SetValue(0, 1150);
>   vtkPolyDataNormals *boneNormals = vtkPolyDataNormals::New();
>     boneNormals->SetInputConnection(boneExtractor->GetOutputPort());
>     boneNormals->SetFeatureAngle(60.0);
>   vtkStripper *boneStripper = vtkStripper::New();
>     boneStripper->SetInputConnection(boneNormals->GetOutputPort());
>   vtkPolyDataMapper *boneMapper = vtkPolyDataMapper::New();
>     boneMapper->SetInputConnection(boneStripper->GetOutputPort());
>     boneMapper->ScalarVisibilityOff();
>   vtkActor *bone = vtkActor::New();
>     bone->SetMapper(boneMapper);
>     bone->GetProperty()->SetDiffuseColor(1, 1, .9412);
>   // An outline provides context around the data.
>   //
>   vtkOutlineFilter *outlineData = vtkOutlineFilter::New();
>     outlineData->SetInputConnection(v16->GetOutputPort());
>   vtkPolyDataMapper *mapOutline = vtkPolyDataMapper::New();
>     mapOutline->SetInputConnection(outlineData->GetOutputPort());
>   vtkActor *outline = vtkActor::New();
>     outline->SetMapper(mapOutline);
>     outline->GetProperty()->SetColor(0,0,0);
>   // Now we are creating three orthogonal planes passing through the
>   // volume. Each plane uses a different texture map and therefore has
>   // different coloration.
>   // Start by creatin a black/white lookup table.
>   vtkLookupTable *bwLut = vtkLookupTable::New();
>     bwLut->SetTableRange (0, 2000);
>     bwLut->SetSaturationRange (0, 0);
>     bwLut->SetHueRange (0, 0);
>     bwLut->SetValueRange (0, 1);
>     bwLut->Build(); //effective built
>   // Now create a lookup table that consists of the full hue circle
>   // (from HSV).
>   vtkLookupTable *hueLut = vtkLookupTable::New();
>     hueLut->SetTableRange (0, 2000);
>     hueLut->SetHueRange (0, 1);
>     hueLut->SetSaturationRange (1, 1);
>     hueLut->SetValueRange (1, 1);
>     hueLut->Build(); //effective built
>   // Finally, create a lookup table with a single hue but having a range
>   // in the saturation of the hue.
>   vtkLookupTable *satLut = vtkLookupTable::New();
>     satLut->SetTableRange (0, 2000);
>     satLut->SetHueRange (.6, .6);
>     satLut->SetSaturationRange (0, 1);
>     satLut->SetValueRange (1, 1);
>     satLut->Build(); //effective built
>   // Create the first of the three planes. The filter vtkImageMapToColors
>   // maps the data through the corresponding lookup table created above.
> The
>   // vtkImageActor is a type of vtkProp and conveniently displays an image
> on
>   // a single quadrilateral plane. It does this using texture mapping and as
>   // a result is quite fast. (Note: the input image has to be unsigned char
>   // values, which the vtkImageMapToColors produces.) Note also that by
>   // specifying the DisplayExtent, the pipeline requests data of this extent
>   // and the vtkImageMapToColors only processes a slice of data.
>   vtkImageMapToColors *saggitalColors = vtkImageMapToColors::New();
>     saggitalColors->SetInputConnection(v16->GetOutputPort());
>     saggitalColors->SetLookupTable(bwLut);
>   vtkImageActor *saggital = vtkImageActor::New();
>     saggital->SetInput(saggitalColors->GetOutput());
>     saggital->SetDisplayExtent(32,32, 0,63, 0,92);
>   // Create the second (axial) plane of the three planes. We use the
>   // same approach as before except that the extent differs.
>   vtkImageMapToColors *axialColors = vtkImageMapToColors::New();
>     axialColors->SetInputConnection(v16->GetOutputPort());
>     axialColors->SetLookupTable(hueLut);
>   vtkImageActor *axial = vtkImageActor::New();
>     axial->SetInput(axialColors->GetOutput());
>     axial->SetDisplayExtent(0,63, 0,63, 46,46);
>   // Create the third (coronal) plane of the three planes. We use
>   // the same approach as before except that the extent differs.
>   vtkImageMapToColors *coronalColors = vtkImageMapToColors::New();
>     coronalColors->SetInputConnection(v16->GetOutputPort());
>     coronalColors->SetLookupTable(satLut);
>   vtkImageActor *coronal = vtkImageActor::New();
>     coronal->SetInput(coronalColors->GetOutput());
>     coronal->SetDisplayExtent(0,63, 32,32, 0,92);
>   // It is convenient to create an initial view of the data. The
>   // FocalPoint and Position form a vector direction. Later on
>   // (ResetCamera() method) this vector is used to position the camera
>   // to look at the data in this direction.
>   vtkCamera *aCamera = vtkCamera::New();
>     aCamera->SetViewUp (0, 0, -1);
>     aCamera->SetPosition (0, 1, 0);
>     aCamera->SetFocalPoint (0, 0, 0);
>     aCamera->ComputeViewPlaneNormal();
>   // Actors are added to the renderer.
>   aRenderer->AddActor(outline);
>   aRenderer->AddActor(saggital);
>   aRenderer->AddActor(axial);
>   aRenderer->AddActor(coronal);
>   aRenderer->AddActor(axial);
>   aRenderer->AddActor(coronal);
>   aRenderer->AddActor(skin);
>   aRenderer->AddActor(bone);
>   // Turn off bone for this example.
>   bone->VisibilityOff();
>   // Set skin to semi-transparent.
>   skin->GetProperty()->SetOpacity(0.5);
>   // An initial camera view is created.  The Dolly() method moves
>   // the camera towards the FocalPoint, thereby enlarging the image.
>   aRenderer->SetActiveCamera(aCamera);
>   aRenderer->Render();
>   aRenderer->ResetCamera ();
>   aCamera->Dolly(1.5);
>   // Set a background color for the renderer and set the size of the
>   // render window (expressed in pixels).
>   aRenderer->SetBackground(1,1,1);
>   renWin->SetSize(640, 480);
>   // Note that when camera movement occurs (as it does in the Dolly()
>   // method), the clipping planes often need adjusting. Clipping planes
>   // consist of two planes: near and far along the view direction. The
>   // near plane clips out objects in front of the plane; the far plane
>   // clips out objects behind the plane. This way only what is drawn
>   // between the planes is actually rendered.
>   aRenderer->ResetCameraClippingRange ();
>   // interact with data
>   iren->Initialize();
>   iren->Start();
>   // It is important to delete all objects created previously to prevent
>   // memory leaks. In this case, since the program is on its way to
>   // exiting, it is not so important. But in applications it is
>   // essential.
>   v16->Delete();
>   skinExtractor->Delete();
>   skinNormals->Delete();
>   skinStripper->Delete();
>   skinMapper->Delete();
>   skin->Delete();
>   boneExtractor->Delete();
>   boneNormals->Delete();
>   boneStripper->Delete();
>   boneMapper->Delete();
>   bone->Delete();
>   outlineData->Delete();
>   mapOutline->Delete();
>   outline->Delete();
>   bwLut->Delete();
>   hueLut->Delete();
>   satLut->Delete();
>   saggitalColors->Delete();
>   saggital->Delete();
>   axialColors->Delete();
>   axial->Delete();
>   coronalColors->Delete();
>   coronal->Delete();
>   aCamera->Delete();
>   aRenderer->Delete();
>   renWin->Delete();
>   iren->Delete();
>   return 0;
> }
>
> _______________________________________________
> Powered by www.kitware.com
>
> Visit other Kitware open-source projects at
> http://www.kitware.com/opensource/opensource.html
>
> Please keep messages on-topic and check the VTK FAQ at:
> http://www.vtk.org/Wiki/VTK_FAQ
>
> Follow this link to subscribe/unsubscribe:
> http://www.vtk.org/mailman/listinfo/vtkusers
>
>



More information about the vtkusers mailing list