[vtkusers] SetDisplayExtent?
hajung lee
white2332 at gmail.com
Mon Nov 30 06:14:17 EST 2009
I try to make project which is simillar with example Medical3.cxx
(I want to make another plane in Medical3.cxx)
but I don't know what is the SetDisplayExtent. there are 6 numbers behind
that
so I try to change but there is nothing to happen.
this is the source of Medical3.cxx please tell me what is SetDisplayExtent
and how do they perform in that program?
#include "vtkRenderer.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkVolume16Reader.h"
#include "vtkPolyDataMapper.h"
#include "vtkActor.h"
#include "vtkOutlineFilter.h"
#include "vtkCamera.h"
#include "vtkStripper.h"
#include "vtkLookupTable.h"
#include "vtkImageDataGeometryFilter.h"
#include "vtkProperty.h"
#include "vtkPolyDataNormals.h"
#include "vtkContourFilter.h"
#include "vtkImageData.h"
#include "vtkImageMapToColors.h"
#include "vtkImageActor.h"
int main (int argc, char **argv)
{
if (argc < 2)
{
cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
return 1;
}
// Create the renderer, the render window, and the interactor. The
// renderer draws into the render window, the interactor enables
// mouse- and keyboard-based interaction with the data within the
// render window.
//
vtkRenderer *aRenderer = vtkRenderer::New();
vtkRenderWindow *renWin = vtkRenderWindow::New();
renWin->AddRenderer(aRenderer);
vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);
// The following reader is used to read a series of 2D slices (images)
// that compose the volume. The slice dimensions are set, and the
// pixel spacing. The data Endianness must also be specified. The
// reader usese the FilePrefix in combination with the slice number to
// construct filenames using the format FilePrefix.%d. (In this case
// the FilePrefix is the root name of the file: quarter.)
vtkVolume16Reader *v16 = vtkVolume16Reader::New();
v16->SetDataDimensions(64,64);
v16->SetDataByteOrderToLittleEndian();
v16->SetFilePrefix (argv[1]);
v16->SetImageRange(1, 93);
v16->SetDataSpacing (3.2, 3.2, 1.5);
// An isosurface, or contour value of 500 is known to correspond to
// the skin of the patient. Once generated, a vtkPolyDataNormals
// filter is is used to create normals for smooth surface shading
// during rendering. The triangle stripper is used to create triangle
// strips from the isosurface; these render much faster on may
// systems.
vtkContourFilter *skinExtractor = vtkContourFilter::New();
skinExtractor->SetInputConnection( v16->GetOutputPort());
skinExtractor->SetValue(0, 500);
vtkPolyDataNormals *skinNormals = vtkPolyDataNormals::New();
skinNormals->SetInputConnection(skinExtractor->GetOutputPort());
skinNormals->SetFeatureAngle(60.0);
vtkStripper *skinStripper = vtkStripper::New();
skinStripper->SetInputConnection(skinNormals->GetOutputPort());
vtkPolyDataMapper *skinMapper = vtkPolyDataMapper::New();
skinMapper->SetInputConnection(skinStripper->GetOutputPort());
skinMapper->ScalarVisibilityOff();
vtkActor *skin = vtkActor::New();
skin->SetMapper(skinMapper);
skin->GetProperty()->SetDiffuseColor(1, .49, .25);
skin->GetProperty()->SetSpecular(.3);
skin->GetProperty()->SetSpecularPower(20);
// An isosurface, or contour value of 1150 is known to correspond to
// the skin of the patient. Once generated, a vtkPolyDataNormals
// filter is is used to create normals for smooth surface shading
// during rendering. The triangle stripper is used to create triangle
// strips from the isosurface; these render much faster on may
// systems.
vtkContourFilter *boneExtractor = vtkContourFilter::New();
boneExtractor->SetInputConnection(v16->GetOutputPort());
boneExtractor->SetValue(0, 1150);
vtkPolyDataNormals *boneNormals = vtkPolyDataNormals::New();
boneNormals->SetInputConnection(boneExtractor->GetOutputPort());
boneNormals->SetFeatureAngle(60.0);
vtkStripper *boneStripper = vtkStripper::New();
boneStripper->SetInputConnection(boneNormals->GetOutputPort());
vtkPolyDataMapper *boneMapper = vtkPolyDataMapper::New();
boneMapper->SetInputConnection(boneStripper->GetOutputPort());
boneMapper->ScalarVisibilityOff();
vtkActor *bone = vtkActor::New();
bone->SetMapper(boneMapper);
bone->GetProperty()->SetDiffuseColor(1, 1, .9412);
// An outline provides context around the data.
//
vtkOutlineFilter *outlineData = vtkOutlineFilter::New();
outlineData->SetInputConnection(v16->GetOutputPort());
vtkPolyDataMapper *mapOutline = vtkPolyDataMapper::New();
mapOutline->SetInputConnection(outlineData->GetOutputPort());
vtkActor *outline = vtkActor::New();
outline->SetMapper(mapOutline);
outline->GetProperty()->SetColor(0,0,0);
// Now we are creating three orthogonal planes passing through the
// volume. Each plane uses a different texture map and therefore has
// different coloration.
// Start by creatin a black/white lookup table.
vtkLookupTable *bwLut = vtkLookupTable::New();
bwLut->SetTableRange (0, 2000);
bwLut->SetSaturationRange (0, 0);
bwLut->SetHueRange (0, 0);
bwLut->SetValueRange (0, 1);
bwLut->Build(); //effective built
// Now create a lookup table that consists of the full hue circle
// (from HSV).
vtkLookupTable *hueLut = vtkLookupTable::New();
hueLut->SetTableRange (0, 2000);
hueLut->SetHueRange (0, 1);
hueLut->SetSaturationRange (1, 1);
hueLut->SetValueRange (1, 1);
hueLut->Build(); //effective built
// Finally, create a lookup table with a single hue but having a range
// in the saturation of the hue.
vtkLookupTable *satLut = vtkLookupTable::New();
satLut->SetTableRange (0, 2000);
satLut->SetHueRange (.6, .6);
satLut->SetSaturationRange (0, 1);
satLut->SetValueRange (1, 1);
satLut->Build(); //effective built
// Create the first of the three planes. The filter vtkImageMapToColors
// maps the data through the corresponding lookup table created above.
The
// vtkImageActor is a type of vtkProp and conveniently displays an image
on
// a single quadrilateral plane. It does this using texture mapping and as
// a result is quite fast. (Note: the input image has to be unsigned char
// values, which the vtkImageMapToColors produces.) Note also that by
// specifying the DisplayExtent, the pipeline requests data of this extent
// and the vtkImageMapToColors only processes a slice of data.
vtkImageMapToColors *saggitalColors = vtkImageMapToColors::New();
saggitalColors->SetInputConnection(v16->GetOutputPort());
saggitalColors->SetLookupTable(bwLut);
vtkImageActor *saggital = vtkImageActor::New();
saggital->SetInput(saggitalColors->GetOutput());
saggital->SetDisplayExtent(32,32, 0,63, 0,92);
// Create the second (axial) plane of the three planes. We use the
// same approach as before except that the extent differs.
vtkImageMapToColors *axialColors = vtkImageMapToColors::New();
axialColors->SetInputConnection(v16->GetOutputPort());
axialColors->SetLookupTable(hueLut);
vtkImageActor *axial = vtkImageActor::New();
axial->SetInput(axialColors->GetOutput());
axial->SetDisplayExtent(0,63, 0,63, 46,46);
// Create the third (coronal) plane of the three planes. We use
// the same approach as before except that the extent differs.
vtkImageMapToColors *coronalColors = vtkImageMapToColors::New();
coronalColors->SetInputConnection(v16->GetOutputPort());
coronalColors->SetLookupTable(satLut);
vtkImageActor *coronal = vtkImageActor::New();
coronal->SetInput(coronalColors->GetOutput());
coronal->SetDisplayExtent(0,63, 32,32, 0,92);
// It is convenient to create an initial view of the data. The
// FocalPoint and Position form a vector direction. Later on
// (ResetCamera() method) this vector is used to position the camera
// to look at the data in this direction.
vtkCamera *aCamera = vtkCamera::New();
aCamera->SetViewUp (0, 0, -1);
aCamera->SetPosition (0, 1, 0);
aCamera->SetFocalPoint (0, 0, 0);
aCamera->ComputeViewPlaneNormal();
// Actors are added to the renderer.
aRenderer->AddActor(outline);
aRenderer->AddActor(saggital);
aRenderer->AddActor(axial);
aRenderer->AddActor(coronal);
aRenderer->AddActor(axial);
aRenderer->AddActor(coronal);
aRenderer->AddActor(skin);
aRenderer->AddActor(bone);
// Turn off bone for this example.
bone->VisibilityOff();
// Set skin to semi-transparent.
skin->GetProperty()->SetOpacity(0.5);
// An initial camera view is created. The Dolly() method moves
// the camera towards the FocalPoint, thereby enlarging the image.
aRenderer->SetActiveCamera(aCamera);
aRenderer->Render();
aRenderer->ResetCamera ();
aCamera->Dolly(1.5);
// Set a background color for the renderer and set the size of the
// render window (expressed in pixels).
aRenderer->SetBackground(1,1,1);
renWin->SetSize(640, 480);
// Note that when camera movement occurs (as it does in the Dolly()
// method), the clipping planes often need adjusting. Clipping planes
// consist of two planes: near and far along the view direction. The
// near plane clips out objects in front of the plane; the far plane
// clips out objects behind the plane. This way only what is drawn
// between the planes is actually rendered.
aRenderer->ResetCameraClippingRange ();
// interact with data
iren->Initialize();
iren->Start();
// It is important to delete all objects created previously to prevent
// memory leaks. In this case, since the program is on its way to
// exiting, it is not so important. But in applications it is
// essential.
v16->Delete();
skinExtractor->Delete();
skinNormals->Delete();
skinStripper->Delete();
skinMapper->Delete();
skin->Delete();
boneExtractor->Delete();
boneNormals->Delete();
boneStripper->Delete();
boneMapper->Delete();
bone->Delete();
outlineData->Delete();
mapOutline->Delete();
outline->Delete();
bwLut->Delete();
hueLut->Delete();
satLut->Delete();
saggitalColors->Delete();
saggital->Delete();
axialColors->Delete();
axial->Delete();
coronalColors->Delete();
coronal->Delete();
aCamera->Delete();
aRenderer->Delete();
renWin->Delete();
iren->Delete();
return 0;
}
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.vtk.org/pipermail/vtkusers/attachments/20091130/76477f53/attachment.htm>
More information about the vtkusers
mailing list