[vtkusers] SetDisplayExtent?

hajung lee white2332 at gmail.com
Mon Nov 30 06:14:17 EST 2009


I try to make project which is simillar with example Medical3.cxx
(I want to make another plane in Medical3.cxx)
but I don't know what is the SetDisplayExtent. there are 6 numbers behind
that
so I try to change but there is nothing to happen.
this is the source of Medical3.cxx please tell me what is SetDisplayExtent
and how do they perform in that program?

#include "vtkRenderer.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkVolume16Reader.h"
#include "vtkPolyDataMapper.h"
#include "vtkActor.h"
#include "vtkOutlineFilter.h"
#include "vtkCamera.h"
#include "vtkStripper.h"
#include "vtkLookupTable.h"
#include "vtkImageDataGeometryFilter.h"
#include "vtkProperty.h"
#include "vtkPolyDataNormals.h"
#include "vtkContourFilter.h"
#include "vtkImageData.h"
#include "vtkImageMapToColors.h"
#include "vtkImageActor.h"
int main (int argc, char **argv)
{
  if (argc < 2)
    {
      cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
    return 1;
    }
  // Create the renderer, the render window, and the interactor. The
  // renderer draws into the render window, the interactor enables
  // mouse- and keyboard-based interaction with the data within the
  // render window.
  //
  vtkRenderer *aRenderer = vtkRenderer::New();
  vtkRenderWindow *renWin = vtkRenderWindow::New();
    renWin->AddRenderer(aRenderer);
  vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
    iren->SetRenderWindow(renWin);
  // The following reader is used to read a series of 2D slices (images)
  // that compose the volume. The slice dimensions are set, and the
  // pixel spacing. The data Endianness must also be specified. The
  // reader usese the FilePrefix in combination with the slice number to
  // construct filenames using the format FilePrefix.%d. (In this case
  // the FilePrefix is the root name of the file: quarter.)
  vtkVolume16Reader *v16 = vtkVolume16Reader::New();
    v16->SetDataDimensions(64,64);
    v16->SetDataByteOrderToLittleEndian();
    v16->SetFilePrefix (argv[1]);
    v16->SetImageRange(1, 93);
    v16->SetDataSpacing (3.2, 3.2, 1.5);
  // An isosurface, or contour value of 500 is known to correspond to
  // the skin of the patient. Once generated, a vtkPolyDataNormals
  // filter is is used to create normals for smooth surface shading
  // during rendering.  The triangle stripper is used to create triangle
  // strips from the isosurface; these render much faster on may
  // systems.
  vtkContourFilter *skinExtractor = vtkContourFilter::New();
    skinExtractor->SetInputConnection( v16->GetOutputPort());
    skinExtractor->SetValue(0, 500);
  vtkPolyDataNormals *skinNormals = vtkPolyDataNormals::New();
    skinNormals->SetInputConnection(skinExtractor->GetOutputPort());
    skinNormals->SetFeatureAngle(60.0);
  vtkStripper *skinStripper = vtkStripper::New();
    skinStripper->SetInputConnection(skinNormals->GetOutputPort());
  vtkPolyDataMapper *skinMapper = vtkPolyDataMapper::New();
    skinMapper->SetInputConnection(skinStripper->GetOutputPort());
    skinMapper->ScalarVisibilityOff();
  vtkActor *skin = vtkActor::New();
    skin->SetMapper(skinMapper);
    skin->GetProperty()->SetDiffuseColor(1, .49, .25);
    skin->GetProperty()->SetSpecular(.3);
    skin->GetProperty()->SetSpecularPower(20);
  // An isosurface, or contour value of 1150 is known to correspond to
  // the skin of the patient. Once generated, a vtkPolyDataNormals
  // filter is is used to create normals for smooth surface shading
  // during rendering.  The triangle stripper is used to create triangle
  // strips from the isosurface; these render much faster on may
  // systems.
  vtkContourFilter *boneExtractor = vtkContourFilter::New();
    boneExtractor->SetInputConnection(v16->GetOutputPort());
    boneExtractor->SetValue(0, 1150);
  vtkPolyDataNormals *boneNormals = vtkPolyDataNormals::New();
    boneNormals->SetInputConnection(boneExtractor->GetOutputPort());
    boneNormals->SetFeatureAngle(60.0);
  vtkStripper *boneStripper = vtkStripper::New();
    boneStripper->SetInputConnection(boneNormals->GetOutputPort());
  vtkPolyDataMapper *boneMapper = vtkPolyDataMapper::New();
    boneMapper->SetInputConnection(boneStripper->GetOutputPort());
    boneMapper->ScalarVisibilityOff();
  vtkActor *bone = vtkActor::New();
    bone->SetMapper(boneMapper);
    bone->GetProperty()->SetDiffuseColor(1, 1, .9412);
  // An outline provides context around the data.
  //
  vtkOutlineFilter *outlineData = vtkOutlineFilter::New();
    outlineData->SetInputConnection(v16->GetOutputPort());
  vtkPolyDataMapper *mapOutline = vtkPolyDataMapper::New();
    mapOutline->SetInputConnection(outlineData->GetOutputPort());
  vtkActor *outline = vtkActor::New();
    outline->SetMapper(mapOutline);
    outline->GetProperty()->SetColor(0,0,0);
  // Now we are creating three orthogonal planes passing through the
  // volume. Each plane uses a different texture map and therefore has
  // different coloration.
  // Start by creatin a black/white lookup table.
  vtkLookupTable *bwLut = vtkLookupTable::New();
    bwLut->SetTableRange (0, 2000);
    bwLut->SetSaturationRange (0, 0);
    bwLut->SetHueRange (0, 0);
    bwLut->SetValueRange (0, 1);
    bwLut->Build(); //effective built
  // Now create a lookup table that consists of the full hue circle
  // (from HSV).
  vtkLookupTable *hueLut = vtkLookupTable::New();
    hueLut->SetTableRange (0, 2000);
    hueLut->SetHueRange (0, 1);
    hueLut->SetSaturationRange (1, 1);
    hueLut->SetValueRange (1, 1);
    hueLut->Build(); //effective built
  // Finally, create a lookup table with a single hue but having a range
  // in the saturation of the hue.
  vtkLookupTable *satLut = vtkLookupTable::New();
    satLut->SetTableRange (0, 2000);
    satLut->SetHueRange (.6, .6);
    satLut->SetSaturationRange (0, 1);
    satLut->SetValueRange (1, 1);
    satLut->Build(); //effective built
  // Create the first of the three planes. The filter vtkImageMapToColors
  // maps the data through the corresponding lookup table created above.
The
  // vtkImageActor is a type of vtkProp and conveniently displays an image
on
  // a single quadrilateral plane. It does this using texture mapping and as
  // a result is quite fast. (Note: the input image has to be unsigned char
  // values, which the vtkImageMapToColors produces.) Note also that by
  // specifying the DisplayExtent, the pipeline requests data of this extent
  // and the vtkImageMapToColors only processes a slice of data.
  vtkImageMapToColors *saggitalColors = vtkImageMapToColors::New();
    saggitalColors->SetInputConnection(v16->GetOutputPort());
    saggitalColors->SetLookupTable(bwLut);
  vtkImageActor *saggital = vtkImageActor::New();
    saggital->SetInput(saggitalColors->GetOutput());
    saggital->SetDisplayExtent(32,32, 0,63, 0,92);
  // Create the second (axial) plane of the three planes. We use the
  // same approach as before except that the extent differs.
  vtkImageMapToColors *axialColors = vtkImageMapToColors::New();
    axialColors->SetInputConnection(v16->GetOutputPort());
    axialColors->SetLookupTable(hueLut);
  vtkImageActor *axial = vtkImageActor::New();
    axial->SetInput(axialColors->GetOutput());
    axial->SetDisplayExtent(0,63, 0,63, 46,46);
  // Create the third (coronal) plane of the three planes. We use
  // the same approach as before except that the extent differs.
  vtkImageMapToColors *coronalColors = vtkImageMapToColors::New();
    coronalColors->SetInputConnection(v16->GetOutputPort());
    coronalColors->SetLookupTable(satLut);
  vtkImageActor *coronal = vtkImageActor::New();
    coronal->SetInput(coronalColors->GetOutput());
    coronal->SetDisplayExtent(0,63, 32,32, 0,92);
  // It is convenient to create an initial view of the data. The
  // FocalPoint and Position form a vector direction. Later on
  // (ResetCamera() method) this vector is used to position the camera
  // to look at the data in this direction.
  vtkCamera *aCamera = vtkCamera::New();
    aCamera->SetViewUp (0, 0, -1);
    aCamera->SetPosition (0, 1, 0);
    aCamera->SetFocalPoint (0, 0, 0);
    aCamera->ComputeViewPlaneNormal();
  // Actors are added to the renderer.
  aRenderer->AddActor(outline);
  aRenderer->AddActor(saggital);
  aRenderer->AddActor(axial);
  aRenderer->AddActor(coronal);
  aRenderer->AddActor(axial);
  aRenderer->AddActor(coronal);
  aRenderer->AddActor(skin);
  aRenderer->AddActor(bone);
  // Turn off bone for this example.
  bone->VisibilityOff();
  // Set skin to semi-transparent.
  skin->GetProperty()->SetOpacity(0.5);
  // An initial camera view is created.  The Dolly() method moves
  // the camera towards the FocalPoint, thereby enlarging the image.
  aRenderer->SetActiveCamera(aCamera);
  aRenderer->Render();
  aRenderer->ResetCamera ();
  aCamera->Dolly(1.5);
  // Set a background color for the renderer and set the size of the
  // render window (expressed in pixels).
  aRenderer->SetBackground(1,1,1);
  renWin->SetSize(640, 480);
  // Note that when camera movement occurs (as it does in the Dolly()
  // method), the clipping planes often need adjusting. Clipping planes
  // consist of two planes: near and far along the view direction. The
  // near plane clips out objects in front of the plane; the far plane
  // clips out objects behind the plane. This way only what is drawn
  // between the planes is actually rendered.
  aRenderer->ResetCameraClippingRange ();
  // interact with data
  iren->Initialize();
  iren->Start();
  // It is important to delete all objects created previously to prevent
  // memory leaks. In this case, since the program is on its way to
  // exiting, it is not so important. But in applications it is
  // essential.
  v16->Delete();
  skinExtractor->Delete();
  skinNormals->Delete();
  skinStripper->Delete();
  skinMapper->Delete();
  skin->Delete();
  boneExtractor->Delete();
  boneNormals->Delete();
  boneStripper->Delete();
  boneMapper->Delete();
  bone->Delete();
  outlineData->Delete();
  mapOutline->Delete();
  outline->Delete();
  bwLut->Delete();
  hueLut->Delete();
  satLut->Delete();
  saggitalColors->Delete();
  saggital->Delete();
  axialColors->Delete();
  axial->Delete();
  coronalColors->Delete();
  coronal->Delete();
  aCamera->Delete();
  aRenderer->Delete();
  renWin->Delete();
  iren->Delete();
  return 0;
}
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.vtk.org/pipermail/vtkusers/attachments/20091130/76477f53/attachment.htm>


More information about the vtkusers mailing list