[vtkusers] How to turn volume data into triangle data (Not triangle strip)
Jeffrey Meng
mengjinjie at gmail.com
Fri Apr 1 15:46:08 EST 2005
Hi Amy,
Thank you for your reply.
I transfered the data to triangles, and try to iterate through the
celldata, but the cell
data still seems like triangle strips, would you please have a quick
look at my source
listed below?
Thanks a million.
Best,
Jeffrey
===============================================================
Command line parameter: VTK_DATA_ROOT/headsq/Quarter
#include "vtkRenderer.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkVolume16Reader.h"
#include "vtkPolyDataMapper.h"
#include "vtkActor.h"
#include "vtkOutlineFilter.h"
#include "vtkCamera.h"
#include "vtkStripper.h"
#include "vtkLookupTable.h"
#include "vtkImageDataGeometryFilter.h"
#include "vtkProperty.h"
#include "vtkPolyDataNormals.h"
#include "vtkContourFilter.h"
#include "vtkImageData.h"
#include "vtkImageMapToColors.h"
#include "vtkImageActor.h"
#include "vtkPolyData.h"
#include "vtkCellData.h"
#include "vtkPointData.h"
#include "vtkPointDataToCellData.h"
#include "vtkCellPicker.h"
#include "vtkCommand.h"
#include "vtkTriangleFilter.h"
class vtkMyCallback : public vtkCommand
{
public:
static vtkMyCallback* New()
{
return new vtkMyCallback;
}
void SetCellPicker(vtkCellPicker* pPicker)
{
_pCellPicker = pPicker;
}
virtual void Execute(vtkObject* caller, unsigned long, void*)
{
if (NULL == _pCellPicker)
{
return;
}
vtkRenderer* pRenderer = reinterpret_cast<vtkRenderer*>(caller);
if (NULL == pRenderer)
{
return;
}
vtkRenderWindow* pRenderWindow = pRenderer->GetRenderWindow();
if (NULL == pRenderWindow)
{
return;
}
if (_pCellPicker->GetCellId() < 0 )
{
printf("Cell ID = %d\n", _pCellPicker->GetCellId());
}
else
{
float coordinates[3] = {0.0f};
_pCellPicker->GetSelectionPoint(coordinates);
float x = coordinates[0];
float y = coordinates[1];
float* position = _pCellPicker->GetPickPosition();
float xp = position[0];
float yp = position[1];
float zp = position[2];
printf("Pick Position = %f\t%f\t%f\n", xp, yp, zp);
}
//pRenderWindow->Render();
}
private:
vtkCellPicker* _pCellPicker;
};
int main (int argc, char **argv)
{
if (argc < 2)
{
cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
return 1;
}
////////////////////////////////////////////////////////////////////////////
// Now we are creating three orthogonal planes passing through the
// volume. Each plane uses a different texture map and therefore has
// diferent coloration.
// Start by creatin a black/white lookup table.
vtkLookupTable* bwLut = vtkLookupTable::New();
bwLut->SetTableRange(0, 2000);
bwLut->SetSaturationRange(0, 0);
bwLut->SetHueRange(0, 0);
bwLut->SetValueRange(0, 1);
bwLut->Build();
// Now create a lookup table that consists of the full hue circle
// (from HSV).
vtkLookupTable* hueLut = vtkLookupTable::New();
hueLut->SetTableRange(0, 2000);
hueLut->SetHueRange(0, 1);
hueLut->SetSaturationRange(1, 1);
hueLut->SetValueRange(1, 1);
hueLut->Build();
// Finally, create a lookup table with a single hue but having a range
// in the saturation of the hue.
vtkLookupTable* satLut = vtkLookupTable::New();
satLut->SetTableRange(0, 2000);
satLut->SetHueRange(.6, .6);
satLut->SetSaturationRange(0, 1);
satLut->SetValueRange(1, 1);
satLut->Build();
////////////////////////////////////////////////////////////////////////////
// Create the renderer, the render window, and the interactor. The
// renderer draws into the render window, the interactor enables
// mouse- and keyboard-based interaction with the data within the
// render window.
//
vtkRenderer* aRenderer = vtkRenderer::New();
vtkRenderWindow* renWin = vtkRenderWindow::New();
renWin->AddRenderer(aRenderer);
vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);
////////////////////////////////////////////////////////////////////////////
// The following reader is used to read a series of 2D slices (images)
// that compose the volume. The slice dimensions are set, and the
// pixel spacing. The data Endianness must also be specified. The
// reader usese the FilePrefix in combination with the slice number to
// construct filenames using the format FilePrefix.%d. (In this case
// the FilePrefix is the root name of the file: quarter.)
vtkVolume16Reader* v16 = vtkVolume16Reader::New();
v16->SetDataDimensions(64,64);
v16->SetDataByteOrderToLittleEndian();
v16->SetFilePrefix(argv[1]);
v16->SetImageRange(1, 93);
v16->SetDataSpacing(3.2, 3.2, 1.5);
////////////////////////////////////////////////////////////////////////////
// An isosurface, or contour value of 500 is known to correspond to
// the skin of the patient. Once generated, a vtkPolyDataNormals
// filter is is used to create normals for smooth surface shading
// during rendering. The triangle stripper is used to create triangle
// strips from the isosurface; these render much faster on may
// systems.
vtkContourFilter* skinExtractor = vtkContourFilter::New();
skinExtractor->SetInput(v16->GetOutput());
skinExtractor->SetValue(0, 500);
vtkPolyDataNormals* skinNormals = vtkPolyDataNormals::New();
skinNormals->SetInput(skinExtractor->GetOutput());
skinNormals->SetFeatureAngle(60.0);
vtkStripper* skinStripper = vtkStripper::New();
skinStripper->SetInput(skinNormals->GetOutput());
vtkTriangleFilter* pTriangles = vtkTriangleFilter::New();
pTriangles->SetInput(skinStripper->GetOutput());
pTriangles->PassLinesOn();
pTriangles->PassVertsOn();
//*
vtkPointDataToCellData* pPoint2Cell = vtkPointDataToCellData::New();
pPoint2Cell->SetInput(pTriangles->GetOutput());
pPoint2Cell->PassPointDataOn();
//*/
bool bUsePointData = false;
vtkPolyDataMapper* skinMapper = vtkPolyDataMapper::New();
if (bUsePointData)
{
skinMapper->SetInput(skinStripper->GetOutput());
}
else
{
skinMapper->SetInput(pPoint2Cell->GetPolyDataOutput());
//skinMapper->SetInput(pTriangles->GetOutput());
}
skinMapper->ScalarVisibilityOn();
skinMapper->SetLookupTable(hueLut);
if (bUsePointData)
{
skinMapper->SetScalarModeToUsePointData();
}
else
{
skinMapper->SetScalarModeToUseCellData();
}
skinMapper->UseLookupTableScalarRangeOn();
skinMapper->Update();
try
{
vtkPolyData* pPolyData = skinMapper->GetInput();
printf("vtkPolyData Type = %s\n", skinMapper->GetInput()->GetClassName());
vtkCellData* pCellData = pPolyData->GetCellData();
vtkDataArray* pCellArray = pCellData->GetScalars();
vtkPointData* pPointData = pPolyData->GetPointData();
vtkDataArray* pPointArray = pPointData->GetScalars();
double scalar[] = {0.0};
if (bUsePointData)
{
//int nComponents = pPointArray->GetNumberOfComponents();
int nTuples = pPointArray->GetNumberOfTuples();
//for (int i = 0; i < nComponents; ++i)
{
for (int j = 0; j < nTuples / 2; ++j)
{
//pPointArray->SetComponent(0, j, 0.0);
pPointArray->SetTuple(j, scalar);
}
}
pPointArray->Modified();
}
else
{
int nTuples = pCellArray->GetNumberOfTuples();
for (int i = 0; i < nTuples / 2; ++i)
{
pCellArray->SetTuple(i, scalar);
}
pCellArray->Modified();
}
pPolyData->Modified();
skinMapper->Update();
}
catch (...)
{
printf("Exception thrown\n");
}
//------------------------------------------------------------------------\\
// Create a cell picker
//
vtkCellPicker* pPicker = vtkCellPicker::New();
vtkMyCallback* pPickCallback = vtkMyCallback::New();
pPickCallback->SetCellPicker(pPicker);
pPicker->AddObserver(vtkCommand::EndPickEvent, pPickCallback);
vtkActor* skin = vtkActor::New();
skin->SetMapper(skinMapper);
skin->GetProperty()->SetDiffuseColor(1, .49, .25);
skin->GetProperty()->SetSpecular(.3);
skin->GetProperty()->SetSpecularPower(20);
////////////////////////////////////////////////////////////////////////////
// Create the first of the three planes. The filter vtkImageMapToColors
// maps the data through the corresponding lookup table created above. The
// vtkImageActor is a type of vtkProp and conveniently displays an image on
// a single quadrilateral plane. It does this using texture mapping and as
// a result is quite fast. (Note: the input image has to be unsigned char
// values, which the vtkImageMapToColors produces.) Note also that by
// specifying the DisplayExtent, the pipeline requests data of this extent
// and the vtkImageMapToColors only processes a slice of data.
vtkImageMapToColors* saggitalColors = vtkImageMapToColors::New();
saggitalColors->SetInput(v16->GetOutput());
saggitalColors->SetLookupTable(bwLut);
vtkImageActor* saggital = vtkImageActor::New();
saggital->SetInput(saggitalColors->GetOutput());
saggital->SetDisplayExtent(16, 16, 0, 63, 0, 92);
// Create the second (axial) plane of the three planes. We use the
// same approach as before except that the extent differs.
vtkImageMapToColors *axialColors = vtkImageMapToColors::New();
axialColors->SetInput(v16->GetOutput());
axialColors->SetLookupTable(hueLut);
vtkImageActor *axial = vtkImageActor::New();
axial->SetInput(axialColors->GetOutput());
axial->SetDisplayExtent(0,63, 0,63, 46,46);
// Create the third (coronal) plane of the three planes. We use
// the same approach as before except that the extent differs.
vtkImageMapToColors *coronalColors = vtkImageMapToColors::New();
coronalColors->SetInput(v16->GetOutput());
coronalColors->SetLookupTable(satLut);
vtkImageActor *coronal = vtkImageActor::New();
coronal->SetInput(coronalColors->GetOutput());
coronal->SetDisplayExtent(0,63, 32,32, 0,92);
// It is convenient to create an initial view of the data. The
// FocalPoint and Position form a vector direction. Later on
// (ResetCamera() method) this vector is used to position the camera
// to look at the data in this direction.
vtkCamera* aCamera = vtkCamera::New();
aCamera->SetViewUp (0, 0, -1);
aCamera->SetPosition (0, 1, 0);
aCamera->SetFocalPoint (0, 0, 0);
aCamera->ComputeViewPlaneNormal();
// Actors are added to the renderer.
aRenderer->AddActor(saggital);
aRenderer->AddActor(axial);
aRenderer->AddActor(coronal);
aRenderer->AddActor(skin);
// Set skin to semi-transparent.
skin->GetProperty()->SetOpacity(0.5);
// An initial camera view is created. The Dolly() method moves
// the camera towards the FocalPoint, thereby enlarging the image.
aRenderer->SetActiveCamera(aCamera);
aRenderer->ResetCamera();
aCamera->Dolly(1.5);
// Set a background color for the renderer and set the size of the
// render window (expressed in pixels).
aRenderer->SetBackground(1,1,1);
renWin->SetSize(300, 300);
// Note that when camera movement occurs (as it does in the Dolly()
// method), the clipping planes often need adjusting. Clipping planes
// consist of two planes: near and far along the view direction. The
// near plane clips out objects in front of the plane; the far plane
// clips out objects behind the plane. This way only what is drawn
// between the planes is actually rendered.
aRenderer->ResetCameraClippingRange();
pPicker->Pick(85, 126, 0, aRenderer);
// Interact with data
iren->Initialize();
iren->SetPicker(pPicker);
iren->Start();
// Cleanup
v16->Delete();
skinExtractor->Delete();
skinNormals->Delete();
skinStripper->Delete();
skinMapper->Delete();
skin->Delete();
bwLut->Delete();
hueLut->Delete();
satLut->Delete();
saggitalColors->Delete();
saggital->Delete();
axialColors->Delete();
axial->Delete();
coronalColors->Delete();
coronal->Delete();
aCamera->Delete();
aRenderer->Delete();
renWin->Delete();
iren->Delete();
return 0;
}
>Hi Jeffrey,
>
>vtkTriangleFilter is supposed to output triangles, not triangle strips. If
>this is not the behavior you are seeing, something is wrong.
>
>- Amy
More information about the vtkusers
mailing list