[Insight-users] How I can write to a file.txt???
javier silva bravo
javier_silva_bravo at hotmail.com
Tue Apr 26 15:03:54 EDT 2005
An HTML attachment was scrubbed...
URL: http://public.kitware.com/pipermail/insight-users/attachments/20050426/f12449ac/attachment.htm
-------------- next part --------------
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: DeformableRegistration6.cxx,v $
Language: C++
Date: $Date: 2004/12/28 14:42:48 $
Version: $Revision: 1.7 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of the
\doxygen{BSplineDeformableTransform}
// class in a manually controlled multi-resolution scheme. Here we define
two
// transforms at two different resolution levels. A first registration is
// perfomed with the spline grid of low resolution, and the results are then
// used for initializing a higher resolution grid. Since this example is
quite
// similar to the previous example on the use of the
// \code{BSplineDeformableTransform} we omit here most of the details
already
// discussed and will focus on the aspects related to the multi-resolution
// approach.
//
// \index{itk::BSplineDeformableTransform}
// \index{itk::BSplineDeformableTransform!DeformableRegistration}
// \index{itk::LBFGSOptimizer}
//
//
// Software Guide : EndLatex
#include "itkImageRegistrationMethod.h"
#include "itkMeanSquaresImageToImageMetric.h"
//#include <itkNormalizedCorrelationImageToImageMetric.h>
//#include <itkGradientDifferenceImageToImageMetric.h>
//#include "itkLinearInterpolateImageFunction.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkImage.h"
// Software Guide : BeginLatex
//
// We include the header files for the transform and the optimizer.
//
// \index{itk::BSplineDeformableTransform!header}
// \index{itk::LBFGSOptimizer!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkBSplineDeformableTransform.h"
//#include "itkLBFGSOptimizer.h"
#include "itkLBFGSBOptimizer.h"
//#include <itkConjugateGradientOptimizer.h>
//#include <itkGradientDescentOptimizer.h>
//#include <itkRegularStepGradientDescentOptimizer.h>
//#include <itkQuaternionRigidTransformGradientDescentOptimizer.h>
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSquaredDifferenceImageFilter.h"
#include "itkBSplineResampleImageFunction.h"
#include "itkIdentityTransform.h"
#include "itkBSplineDecompositionImageFilter.h"
#include "itkTimeProbesCollectorBase.h"
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::LBFGSBOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
/*
typedef itk::MeanSquaresImageToImageMetric MetricType;
typedef const MetricType * MetricPointer;
typedef itk::BSplineDeformableTransform TransformType;
typedef const TransformType * TransformPointer;*/
void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event)
{
OptimizerPointer optimizer =
dynamic_cast< OptimizerPointer >( object );
/*
TransformType::Pointer transformLow = TransformType::New();
typedef TransformType::ParametersType ParametersType;
const unsigned int numberOfParameters =
transformLow->GetNumberOfParameters();
ParametersType parametersLow( numberOfParameters );
MetricPointer metric =
dynamic_cast< MetricPointer >( object );*/
if( typeid( event ) != typeid( itk::IterationEvent ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
//std::cout << << " ";
std::cout << optimizer->GetInfinityNormOfProjectedGradient() <<
std::endl;
//std::cout << metric->GetValue(parametersLow) << std::endl;
}
};
// NOTE: the LBFGSOptimizer does not invoke events
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile outputImagefile ";
std::cerr << " [differenceOutputfile] [differenceBeforeRegistration] ";
std::cerr << " [deformationField] ";
return 1;
}
const unsigned int ImageDimension = 2;
typedef float PixelType;
typedef itk::Image< PixelType, ImageDimension > FixedImageType;
typedef itk::Image< PixelType, ImageDimension > MovingImageType;
// Software Guide : BeginLatex
//
// We instantiate now the type of the \code{BSplineDeformableTransform}
using
// as template parameters the type for coordinates representation, the
// dimension of the space, and the order of the BSpline.
//
// \index{BSplineDeformableTransform|New}
// \index{BSplineDeformableTransform|Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int SpaceDimension = ImageDimension;
const unsigned int SplineOrder = 3;
typedef double CoordinateRepType;
typedef itk::BSplineDeformableTransform<
CoordinateRepType,
SpaceDimension,
SplineOrder > TransformType;
// Software Guide : EndCodeSnippet
//typedef itk::LBFGSOptimizer OptimizerType;
typedef itk::LBFGSBOptimizer OptimizerType;
//typedef itk::GradientDescentOptimizer OptimizerType;
//typedef itk::QuaternionRigidTransformGradientDescentOptimizer
OptimizerType;
/*
typedef itk::NormalizedCorrelationImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;*/
/*
typedef itk::GradientDifferenceImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;*/
typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
/*
typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;*/
typedef itk::BSplineInterpolateImageFunction<
FixedImageType,
double,
double> InterpolatorType;
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
std::cout << "
//////////////////////////////////////////////////////////////////////////////
" << std::endl;
std::cout << " " << std::endl;
std::cout << " /////////// Se estable el orden al interpolador
////////////////////////////// " << std::endl;
std::cout << " " << std::endl;
std::cout << "
//////////////////////////////////////////////////////////////////////////////
" << std::endl;
interpolator->SetSplineOrder(SplineOrder);
metric->ComputeGradientOn();
metric->SetInterpolator(interpolator);
std::cout << "
------------------------------------------------------------------------------
" << std::endl;
std::cout << " " << std::endl;
std::cout << " ----------- Se estable la metrica,optimizador e
interpolador al registro ----- " << std::endl;
std::cout << " " << std::endl;
std::cout << "
------------------------------------------------------------------------------
" << std::endl;
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetInterpolator( interpolator );
// Software Guide : BeginLatex
//
// We construct two transform objects, each one will be configured for a
resolution level.
// Notice than in this multi-resolution scheme we are not modifying the
// resolution of the image, but rather the flexibility of the deformable
// transform itself.
//
// \index{itk::RegistrationMethod!SetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer transformLow = TransformType::New();
registration->SetTransform( transformLow );
// metric->SetTransform(transformLow);
std::cout << "
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
" << std::endl;
std::cout << " " << std::endl;
std::cout << " ++ Se establece La transformacion en bajo tanto en el
regitro ++++++++++++++++ " << std::endl;
std::cout << " como en la metrica " << std::endl;
std::cout << " " << std::endl;
std::cout << "
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
" << std::endl;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader =
FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader =
MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
FixedImageType::ConstPointer fixedImage = fixedImageReader->GetOutput();
try{
registration->SetFixedImage( fixedImage );
registration->SetMovingImage( movingImageReader->GetOutput() );
interpolator->SetInputImage( fixedImage ); //fixedImage
/*
metric->SetFixedImage( fixedImage );
metric->SetMovingImage( movingImageReader->GetOutput() );*/
}
catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << "Error al establecer la Imagen fija y movil en la metrica" <<
std::endl;
std::cerr << "y en el interpolador" << std::endl;
std::cerr << err << std::endl;
return -1;
}
std::cout << "
··············································································
" << std::endl;
std::cout << " " << std::endl;
std::cout << " ·· Se establece Imagen fija y movil
registro,metrica,interpolador ·· " << std::endl;
std::cout << " " << std::endl;
std::cout << "
··············································································
" << std::endl;
try{
fixedImageReader->Update();
}
catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << "Error al leer Imagen fija" << std::endl;
std::cerr << err << std::endl;
return -1;
}
FixedImageType::RegionType fixedRegion = fixedImage->GetBufferedRegion();
registration->SetFixedImageRegion( fixedRegion );
//metric->SetFixedImageRegion(fixedRegion);
// Software Guide : BeginLatex
//
// Here we define the parameters of the BSplineDeformableTransform grid.
We
// arbitrarily decide to use a grid with $5 \times 5$ nodes within the
image.
// The reader should note that the BSpline computation requires a
// finite support region ( 1 grid node at the lower borders and 2
// grid nodes at upper borders). Therefore in this example, we set
// the grid size to be $8 \times 8$ and place the grid origin such that
// grid node (1,1) coinicides with the first pixel in the fixed image.
//
// \index{BSplineDeformableTransform}
//
// Software Guide : EndLatex
typedef TransformType::RegionType RegionType;
RegionType bsplineRegionLow;
RegionType::SizeType gridBorderSize;
RegionType::SizeType totalGridSize;
gridBorderSize.Fill( 3 ); // Border for spline order = 3 ( 1 lower, 2
upper )
// Software Guide : BeginLatex
//
// Here we define the parameters of the BSpline transform at low
resolution
//
// \index{BSplineDeformableTransform}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
RegionType::SizeType gridLowSizeOnImage;
gridLowSizeOnImage.Fill( 15 );//5
totalGridSize = gridLowSizeOnImage + gridBorderSize;
std::cout << "
##############################################################################
" << std::endl;
std::cout << " " << std::endl;
std::cout << " Se crea la regilla con 15 " << std::endl;
std::cout << " " << std::endl;
std::cout << "
##############################################################################
" << std::endl;
RegionType bsplineRegion;
bsplineRegion.SetSize( totalGridSize );
typedef TransformType::SpacingType SpacingType;
SpacingType spacingLow = fixedImage->GetSpacing();
typedef TransformType::OriginType OriginType;
OriginType originLow = fixedImage->GetOrigin();;
FixedImageType::SizeType fixedImageSize = fixedRegion.GetSize();
std::cout << "
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
" << std::endl;
std::cout << " " << std::endl;
std::cout << " Se establece el tamaño de la imagen fija origen y espacio
en trasnformlow " << std::endl;
std::cout << spacingLow << " Espacio ";
std::cout << originLow << " Origen ";
std::cout << bsplineRegion << " BSplineRegion "<<std::endl;
std::cout << " " << std::endl;
std::cout << "
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
" << std::endl;
/*std::cout << spacingLow << std::endl;
std::cout << originLow << std::endl;
std::cout << bsplineRegion << std::endl;*/
for(unsigned int r=0; r<ImageDimension; r++)
{
spacingLow[r] *= floor( static_cast<double>(fixedImageSize[r] - 1) /
static_cast<double>(gridLowSizeOnImage[r] - 1)
);
//originLow[r] -= spacingLow[r];
}
transformLow->SetGridSpacing( spacingLow );
transformLow->SetGridOrigin( originLow );
transformLow->SetGridRegion( bsplineRegion );
std::cout << "
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
" << std::endl;
std::cout <<spacingLow << " Espacio ";
std::cout << originLow << " Origen ";
std::cout << bsplineRegion << " BSplineRegion "<< std::endl;
std::cout << " " << std::endl;
/*std::cout << spacingLow << std::endl;
std::cout << originLow << std::endl;
std::cout << bsplineRegion << std::endl;*/
typedef TransformType::ParametersType ParametersType;
const unsigned int numberOfParameters =
transformLow->GetNumberOfParameters();
ParametersType parametersLow( numberOfParameters );
parametersLow.Fill( 0.0 );
transformLow->SetParameters( parametersLow );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now pass the parameters of the current transform as the initial
// parameters to be used when the registration process starts.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetInitialTransformParameters( transformLow->GetParameters()
);
/* metric->SetTransformParameters(transformLow->GetParameters());
metric->SetInterpolator( interpolator );*/
std::cout << "
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
" << std::endl;
std::cout << " " << std::endl;
std::cout << "Se establecen los parametros iniciales en metrica y registro
de la transformacion en bajo " << std::endl;
std::cout << " asi como el interpolador en la metrica " << std::endl;
std::cout << " " << std::endl;
std::cout << "
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
" << std::endl;
/* try{
metric->Initialize();
}
catch(itk::ExceptionObject & err)
{
std::cout << " Se encontro la siguiente Excepcion " << std::endl;
std::cout << err << std::endl;
return -1;
}*/
/* LBFGSOptimizer
optimizer->SetCostFunction(metric);
optimizer->SetGradientConvergenceTolerance( 0.05 );
optimizer->SetLineSearchAccuracy( 1.01);//0.9
optimizer->SetDefaultStepLength( 0.25 );//1.5
optimizer->TraceOn();
optimizer->SetMaximumNumberOfFunctionEvaluations( 1000 );*/
/* LBFGSBOptimizer*/
OptimizerType::BoundSelectionType boundSelect(
transformLow->GetNumberOfParameters() );
OptimizerType::BoundValueType upperBound(
transformLow->GetNumberOfParameters() );
OptimizerType::BoundValueType lowerBound(
transformLow->GetNumberOfParameters() );
boundSelect.Fill( 0 );
upperBound.Fill( 0.0 );
lowerBound.Fill( 0.0 );
optimizer->SetBoundSelection( boundSelect );
optimizer->SetUpperBound( upperBound );
optimizer->SetLowerBound( lowerBound );
optimizer->SetCostFunctionConvergenceFactor( 1e+7 );//1e+7
optimizer->SetProjectedGradientTolerance( 0.04 );//1e-4
optimizer->SetMaximumNumberOfIterations( 500 );
optimizer->SetMaximumNumberOfEvaluations( 500 );
optimizer->SetMaximumNumberOfCorrections( 10 );
/* QuaternionRigidTransformGradientDescentOptimizer
//optimizer->MaximizeOn();
optimizer->SetLearningRate(1.5);
optimizer->SetNumberOfIterations(100);*/
/* GradientDescentOptimizer
optimizer->SetCostFunction(metric);
//optimizer->MinimizeOn();
optimizer->SetLearningRate(20.0);
optimizer->SetNumberOfIterations(100);
optimizer->MaximizeOn();*/
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
std::cout << "
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
" << std::endl;
std::cout << " " << std::endl;
std::cout << " Se establecen los parametros para el optimizador
LBFGSBOptimizer " << std::endl;
std::cout << " " << std::endl;
std::cout << "
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
" << std::endl;
std::cout << "Starting Registration with low resolution transform" <<
std::endl;
std::cout << "Iteracion Valor InfinityNormGradient" << std::endl;
itk::TimeProbesCollectorBase collector;
try
{
collector.Start( "Registration" );
registration->StartRegistration();
collector.Stop( "Registration" );
// optimizer->AdvanceOneStep();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << "Error durante el Registro en bajo" << std::endl;
std::cerr << err << std::endl;
return -1;
}
// Software Guide : EndCodeSnippet
std::cout << "
==============================================================================
" << std::endl;
std::cout << " ==
== " << std::endl;
std::cout << " == REPORTE DEL REGISTRO
== " << std::endl;
std::cout << " ==
== " << std::endl;
collector.Report();
std::cout << optimizer->GetCostFunctionConvergenceFactor() << " Factor de
Convergencia "<< std::endl;
std::cout << " ==
== " << std::endl;
std::cout << " ==
== " << std::endl;
std::cout << "
==============================================================================
" << std::endl;
// Software Guide : BeginLatex
//
// Once the registration has finished with the low resolution grid, we
// proceed to instantiate a higher resolution
// \code{BSplineDeformableTransform}.
//
// Software Guide : EndLatex
/*
TransformType::Pointer transformHigh = TransformType::New();
std::cout << "
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
" << std::endl;
std::cout << " " << std::endl;
std::cout << " Se crea la transformacion en alto " <<
std::endl;
std::cout << " " << std::endl;
std::cout << "
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
" << std::endl;
RegionType::SizeType gridHighSizeOnImage;
gridHighSizeOnImage.Fill( 100);
totalGridSize = gridHighSizeOnImage + gridBorderSize;
std::cout << "
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
" << std::endl;
std::cout << " " << std::endl;
std::cout << " Se crea la rejilla con 100 " << std::endl;
std::cout << " " << std::endl;
std::cout << "
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
" << std::endl;
bsplineRegion.SetSize( totalGridSize );
SpacingType spacingHigh = fixedImage->GetSpacing();
OriginType originHigh = fixedImage->GetOrigin();;
for(unsigned int rh=0; rh<ImageDimension; rh++)
{
spacingHigh[rh] *= floor( static_cast<double>(fixedImageSize[rh] - 1) /
static_cast<double>(gridHighSizeOnImage[rh] - 1)
);
originHigh[rh] -= spacingHigh[rh];
}
transformHigh->SetGridSpacing( spacingHigh );
transformHigh->SetGridOrigin( originHigh );
transformHigh->SetGridRegion( bsplineRegion );
ParametersType parametersHigh( transformHigh->GetNumberOfParameters() );
parametersHigh.Fill( 0.0 );
std::cout << "
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
" << std::endl;
std::cout << " " << std::endl;
std::cout << " Se establece el origen, espacio, Bspline region, asi como
" << std::endl;
std::cout << " Se llenan los parametros de la transformacion en alto con 0
(cero)" << std::endl;
std::cout << " " << std::endl;
std::cout << "
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
" << std::endl;
std::cout << spacingHigh << std::endl;
std::cout << originHigh << std::endl;
std::cout << bsplineRegion << std::endl;
// Software Guide : BeginLatex
//
// Now we need to initialize the BSpline coefficients of the higher
resolution
// transform. This is done by first computing the actual deformation
field
// at the higher resolution from the lower resolution BSpline
coefficients.
// Then a BSpline decomposition is done to obtain the BSpline coefficient
of
// the higher resolution transform.
//
// Software Guide : EndLatex
unsigned int counter = 0;
for ( unsigned int k = 0; k < SpaceDimension; k++ )
{
typedef TransformType::ImageType ParametersImageType;
typedef
itk::ResampleImageFilter<ParametersImageType,ParametersImageType>
ResamplerType;
ResamplerType::Pointer upsampler = ResamplerType::New();
typedef itk::BSplineResampleImageFunction<ParametersImageType,double>
FunctionType;
FunctionType::Pointer function = FunctionType::New();
typedef itk::IdentityTransform<double,SpaceDimension>
IdentityTransformType;
IdentityTransformType::Pointer identity = IdentityTransformType::New();
upsampler->SetInput( transformLow->GetCoefficientImage()[k] );
upsampler->SetInterpolator( function );
upsampler->SetTransform( identity );
upsampler->SetSize( transformHigh->GetGridRegion().GetSize() );
upsampler->SetOutputSpacing( transformHigh->GetGridSpacing() );
upsampler->SetOutputOrigin( transformHigh->GetGridOrigin() );
typedef
itk::BSplineDecompositionImageFilter<ParametersImageType,ParametersImageType>
DecompositionType;
DecompositionType::Pointer decomposition = DecompositionType::New();
decomposition->SetSplineOrder( SplineOrder );
decomposition->SetInput( upsampler->GetOutput() );
decomposition->Update();
ParametersImageType::Pointer newCoefficients =
decomposition->GetOutput();
// copy the coefficients into the parameter array
typedef itk::ImageRegionIterator<ParametersImageType> Iterator;
Iterator it( newCoefficients, transformHigh->GetGridRegion() );
while ( !it.IsAtEnd() )
{
parametersHigh[ counter++ ] = it.Get();
++it;
}
}
transformHigh->SetParameters( parametersHigh );
std::cout << "
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
" << std::endl;
std::cout << " " << std::endl;
std::cout << " Se establecen los parametros iniciales para la
transformacion en alto " << std::endl;
std::cout << " " << std::endl;
std::cout << "
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
" << std::endl;
// Software Guide : BeginLatex
//
// We now pass the parameters of the high resolution transform as the
initial
// parameters to be used in a second stage of the registration process.
//
// Software Guide : EndLatex
std::cout << "Starting Registration with high resolution transform" <<
std::endl;
// Software Guide : BeginCodeSnippet
std::cout << "
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
" << std::endl;
std::cout << " " << std::endl;
std::cout << " Se establecen en el registro y en la metrica la
trasnformacion en alto y parametros " << std::endl;
std::cout << " " << std::endl;
std::cout << "
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
" << std::endl;
registration->SetTransform( transformHigh );
registration->SetInitialTransformParameters(
transformHigh->GetParameters() );
metric->SetTransform(transformHigh);
metric->SetTransformParameters(transformHigh->GetParameters());
metric->SetInterpolator( interpolator );
// Software Guide : BeginLatex
//
// Typically, we will also want to tighten the optimizer parameters
// when we move from lower to higher resolution grid.
//
// Software Guide : EndLatex
/* LBFGSOptimizer
optimizer->SetCostFunction(metric);
optimizer->SetGradientConvergenceTolerance( 0.02 );
optimizer->SetDefaultStepLength( 0.025 );*/
/* LBFGSBOptimizer
boundSelect( transformHigh->GetNumberOfParameters() );
upperBound( transformHigh->GetNumberOfParameters() );
lowerBound( transformHigh->GetNumberOfParameters() );
boundSelect.Fill( 0 );
upperBound.Fill( 0.0 );
lowerBound.Fill( 0.0 );
optimizer->SetBoundSelection( boundSelect );
optimizer->SetUpperBound( upperBound );
optimizer->SetLowerBound( lowerBound );
optimizer->SetCostFunctionConvergenceFactor( 1e+7 );//1e+7
optimizer->SetProjectedGradientTolerance( 0.02 );//1e-4
optimizer->SetMaximumNumberOfIterations( 500 );
optimizer->SetMaximumNumberOfEvaluations( 500 );
optimizer->SetMaximumNumberOfCorrections( 12 );
/* GradientDescentOptimizer
optimizer->SetCostFunction(metric);
optimizer->SetLearningRate(20.0);
optimizer->SetNumberOfIterations(100);
//optimizer->MinimizeOn();
optimizer->MaximizeOn();
std::cout << "
******************************************************************************
" << std::endl;
std::cout << "
******************************************************************************
" << std::endl;
std::cout << " *Se establecen los parametros para el optimizador
LBFGSBOptimizer ** " << std::endl;
std::cout << " *en alto
********************************************************************* " <<
std::endl;
std::cout << "
******************************************************************************
" << std::endl;
std::cout << "Iteracion Valor InfinityNormGradient" << std::endl;
try
{
metric->Initialize();
collector.Start( "Registration" );
registration->StartRegistration();
collector.Stop( "Registration" );
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}
// Software Guide : EndCodeSnippet
std::cout << "
====================================================================== " <<
std::endl;
std::cout << " ==
== " << std::endl;
std::cout << " == REPORTE DEL REGISTRO
== " << std::endl;
std::cout << " ==
== " << std::endl;
std::cout << " ==
== " << std::endl;
collector.Report();
std::cout << "
====================================================================== " <<
std::endl;
// Finally we use the last transform parameters in order to resample the
image.
//
transformHigh->SetParameters( registration->GetLastTransformParameters()
);
*/
std::cout << "
###################################################################### " <<
std::endl;
std::cout << " " << std::endl;
std::cout << " Se recrea la imagen con los parametros de la transformacion
en alto " << std::endl;
std::cout << " " << std::endl;
std::cout << "
###################################################################### " <<
std::endl;
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType,
double> ResampleFilterType;
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( transformLow );//transformHigh
resample->SetInput( movingImageReader->GetOutput() );
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetDefaultPixelValue( 100 );
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, ImageDimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
try
{
writer->Update();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}
typedef itk::SquaredDifferenceImageFilter<
FixedImageType,
FixedImageType,
OutputImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( difference->GetOutput() );
// Compute the difference image between the
// fixed and resampled moving image.
if( argc >= 5 )
{
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resample->GetOutput() );
writer2->SetFileName( argv[4] );
try
{
writer2->Update();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}
}
// Compute the difference image between the
// fixed and moving image before registration.
if( argc >= 6 )
{
writer2->SetFileName( argv[5] );
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( movingImageReader->GetOutput() );
try
{
writer2->Update();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}
}
// Generate the explicit deformation field resulting from
// the registration.
typedef itk::Vector< float, ImageDimension > VectorType;
typedef itk::Image< VectorType, ImageDimension > DeformationFieldType;
DeformationFieldType::Pointer field = DeformationFieldType::New();
field->SetRegions( fixedRegion );
field->SetOrigin( fixedImage->GetOrigin() );
field->SetSpacing( fixedImage->GetSpacing() );
field->Allocate();
typedef itk::ImageRegionIterator< DeformationFieldType > FieldIterator;
FieldIterator fi( field, fixedRegion );
fi.GoToBegin();
TransformType::InputPointType fixedPoint;
TransformType::OutputPointType movingPoint;
DeformationFieldType::IndexType index;
VectorType displacement;
while( ! fi.IsAtEnd() )
{
index = fi.GetIndex();
field->TransformIndexToPhysicalPoint( index, fixedPoint );
movingPoint = transformLow->TransformPoint( fixedPoint );//transformHigh
displacement[0] = movingPoint[0] - fixedPoint[0];
displacement[1] = movingPoint[1] - fixedPoint[1];
fi.Set( displacement );
++fi;
}
typedef itk::ImageFileWriter< DeformationFieldType > FieldWriterType;
FieldWriterType::Pointer fieldWriter = FieldWriterType::New();
fieldWriter->SetInput( field );
if( argc >= 7 )
{
fieldWriter->SetFileName( argv[6] );
try
{
fieldWriter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
}
return 0;
}
More information about the Insight-users
mailing list