[Insight-users] Curvature Flow - problem
Rodrigo Trujillo
Rodrigo Trujillo" <rodrigo.trujillo at cenpra.gov.br
Thu, 5 Feb 2004 16:11:39 -0200
This is a multi-part message in MIME format.
------=_NextPart_000_0064_01C3EC02.BC5C9660
Content-Type: text/plain;
charset="iso-8859-1"
Content-Transfer-Encoding: 8bit
----- Original Message -----
From: "Rodrigo Trujillo" <rodrigo.trujillo at cenpra.gov.br>
To: "Luis Ibanez" <luis.ibanez at kitware.com>
Cc: "ITK Users" <insight-users at itk.org>
Sent: Thursday, February 05, 2004 4:05 PM
Subject: Re: [Insight-users] Curvature Flow - problem
> Hi Luis,
>
> I made what you wrote, but the results had continued wrong.
> I applied the filter without TimeStep, and later with a lot
> of values. Everytime 3D image were wrong.
>
> I am sending the 3D image without and with the filter.
> I'm working with ITK 1.4.
>
> Thanks,
>
> Rodrigo Trujillo
>
>
>
> ----- Original Message -----
> From: "Luis Ibanez" <luis.ibanez at kitware.com>
> To: "Rodrigo Trujillo" <rodrigo.trujillo at cenpra.gov.br>
> Cc: "ITK Users" <insight-users at itk.org>
> Sent: Tuesday, February 03, 2004 4:05 PM
> Subject: Re: [Insight-users] Curvature Flow - problem
>
>
> >
> > Hi Rodrigo,
> >
> > This filter has been improved in order
> > to compute an appropriate time-step
> > internally. You no longer need to
> > specify a time step value. (Assuming
> > you are using ITK 1.4 or 1.6).
> >
> > If nevertheless, you decide to play with
> > this parameter, you may want to start
> > using time steps values as low as 0.005
> > for 3D images. Then progressively experiment
> > raising this value as much as you can withouth
> > triggering the numerical instabilities.
> >
> > The tradeoff is between the size of the
> > time step and the number of iterations
> > that you have to apply in order to
> > reach a certain degreee of smoothing.
> >
> >
> >
> > Regards,
> >
> >
> > Luis
> >
> >
> >
> > ------------------------
> > Rodrigo Trujillo wrote:
> >
> > > Hi,
> > >
> > > I´m working with MRI and testing some filters. When i was testing
> > > Curvature Flow with 2D image
> > > the filter seems to be correct, but when I make the volume, the volume
> > > is wrong.
> > >
> > > The problem is the same when value of TimeStep is set wrong, but I
used
> > > the values from "ITK
> > > Software Guide" ( SetTimeStep(0.0625) for 3D images) and others (0.25
,
> > > 0.125 , 0.3125...).
> > >
> > > Which the correct value? What is the problem?
> > >
> > >
> > > Thanks,
> > >
> > > Rodrigo Trujillo
> >
> >
> >
> >
>
------=_NextPart_000_0064_01C3EC02.BC5C9660
Content-Type: image/jpeg;
name="error2.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="error2.jpg"
/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a
HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADaAaQDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDnPiJ8
RPFWh+O9S07TdUEFpD5WyP7PE2MxIx5ZSepJ61y//C2/HH/Qb/8AJSD/AOIo+LP/ACU7WP8Atj/6
JSuKpAdr/wALb8cf9Bv/AMlIP/iKP+Ft+OP+g3/5KQf/ABFcVRTA7X/hbfjj/oN/+SkH/wARR/wt
vxx/0G//ACUg/wDiK4qigDtf+Ft+OP8AoN/+SkH/AMRR/wALb8cf9Bv/AMlIP/iK4qnIjSOFRSzH
oBQB2f8Awtvxx/0G/wDyUg/+Io/4W344/wCg3/5KQf8AxFc9b6FdTEFiiL1OTkiry+HIl4eZ2PsA
P8azdSC6hY0/+Ft+OP8AoN/+SkH/AMRR/wALb8cf9Bv/AMlIP/iKgg8M2zL8wJB5y7H+lXIvC1kV
H7nJboC571LrwQ7EX/C2/HH/AEG//JSD/wCIo/4W344/6Df/AJKQf/EVb/4RTTwChh+bP95v8aim
8FWxGVLpnod3H65qfrEAsQ/8Lb8cf9Bv/wAlIP8A4ij/AIW344/6Df8A5KQf/EVk6h4WubWOSSFx
Msf3lAwR/jWARitoyjLVCO1/4W344/6Df/kpB/8AEUf8Lb8cf9Bv/wAlIP8A4iuKoqgO1/4W344/
6Df/AJKQf/EUf8Lb8cf9Bv8A8lIP/iK4qigDtf8Ahbfjj/oN/wDkpB/8RR/wtvxx/wBBv/yUg/8A
iK4qigDtf+Ft+OP+g3/5KQf/ABFH/C2/HH/Qb/8AJSD/AOIriqKAO1/4W344/wCg3/5KQf8AxFKP
i344BB/tv/yUh/8AiK4mjvQB678Q/iJ4q0Lx1qWm6bqggtIfK2Ri2ibGYkY8spPUk9a5f/hbfjj/
AKDf/kpB/wDEVb+Jlg198UNeCzRR+VDHMfMJ+YLAnyqACSf06kkAEjmdS8NXOm6fFeNc2s6ssBkS
Fm3QGaPzIw25QMlQx+UkDac44yrodm9Tb/4W344/6Df/AJKQf/EUf8Lb8cf9Bv8A8lIP/iKo2/gX
U7jWotKW4s1nlvrmwDM7BBJAqliTt6HcMd/UCqlr4U1G6sLW+BgjtrgSyeZI+BFHGcGRuPuk7gMZ
JKMAM4yuaI+WXY2f+Ft+OP8AoN/+SkH/AMRR/wALb8cf9Bv/AMlIP/iKyG8LstncXjavpwtImiVZ
wZWEhk8zAACFgR5T53BegIyCCcWaGW2nkgnjaOWNijo6kMrA4IIPQg01Z7Caa3Ox/wCFt+OP+g3/
AOSkH/xFI/xY8aSxtHJq6yIwIZXs4CCD2I2c1xdFMR2v/C2/HH/Qb/8AJSD/AOIo/wCFt+OP+g3/
AOSkH/xFcVRQB2v/AAtvxx/0G/8AyUg/+Io/4W344/6Df/kpB/8AEVxVFAHa/wDC2/HH/Qb/APJS
D/4ij/hbfjj/AKDf/kpB/wDEVxVLQB2n/C2/HH/Qb/8AJSD/AOIo/wCFt+OP+g3/AOSkH/xFcXRQ
B2n/AAtvxwP+Y3/5Kw//ABFRt8UvGDMWOqREk5JNlAc/+OVx1FAHYf8AC0fF/wD0E4f/AABg/wDi
KP8AhaXjD/oJw/8AgDB/8RXH0UAdh/wtLxh/0E4f/AGD/wCIo/4Wl4w/6CcP/gDB/wDEVx9FAHYf
8LS8Yf8AQUi/8AYP/iKX/haXjD/oKRf+AMH/AMRXHUUAdj/wtLxj/wBBSL/wCg/+Io/4Wj4wYYOq
R47/AOhQf/EVx1KO/wBKAPvi0AFnAAAB5a8AYA4ootf+POD/AK5r/KigD47+LP8AyU7WP+2P/olK
4qu1+LP/ACU7WP8Atj/6JSuKoQBRRRQAUUV2GgeHkijS8vEPm5DRxnt9R61E5qCuwM/TPDMt1sku
G2oedijLV0drpcMWEgtkXGAGwc/j/wDXrbFn/oxmK7VJxuxn9BV17ZBaIsO8zy5DCVSqx4OAOuOf
U9K4Z15SLSMb+zi8XmSSwIAwBTneffGfwzx1p8ViEkxEQRjrjcT/AJ6VfVIrZYkmmZndNyqPl3cd
yRjHB9c9qnimIYhLVdo6IswkPbncBgDrzjufSs3NjsVEtWKkck8HnCgVZa0dGHDcnjaMn8D3qSX5
4HcxxnBxhm3MO+AR078kevrTpLK3RD9nWSRQclo5tqsPx/zzWdxkbw+UirlmbBYKM/Kff0pHjIJu
WUSMW5jySWGPTkDp7c09l8qJgu5XbAGwhjj2OPrR9qi2eVFIJZMcII+c9CM45OOaaAg8ndFEQUQT
Z+UktjHOMEEj8K5DxL4fge3e6tRGksQLOE6OOSfxrrvOusxedAYVfO0k44HTAwO1M23MzMJld4nP
+sdiSR6c8988VpCbg7oTVzx3FFdV4x0hLO4S7giSKF8IyjAw2PT3H8veuVr0oSU48yM3oFFFFUAU
UUUAFFFFABR3ooHWgD1rxRBf3Pxg1tNNSx+0ILUq92hPls5t40ZSB1DuhweCNwIIODzV5a+I9as7
Sxj0u0Xzo4S5t5QXkMMBEZlDOfLPlhyBhN3JAOOOk8VNMnxa8Sva6mbG5is0uYv3AlEzQRRTiPnh
eYg27/Zxg5xTNbX4i6fJLZf2ok1tou9YXWe2WVYxDIA+0HfuMIdgDlsZI5Gaxb16G0V7vUfZXHjR
dKvL6ODR/s0mrHUGWORZmlnGJtkYjZjgeUvAwcNknaGZcyTVPGX24wW9pbi0mHmJp9nKr2mYxysY
Vzh8sGwrB9zKRztNXWsvG+mL9i1S6t9ERYZ7y0js7W3LTTKnlsFWAZDbZeT/AAjLfw5DfEPhXxnp
2tw/YViuLbS7+JbW5gs7e0X7RIIiD5a8fe8tcnI4HPUVCt5Fu/mZmr+I/FWnR3EWq6YYYriO2GyR
5x5SjzGjUsJN3JaU7ZCenAAUYztU8GtaW02otq+ipaOZTbCCaVlnKE7kiJUk4OACxGcg5IOaTxeP
Ev2j/ioxaCckEeX9n3f6ybOPK5/1nm7sfxY3c7a6bUNO1261640a41XTZbC3s2uJ7r+zIV8mGNvI
mZE2ZDIYyo24LCNMHgYu/KlYi127nltFd8PhhdNLGE1GFlW9FtdYjOYFa5Nskgzw+5kc4B4289ag
0j4frqXh611eXVRapNIpcSW7bI4TN5Rcy8IWBydmQSozV88bXI9nLY4igDPSuqn8LadDJIh1zMkO
oC1uYhZSb4IvMZDKR3+6p2jJ+YDIPXr7f4W22l61dQT6zHI0EqRK0kATCuikyEFiON4AGecMe1Eq
kY6tgqcmeX29lNc52rgAZye9XV0tFjV2LvzzgYB+h7132o+HYdH1OaOK9jniRlUSqoXzSUDdumMn
jnpmqUMCy3fFvOfNPmFFcIFGQNx4G7PPHtU+0TV0yuRLcwYNDZ4fNhsS244VmGR+vXrUdvpaSy48
rcXJAAAGTnp0/lXVRaPH5kcshWJk37o2UEev17/j7U+WOON4lt7Yosc4UvuwcrwMHHBOBj69KXtE
3YLHMpbQQkOgjCowOSgbcc4A54/D29qsJEi+aEhhPmry6wqeDn/ZGDWvBEGWKZWjZtjO6mMFiV5x
tJyBkAdOB2pGLogMtnawOCCfPkb5R3LKWHfH61YjJmsLUzlHtooUZSdwQEDAycep6du9VX0C3uCp
hSRgRkeWOfxFdHHbPcJG1w0e6MH97GF8qEE/ebb1JxwAae1vbtHuaNpo0yTIsLKAOgbGedxzg55G
fSk5W1HY4HUNIks5P3bGaPswUjH1rNr02+s4rSVbcQvLL5m0Y3naMkD14GB2P64rjNd0ZrGUSRKW
jfcSUIZV59Rx3qlK5Dj2MWiiiqJCiiigApR3+lJSjv8ASgD74tf+POD/AK5r/Kii1/484P8Armv8
qKAPjv4s/wDJTtY/7Y/+iUriq7X4s/8AJTtY/wC2P/olK4qhAFFFT2lrLeXKQQqXkfOAPYZ/pQBv
eF9IS6L3k8atGjBYwxxlhg5/z613f2dt6qDt6qSOmfpUOmWCWNpFbRoTsTad3AJ6/wBTWnbSQQTL
5kXnDIDKpJ3A9uvXk9a8yrUcpXRaVhAu5jMse2KMc5bDKc44OM8ZB78g81SFu80v764BRQ2DJkng
dcY9BW2Wkj8uIQfaDKMkjqZGBx146EHuc81izw3TTrbvO8sPy7Bt4PTvj9ayi7jGz/areaKQwAM5
5yxBweQODxyM49jWiskgVPMVdrSYEKOSrEDuTk457nuao3n2t7hXvGaPC7UL8EKCDj3I6c+tWlNk
ZSkDuLVVAB3cDnJz2zwxH4U3qgLRlkVSkVuJJiSViwCPft7cew96c8sv3JI4hKGG5pDv4xwARnjO
78AOtRrNCFMj5MaEqCp4YAAA9hnH88+9WrSyjla5SRAJ2jKjcfuuOCpDY9R3zjHSoeg0mwt762Np
I90gmcZ3MQCvHXLZB6f0psVrBcTBYRmMDKrESGGei8c4wcnj1q/LbxM++WCQs7HYckeYuAM+hBH1
wOO1R/ahaWQaCDcwlAiBiK78j73qSTn3JqL9ilFy0RXfw+I9ytayqV4dgTuJ9z/+us9tLhS7YrKF
K8gcgde5IFbqa8rAmYbvLZd8I2/ugc5LYPHTPb+lLLfWWpSpDpqGBJBu3SjCSDn7u725z3FClJbl
ulJaHK69bW83ha++1qrN5LvHsYN8ygkHIJwc4/DNeO19BzNJDE9ldxW8scoHygKS3PYLx3715H48
0uHS/EIECCNLiFZvLC42EkgjH/Ac/jXdg6m8TCascxRRRXeQFFFFABRRRQAUd6KO9AHefE+9uLH4
qa1LbPsdo0iJ2g/K9uqMOfVWIz1HaueufF2u3l1eXM98XmvcfaG8pBvxE8Q4AwPkkdeMdc9QDW18
Wv8Akp2sf9sf/RKVxVKyGm0bo8Y66srSx3oikZWVnigjQsWIJYlVGXyqnefmBAIOamfxxr1zq8Wo
3l2tzMt1FcnfEoDMm3AO0AhTsTIBAO0E8gGucoo5V2HzS7mvrfiK/wBevJ7i8MP72TeFSJQIxudt
qnqFy7EjPzE5OSM09vFuuPdyXT326aQKJGMSfOoJJVhjBVizFlPDk5YMeaxaKOVC5mbf/CYeIMxH
+1J/3U/2gDjDP5nmZYY+bD5YBsgEnA5NVrTXtUsbeK3tr2SOCKUzCEYKFypUllPDZUlTnOQcHjis
2tDRrBtR1SG3AUrnc+44AUcnJ/T8aTSSC7O00e61u90+OTUb2W4hkLtGjAFsuxZizYyQxw2CcE7T
1Ax1b6xr11uke8UyStuJaGPO7CoCSF4GABgdQeapQQoruE2hQMcGiaLzbgQ2zjag37mIG0jlfryM
VwSqc0tjRNoHN5PeSvcTjzwql1RFG84CghThegPTHT1qMNqdwsk6bwsW5pFBCkLx90Dp07n0pyvP
HI0sk+yUH94SMZUfKMAA8fd5PrxVa4VoLQT+QztIh82RcYT0YAdupOfyq9NB+os0kQKxxpcTXIHy
yPkAnAGWHBwce46kcUXFjKts0jz52sI2ZmXeoABOOn8XOcjuM1JaJHYxwwiffG6iVHLbiwxn9PTt
zUjpFbhIZZUbI80osuSB1bnPsw9OfwqoPWwdSsoFxYlJ0BcHbiRWVFyeCF/hxjccDJ29MZqeUWzv
Gil2eOIwKJPmXePugk52sefT7p4pYxdSzRQzRIij5FYsF8zP3xhiRgEY4/wFCk23noY4kMgkZ7n7
zI4A6npjn37810A9SBLR423XN+GYMAWsnO456IvpnqdozwadLb3FypjNq89qXwFkdt3A53k4PXBw
e5PtVlybjUY1/tOSeaYogwuAOTyR8x4G7uetdNo0dobidGkWVYAIXMpIG/qeAP589cVjWqckbgkc
etrM+15LiVJAMSbc4A4IUE9Ry3r06eqHS2uLKRJIZP3ilZmXGcEc4GQM8njGPSu2WODWork6chcQ
DaZHQNjjOR6Y/TFUjppeMQKZVlIALQyYBI9ccj8q5Vinez0Gzwa/t/sl/cW/zYikZBu68HFV66nx
ppF/aarJd3i8yFVL/KNxAwOB7L+eenSuWr0oS5opmL3CiiiqEFKO/wBKSlHf6UAffFr/AMecH/XN
f5UUWv8Ax5wf9c1/lRQB8d/Fn/kp2sf9sf8A0SlcVXa/Fn/kp2sf9sf/AESlcVQgCug8HW0c+tl5
ThYomYcZ54H9TXP12PgJA01623LKqAfjurKs7U2xrc7NDEkTYVtnOAAc59Oe1WoXDRxxx+WQwJYk
YIYds9s4A/GqzANICpzwOAcYPY8de9aSW8zWkC20pjilVhIm7ByoyNvqfw9K8tmhEqTSah5qyFml
i2RfMx2Y6c9sAH3qFt9pqNukE02ULDf14HoevStB4w0H2dU+bcCZWkXAUruPH49enXilmsVMtvFb
TxjynZyFjOxFDjnOOmDkfhSuBR1IWhuZGl8hWVmUHO0KdwzkZ64H0/Ks1LpbhQBsAJ2hQoAIzyO3
+fpVm98y4u2umiRi0jsyyZI9cZI+vTNRWloXnFtAwLsdvl9AScAH3+9VrRCN/RY4onDSlgy4CrCd
oCkNkZBGOdvfk/Sp4kaZtwgZ/LhEnl2+MkKBu9MKSe3PPSobbTiFXTiZBPLksgIONvHy/Uq/5Vt2
ds9rqN5cQ5gcxbCHkVlPzMfm2k54wMf7JrGT6lxV9wNpDBHOkkNi1zDGI2jWbMmCmWGRySAzc/8A
1qzpFmuJlmVSAwSLy4uSnAdvf+8K1xpscLcJE6SBsNL8zbRkcenQ1V1BLSQ+ZCVWQKVPyYHOe/0a
oTB76GVFa2ZkuPlUPcFXkVoz91c4PI28Djnrmp9R02x1HWLW4VN/lIxdVXHB6FgeOKqNOBqNswjM
z7jEUf7pYjaPrg9Ola+k3bu19b3WyK8SLCFhtz1GB+Pp+tOV1qNVJJ3uZF5p9t9mRraNFfd5bSeV
tGSePYjBHavNfiJpFzZX1jcTTJKs0RVdp5Xac/lhh+tek3ME89/G0rxS+U6kR7gxTPOef901wHxL
lmeWxWXKhHmCqfT5P0OK6cK2qiQ3Dmg59UcBRRRXrHMFFFFABRRRQAUd6KO9AHa/Fr/kp2sf9sf/
AESlcVXa/Fr/AJKdrH/bH/0SlcVQAUUUUAFFFFABXe+C7VY9ONy0I8ySRtjdynAx9Mg/lXBV6p4e
gFt4esx95zGHGFx975sfrXPiXaFio7l+WZzFJFE2ZI13bSCVA/l3pIbyG7WZfLjMhQ+TgbcYKnIP
fow7dDUqJ50isrDC/M2O4x+HXirkdvbWC2ssMbDcFjZOMkGRsgZz2I+uK41ZadSymsFwBD8jy+Z9
9ThgVweoI5wV+v4VK6S3N49ta5WSSMqqg4GScc57Z9aXT45B4ikWK3upUDOR50pRY85IC4UnpnOM
cn61BbrCbn7R58kkmW+wqqEIxO3AyeQMhT2xvqmm9+g7FTVZBJPCyR7plcxNMSQVCsAQBkD+9jnj
PWpJ4/tds0ygmGMKJJkU7iODsyOo2kEjJ78HFWRZzRafLcRReXdbgqo5HzMAo5PSr+n2mIru+t4o
9yqZSkjYXjacDP0AodRAYdzOLy1CCJrYufMR5QGaQ7gzcnJz1/PrTtOija/PmNaMZrhXYy8Rx78/
i2Of6025NrDcyqtqjfZY2YoJepAGS+0AHvgDoCQec56CGwtJvESiYLb2cMzbmhYKoKrJgZzkZ4+u
B6V1x6A9iGwurGe68xbFTueND5Ikk/vH5mKjHOMfTtVi7jiBubfSmihvN3mbWQ8Fj83J4zjA9adq
Q0x5Q8aTuS4YhVJ3YGN3Tsdo/OkF+FtElsraK4lRjAHl/d7SOSM4yOuMYrmxNr3sOLluh+nxXV20
y2ZNrakBmMeFDOQM/Nkn2IwOn0p04h1fR5LiK1mjlTCecjFcnI+bBweR6etWLO8jkEUELzJGcR+Y
rZ2yHsc4PfOcUst4ukeIJbeO32wkKMKMNIQDweMYBPHPc9K5m7t3Vrf18x81jjPG15C/hK5t7gEz
o6LFJksWIYDk9jjd19PevJq9p+INlby+Erq7lgl8wMkkcm8cEsBtPB4wTwPrmvFq78G06bt3Mpqz
CiiiuogKUd/pSUo7/SgD74tf+POD/rmv8qKLX/jzg/65r/KigD47+LP/ACU7WP8Atj/6JSuKrtfi
z/yU7WP+2P8A6JSuKoQBXZ+AQC1+G5U+Xn/x6uMrtPAA/wCQgcEkeXjAz/erHEfw2NbndWoSfzQZ
QZIQybGY5Cjk8Y6An9etEbMkiuxZG80kpg9Dj2wOKsJcxrE0cUG0quJJMkHPOfYdvy6VZiMrEBts
jSSoGA7424wMc89hXls0ILgxBYCwxF9m3Onl4zknnJ56kdP/AK1STtGts81rKpa4kKKcnIjIbluT
jAA7CmzpBcZ8sRmMR5ZoMhXAbGCMcev5U6GNbRblwEMUnmFI2HIGGyAew5H6VNwKsCmSHAgVmdMF
lfAXcpznjk8dPbpUtxF9i1SIoSVZlKzZHB468dtp6/0rT0pZIPkEcSKNp2HIHCt0OTx2zzSXgkXS
IjaxiaGZSsikhQMiUE547D1o5tbAVhfXFsDeyMZXglKoykfdYv29csfzrVsIbuKy+1hyVnlQI6jB
+7kcdutZ1vpkj6Y0k+xIwo2dDtUBAAMf7w9a6v7XZ2GmWcKt8scyylFbqFRR/jUSl2GZY0y7vUik
bPlYZl3HG1cknHr3rOm0udi7RoXieQKGaUhfmIAx0/iIrTk1+XbHYpbxR5jdFd5COMEnt7kVl3Xi
C4NlDbeW0csEufPPKgqSeRjpjv60R5haFO206eDWIYVmVbnzQzoeCuw5I4PoDWtrNsdP16Fg6yR3
kipLG0Z4Ul8gEY9fXtVW1v7aN4J5447i83S5kWRyUd8lS2flAI4OAevSm6p4qn1ZYwLRY4k25O/c
FcE98DjBP5VT5myoxVixrVlbW1siWKtBk7ySWbkcHJ5OMZrz/wCIMtvLotlO6xTXEbeUCu4AAgjd
25yg6/lXUXmquSLW5tGhifKZ3kMQcZ9QP/11lX2l2WpRQ2XkRvAjl/m8wkE8ckFfzyRzWlBckk5B
PS6Wx48aSlPBxSV7JgFFFFABRRRQAUd6KO9AHa/Fr/kp2sf9sf8A0SlcVXa/Fr/kp2sf9sf/AESl
cVQAUUUUAFFFFABXrmjxuNDtSkZZhbJgAcn5RXkYFe2WojtoIzEWXYAo6cAEfn0rjxb0RUQksIrK
JHaZfOmcHDEsGz82fl5yO2fU5qy9m12bWJPKjuWhLQ7sgFg5xuz7gfhUMkKmVEmEokViQEZXw+CA
D0AAyV7+vOK1Wt/NvVlZCrx/KeAwIxuII/AdMCuSUrNNvU0Myx07UbXVZZJ5isxI8+S2244XAUfL
2yOx6+uaxY9FbTxEs0yOodXC+asbqoA5xnGMY45zx6V2zRia3DMY4goIAXOfmYnp0/gqpfWljNP5
08MO7DqFZSTtTCrx74P+c0RxDvqBT1GWezTTSb63SF1LCOdWK4z6qCFA6nJHtWeYprW4jmu0t5J3
gyY45lLqApYDbnlfl646nGe1dTd2RltRYBlRpFI8x4xIoIiRgShwDg84Nc1f6KtvrluY5vtjGFIf
sqsUymeXOQRjju2ec4p0ZJq3UBs8j32nJbGWMBGkVIBHuY53YGV57Dk+3SvR7vQdPvJ5DdW4Kb0Z
uSD1fNedaHqdjHew+bJJG4NzJO7wkKcudu3+JeG5BA9e1dV4t1w6npbWmj+dJJJLGzMYWwFUlsgn
HIYLx79+lekpaNkuOqRg+IbWa7vLdbGzNqjNiJZUMbKB8x5B5yUPqevTIwsf9sm1i2xQEw5STzyz
ByDgY57AjqT+HSoW1a/uDtmRLpsADy/mZAwdfu7SR2IJx29ahuLmW2jige7khVY2dS0e9g7MuV2h
RyAp5PQe9clWLla5d9OUsahaJbQ6VcMhgupGaQmPcSwUqMnOR9enbA61pX+s3Eqtc6kI45VAURRL
5hJIGSDwcZOen6cmS01W8ZbeLUNHAQQmPzDc4wHbJbAX7wHY4z7VlTWk4vmt42WS1mAWZkYBgCCB
jIOTz/jXL1UZI2hGm1Jt9BfFjef8KLplwGIQld3YSDn8QM498V4Ua9j8TxsPDepWEci7mjMhRsDI
DByQQOenYf4146Riu/CR5Yv1OWpuJRRRXUQFKO/0pKUd/pQB98Wv/HnB/wBc1/lRRa/8ecH/AFzX
+VFAHx38Wf8Akp2sf9sf/RKVxVdr8Wf+Snax/wBsf/RKVxVCAK7PwBJtlvkzywQgfTdXGV03guYJ
qVxG/MbQZIzgZDDB/X9ayrq9NjW56IRCsGZI23GTbndgADOc469a0YDNvEakKss2A+zGwAgAq2D+
P071TsmSIlw7YXPlPgkFgcjmtC2kCJE299sSFgUOQrkHHsP4a8mRoSJHFFLGWhwrJHHu2/KGLK38
uamuxgRv+6O9Zwq9lH5D25z/ADp9q7RX0csp5FwsQMhx8ikEEnH+z196i8lsQhzI4aGcKGPy8jqv
86gCewtWlxHI5cSOiq4bhcq+B7VZgR/IgXaqq0akqoGATI65/Ims2C7W3unjkRlja6BDKM5ADdM/
Wqr6rI1ssUDskjYTcD0w24ZB9z1/Q0uVsLmhqupmzuBp0iCRJIzuZ3Kqh3KQAB7Rqc89e1Zy/wBo
386SRfuo3l2gYZ9gz6AjjBHWnI1vbR/a7iQXUpLKdmGJI25GeMYLt+PFa1trFnZJcWdtaySPGs0z
PKAmwKxU4cE5II446Cq2WiGlfcy7dtU1Cya6gYTRxQbpMQKDGxU7Bk84JA6H1rauYjbRzWksKSeX
F98xAMWGAcsD25PoQMdapLqFrHG8SCMnZsLLEWDZXa2T1HOcEVp3F6PKygkmEgBBXG0j+9nnJIHO
Bg5PFRJvsXyq+hzl/Ok0pjk04W5Vi/7pyFbHT+fAyahtYT9llcK03k4ZkI2gAdGGepHfoOnTNbdy
Ibx2jlRkYE/cGAOD0HI9KzLa1FsFs3lTfHm4CK3Ljgbu5HT1/A1aldA1Z6kPiBbmWJ7qURXUSrt8
2CUAxsehPHPQ8Y71k2ayvDC6XTK+4BRjjn+9jHpWhqEMzNL9mlE2QqO4ZFyT0X0bqenSn2Fndadb
XFw+l+cVj8wqMFmwM7RtPJ9q0i7Ihu54Y3LH60lK3LE+9JXsmIo60lFFABRRRQAUd6KO9AHa/Fr/
AJKdrH/bH/0SlcVXa/Fr/kp2sf8AbH/0SlcVQAUUUUAFFFFADkBLAD1r2eCURMpKBxncFJyM+4rx
qDPnxgHHzCvYI2CyKxxweVYcGuPF9ComxCkKSxgl2dFMs4J44HAB65Ofzq7DMwt184M80ucnIGSx
CLz9A9Z0DJJIitMSzczE9hnOOf8APFX7CQSxrcSgpy0qAjAART3+rD1rzpFmlFGLKa0WSLzVkkLG
IDd92IcAk/8ATTP68d4bS1ieEzzLuEloSpP8LMz/APxNRfajsjumBZUV5WPQ4Zwo7e1Vrz7RdmLT
1MaQ7EhEqru/ec+hHZ+ntUpX0A1ZJt9wVWPeRLcBGLdMKFHXsNorndYuFF/PJJLC9qsgjhh2kSq+
AoyQM4znvjkfLVR5LorFNazqplQyOk8hTII+6uexH6n3qlYz3E9zBFMyRiaJJJvLkAI5HC45B4AI
PqemeOilSaleOoyS00vybMXAkt5LJJUwVVm81GbOMENxgEZC8ZBOMVpafpFrPZC2azU3EUuQkchd
toKY4YY6qeOfpTLKOaC2ZZLFiJMLH9raRdyqDvDDHT8+PWpdOsL3SLh9QvYAsSpvEr7VjG7jgg9e
nXBA+td05csfNiHaX4cnuLB5kVYgcoYHR4zjn+E4GecjI461at9Nm0/eSVkchVj2oCyAdRk8dznp
+tXbbxBdKj29vtvpmOVO9cqvfJGF6/7X454EKeJ4mMlvqVqPOjLHakiZxux649uvauOaxEx6Fmzs
zeRSNG0mUIABwSCM9/XOeae9mFtY28gQxkbjKM889SOtU7HV4Z7uW2iiYRth/M3A9TjHY8ev1qbU
dcttOLRvcgI4Ytgj5SOx9DXM6dTm5bCMjW1tF0ue7u4ZPLSMoZOSqj6fU14Mete46pfLP4d1aP7X
HMDazMkIXJChTg5Hb3968ONejgotRdyZCUUUV2kBSjv9KSlHf6UAffFr/wAecH/XNf5UUWv/AB5w
f9c1/lRQB8d/Fn/kp2sf9sf/AESlcVXa/Fn/AJKdrH/bH/0SlcVQgCtvwk5TxFbgMVDq4OPTaT/S
sStzwlBLP4jthCmSockk4AG09T2qKnwO41uekRMQ5A8oZOSQOv1FXl8xxHtBLMSWUL1A6Y/WqVzA
8M5t5Il84OBlGwcepGMg1cs7mS3dmDMpjTaoZjnkHoc++a8mWq0NDaileVLeFSuXuDMp3HIPPaql
05+yW6K7snlMQC4+TIBbAxxnkc+tPivykNrG4WNo42ZZOQQPnIPbueoyKhnkONoKgrEgO0+y4z/n
tWdgKl1LGWmtopGSdZsjABGPmGPrUFlbeevlyxGKN/nLo3MvzAY5OB07f0rTma3WS7mVpVuhLI2V
yQRg+hHOT29auWIfzisJM5K/Mpg2AjBwCv1P+c0+bTQB1j4d0ueVHgLOrrtYMwLK4zkE8/3Rz74r
TSz09ZHYWEfmudqqVxhiTjnHP445zyBUcNyMyCGAJNDx5cfy+WcICeenO/8AE+9bShrhRIqsylA2
xUJBByR8pOD1/H2rGUnfU0glczFuje26yStEHVVDhlB2hsYyfx44/OsW5sYrXCwyyIjP8rQznYCT
1wePbHuK67A2JI2THKpW4U4ACHPlnrjjdk+gHsK4a+m2zIjRrFtOzdtTB6jJ4y350U7t2RrVguXm
iTxokxaG6VneMDzFVgdwz37gY7nHt602T7T5MaQF90sm1U2FW28YYDrt5A39PyJFK0nePUFkMkMp
iT98Y2+VRgHG49enoMY9q6Cw1GS9aa51SGO0jSDy4/OXDOo5IBPXj/H1rR6GMbPcy10u5tbdnkii
ibaSJJdrSP8AQAkjHuR1rh/GviK5tLaPToZXR3YuzoSARgj8+fXjBrr7ie0s2VbOAu0hKSSOxVVX
A46Y56de1eXeOW3a0mOF8vO0PuUHceh+mDXThoc0/eM5PQ5k9aSiivVMwooooAKKKKACjvRR3oA7
X4tf8lO1j/tj/wCiUriq7X4tf8lO1j/tj/6JSuKoAKKKKACiiigB0Y+dfr1r2byWAUSl49ybgJOO
MHBGf0rifAWhxane/aJgreVcQoqMfvbmwTjPbg16PqcFw13ab2jWB0jUOuFPXng8knkE+/tiuHEy
Tkoo0ina5St5WYgKwJlIU7euO4+hq9YqYbS9iuJFEojVFZJCysWde5AP3c8Y/hql9rkmWWbydoDA
RsqEfIcgEnOTkY+nSprGRWMUaOnzPmVVj5Qjtk+xB7VySTSaGayx/uZIcso8qJAQMBgRv5/z2FF5
A16jJEmDFJJM5zhtqhVAB7dD+lR3en2c9olrcuHgnlZn5IBCgY+bPq3r2osxBZwyTXTs9u48wEdI
V6HjP+wT+PSsrLcCvZWtp5KRJErxyvlps7l4O5ipx7kflRfaNqDvNfTS2EMG1hcNHuEuOQcjac9u
fXHHFPUabbaZDNosKySPt5kcZXBGfvEA8EjAPb1rOnu79rO7bURKtmztBJPHGVUAjft656H05988
9EIzu5R/EZBNcRtG42QwMcuzSyLCziP72cxtndg5AIznnNauj6K+qm5sbjVjbqHLQRWUijzGXk8l
TkADPGOnTmsbS7tWBMaJ5TKoEcUxj8sZGfukj5l3HI6YzV+0l/s26tpmnmaS1jVXjLllA5z991HG
05O3AHI9u6r70NNxK6ZDqL2146XluFm01EY3Fw6sN+SFwNqLyCB7nGByOYRp1vBeI3mu1rcQrMhj
faEBGAuWJIOAOOvFb/ifUbNYxdQtbNKWxKVKrJt47t0+6Op7fSuOe4+0Xcr207XO5FYwzyAADPT5
SScEnoB+PfGhJyabQ27jt1+kbiKzecRxDyZbeR8hudzYUFW+dT7cAZ4xUkWoJBbyJNZJLK52OofL
RlflPmK2R9OOSD07alvdyahqUUl7eMkiKqCR4gSMNnnIz/ETiq91JaRXKz2ly5MgIJlhZRIx4JVh
hQADxndnHFaSafuv+vmFzmPGOoqdMVVjtonljSEwxKnyBTncCP8AdC5HGDXn9aOuSSPq86ynmM+X
jOcY/wDr5P41nV0RioqyMpO4UUUVQgpR3+lJSjv9KAPvi1/484P+ua/yootf+POD/rmv8qKAPjv4
s/8AJTtY/wC2P/olK4qu1+LP/JTtY/7Y/wDolK4qhAFei/Da2BjllTJlldkxwfuhSOvT7zc5rzqv
Ufhs9tFpKmRd0jXcoHbAEadCeB1Nc2Lf7pmlJXlY7K6I07U5S6yvDPzIzpk7sngYyBxnj6Vlah54
nCwshjUYUv8AK2DyP51Pdpe6tduLSWeaKA+cxRVII9yRkn09vzqlKItjPAryFgu9wAwLexHGMY71
50VpqNlizCrIzFZPLKEMqEttBGO/OMnqfWp55UW6MSqrSvHHtK/MAcKTWaJrjz9o3BemC2Ay/TrW
tGYwN7JIqGZQCMZ6nqR9KGtQLm6S2jklgVJIhM3lxydDgrx+VMmvQqu10ltHImApRc8nHQ84bDDo
R/hVt7ho5CiwyqVYn5jvEhBGWGDwMVqG1sW8RLCxbZIzF9qcsAqEcrnbyPas/UZPFpVve2sN5b3k
+4IN/wC6Vgh5zndgnr3J+914xUn9h6vATE0qNb+YAFjuJkMZ2jj5OvHbnpxVXz7XS7q6itkuZwJt
0kSAH5SCcZPJ5ZD+XvTNP14zwtbvNP8AaFlBwMFm44z1wckjj+gpNS3QJl+K517CW2222rgCYCSR
kAHBA4HbJ9c+mK5uTStSu7N5L6+Ta0hDWcMoGQMgEAcEnAPJ/Guue4hltria9k8jYuFLn5lbv7Yz
6VQN1oj3EQLm4uIY+DMCN3XnJAH8X+etTFtbIrm112KVha2SCOE4huA0YktyuUQOCy4UfeJABPXB
rQltRFbr9pG1ZZTORL68EDntgN7VNqGrWlxoEVql0Rd/Z3Qm3ADKcrtyccKQOfUZrhjPLHewJbpM
QCQI2foDwQvPp2+lXGMp6sc5L7KOguBFNpkv2aWF2hGV8okPuB3dCffGMc/qPMfHFpcSwWt7J82G
dWwpBB9D9Mcn6e9eh6deXDwrdQyR28JYiTz5i+FxyB3/AIM/iKpXtpLc77lLozQyMzZijYIMEg4B
GOx9a2oy9nK5m9UeI0VZ1C2+yahPBztRyFJ6kdv0xVavYTvqZBRRRQAUUUUAFHeijvQB2vxa/wCS
nax/2x/9EpXFV2vxa/5KdrH/AGx/9EpXFUAFFFFABRRRQB6L4IAg8PPOyxyeZeMiqwJbgJu2gEck
NwO54rqr3VGudS8yVra5UKDFtjZCgC9c9Om7g/3vauY8AXk505rcxtNDvcYwW8ohdy4/4Gc8cn8q
07aPT51NxcXcYeWbZDG6SEgY4bd+B4PPNcDipTm2dD0ii1bz3bK8N35yGMspXaAA2ecYPPPT29et
Worj7PcNHt3+YpXcB8uCME8+lSQqk9gksEqRzOG3iU98nAZsc8j/AA9KQOJbh5pIoo1CkBVXCg44
AA9T6epNc82m3oQODzSNaq2Uih8zMRzmQZ4bjgdR17Yq+l40Op/ZisYtkSJkYrwzjI4P0I6VFYQw
s0AkEYEkjklTkqMcgg9s4/Kp4w8ztNbn/UiS4Yr2wR29ttZyknoBlLbxaqz2llbNEXkERWWMKkrp
jdg4OQTk5HPPTNP0m+sYDt1FIpJYUYSRqV2u/l8EDdtJwRgjsKs3Gk3iX8UkAtIbUDe6SRgZkCAu
fu4yeOfXn65F3bTwxR2kYW4k+RQwUgNFxz3K9MDPPT6114eV3oD2LUGnLfypdR2KxYZPtM0jtJGF
jG0AKPlOSAQR2X3JrfstAsJ7GU31larblRtaFdkgPX5sfMp6cZ9Rj1w7eT+z2SO3uC1pIzfuHO4H
Csclgfl5JJyB1xz1qa18ZSwtFZWkKgCVkZGj+ZioAwuScjk5P06c1FV1JJpGj1NDSdI0qPzPNeea
Ij90VgYJH+HO4lvXPbjrnMvYI4by4JlaLy5fkdWWFWj2jbkfezlnzgAZxVqbxZ5tnNZXG0eaQESO
PGTxlSMcHHI7HPNVbm4u0s9Pnt47WxidpI2KjEsir0LAD1qsOp3cmtTMuaJHpy208wLN50mP+ehO
QDkYPGfw5B4zms59LuLOxuDIiXEMUSRiUoSTnI5BJ55HSq0ci2NwlvJG+1WLycKC4G35ATxkj/Iq
vfNp+nubfUZXuWmi4kH/ACzyW3KMjIGCOlCUudtPcZwnjO0lg1gyTRRws8akAMdz9cMQecnGCfUV
zdejeIbHTLzTJvsrlpYl3qMndwMDg9jx+dedHiu6EroyaEoooqxBSjv9KSlHf6UAffFr/wAecH/X
Nf5UUWv/AB5wf9c1/lRQB8d/Fn/kp2sf9sf/AESlcVXa/Fn/AJKdrH/bH/0SlcVQgCu+8BzBLCdW
LJGspkeRQSV+VVHT13VwNej/AA3tPt9leRidUKOD8oBbBA6+3H6GufE/w3c0puz+87bQNO8/Q72c
MFedmKksQdu3GAehOffjHvVU6c/2aEIWKxMxkmVQqgcDoM5IweBn9aih1aTTNOKxWwmlRiVh6sWx
256cDj1NR3V/HOYJppmwFxGsjjcrZ+b5QO5wOv16V5qUr3NJWskSgeZIZ5fMPBZmThgSeoP1I/Or
VkkMJtyZycHeyqhUpgHBz365qrxLbKiqGz825Y+V7EHvxUUqJmQLg7BkOcDAHAJ59DRYg05pEljt
lEq74YuAfl2k7Rj3xiteSMy3hj2/vVd2EqfOUGxPTrz/AFrHtL03UmGlV5NqxCMNkMNwPqcdOgq5
pN5Hc3KyWwZRvULsO7GWTOcd8A/Ws2rAOuMT3e+ErNPCqwP5kIO7gn7pGDg5/EVlpcNPK0jwvOsK
KwYkpsxzk44OBgY9unr08+opYTlruITbiTgqMgBnAJGc/wAQ/WslLeN/PM0TO0cTXKqp2LhWYBTn
k5xk/wBacXpsBizXltbxzeW0Ild3CGMDMWGI/dtznPrxxjr1qFbRZ1W6WIGM4Gxj8654HGMkAkN3
9+9bl34dt01K3kxNbt58aL5YQqVGxCSOvY/XPbqcZIfs2qQvJcJsb5PLkUFhyRkg9M46Z4yK0TXQ
LG7pmlTRxC3UtLO6uGznaPm6j061Fq2n5O4BWQ7mUxnjL9uep+UZP0qy9+1/FeXjgsuYsxoCAO2C
3bJA6j1rKtxLqLSTXRmkbkLHuBVVwfywSOKzTd7jG2qRMoZIFkHlvhpMABuPmPrgDgHrz7VdtrHW
yN1oBsKc/L8hXrkL0HX09a07G1hCPGjxKnDMIsngHvwDg7j2GMVuTXEX2OJPJyV2rlTwYwMfKc9e
B1qZVLPQcUmzw7xnoTSLNqAMYePO5UHX5ufpjJPNcBXsvi5obSPUWUK7SROSSMYODnnvmvGq9bCT
coamdRWlZBRRRXSQFFFFABR3oo70Adr8Wv8Akp2sf9sf/RKVxVdr8Wv+Snax/wBsf/RKVxVABRRR
QAUUUUAeoeC7G6HhbzreLzFuBLuywAQrkEnv0xx/jWno2p2dpp8tvNZGQSsV37lQu5xxxzjIP5ZN
c74Fv0gtEEst4oiuCUEajyxkDO4n8K6WCzguJrkSTrbNJODGgLB1jO0Z2gfMcZ4HfPpXE4vmlF9T
ZPRCtdRSzEwxfZYOVMDTbwMdOSdxxg8kd/wq/FGrRRwSMqAMXdx8w6flwM/99EVmG1hjvJLl0j3z
NzIshYbuoUggEdx+FXLeX/RGVUbzCcklh9zuMfUA5rmrRSloIbcOYLxJFnVYvmCmRiofGAP0/mK2
raVXiBdUbJWIjbzgDlv1Fc5qEEd7La+aExEpVTIcgKeeQCM81raR5SpN5m5Wc7YXXHXAGcjg889f
SpnFciYG3bxQ3ttdwLP5TTr5UZJzw2RnHsCP84riJVlk1P7RLbgRhGQiRVQZ5ZVw2RuwVPau0Pmy
KsqJ5ZUAKYxjO4BQfrgA9e9c1cJeWVy8F7du0j4YzylZNwbHzbS2c98k+vU4qsJJKTTGTWGnRFN6
w6irCABt8QG0lQCQScHB9TTUsL27aWDMruiBVaTKkfNkjdgjHyg45/U1afxHqCxNa/aQEceRHK8e
cEDkHDdCFPPcdhni1YBblzLG4dmHllFBQE+oBJ3Hn1B6cevVXSinJdhRZjWVla/aWSRXlkTdJ55k
cAMANo4OO5H/AAKriQT3VzGs6WyQw5+S7wYjnoSSOD/PAqO6upNO1iZWkSKS6aNsogRkKgbeO4JH
Tj+tTXMctw/nSg3wmAwJvulgMnA+n+FZyqJQ33B6lZIhHLI8MxuvNn3piM4GewJ52jpin6vp0gth
HMRMWBbyDKQZOhJPqcc+2Kg1g6jaT2wa4gSDO0+RJwp4G1lDKcnBPfjHFMilvL5GMkyC4STELxo8
vy8ZC4DY4HTK9eaVKEnJTbGF14dRIY717uNo3XYTE2AoyeCM8Hj8OK8v8TaX/Zuqy+WcwSSMY89c
cHB5969rj1K0n0g2sxR7o5RokG0ggenJwMfh9a8e8X3EE95GsSBZEZg/TcRxtzj2/KtqEpuclIKk
Ekmc3RRRXWYhSjv9KSlHf6UAffFr/wAecH/XNf5UUWv/AB5wf9c1/lRQB8d/Fn/kp2sf9sf/AESl
cVXa/Fn/AJKdrH/bH/0SlcVQgCus8BagLPV5Y3DMssf3BCXBx645HXtXJ0ZqZwU4uLBHvenC01K/
DQSRxsrF2TzN6u2Rgex7evr0p+pi6Yo93DBudeBsy7EfTnOemMda8m0nxY2m6eLJ7USwqQ64faQ/
POcdOen610emeNBcObKyt9skwxmRcljg5wc8d682eGnF3WxpzHQs/k3EmYz5eSIyxIZPTPvjj0pf
MeO3aJ1dstuaM7W+Zc4xx05Pc9qz1jSV1MaGQg8Krc8cYwev1HWnRTTJ50jygxnb+6GNxyR04/Go
sBqwpDHI5eNJEdGLbMnaccDn0JrSSGRYWij3SKuSshXacqC2OD75rDhdCVEg3o7+YwkGMd8cVpWm
YnSUgbgwDENj3Ixz/Cv/AI9WckMvy2XmWy3UcUxukjHzxEHP3cgg/wC/+n1rehuYid11bAskThAG
JyN2SCAO+RyaxxkAszKsch3Ehh8oOe4+idcdatxurBEnCtKJQGb13dTweeQf84rJjLGqzWjQy/ak
eSGR88rjAIU8D6kn6GudvdDivY41inRriaVVXJA2uTnt2/DvV64uWlZkcSNJIh5RS7Bhnp09B25o
0zTTNIIzdCRHKrgnbhCF4Ax/CfU9BTj7quBUj0q90fR5J57UywyHDRxnIB+ZQe+eWBx61X0rUItN
jlSK2dp7ksjRy7l3Ftu1skcYI9q7LU76GCL7JJJtl2TzR5Tg7VLjB79qwPDwnkVWvb3/AEIgBYwk
aKwODgnGeMAg04yvFuQ5WvoZUNm1jqs1xf38kathQ0BDksQAB0+n/wBarF14kvbMtCqXt1BjEUqw
BWII5HI9hyKozXdnJKptUlj0/nLeXtMp2nhufXjgdDmqt1qFv/ZnkRQyrN5rFgpwRFj5f4ehB+vH
XmtLX3RJ534k8UT6vcSJGjQwEbSrHLN9c1zda+v2bR+IriGJSfMYSIBzneA3X8aynRo3ZGGGU4I9
DXr01FRXKZsbRRRViCiiigAo70Ud6AO1+LX/ACU7WP8Atj/6JSuKrtfi1/yU7WP+2P8A6JSuKoAK
KKKACiiigCWCdoJ45RyY3DAHvg5rr7bxqJLy3nu1kSRNoLoocLg5GATnHtn161xdFS4p7jTaPWpR
NOsckk8TRSyBlj8r7rAHHJ79akS42ySRRxyPMvDZGeoz2OOg9ay7BBLp9tMzEmdI2ZxgncMH8Oc5
rZdGgt3jIdQzcqCDg4POf/11wVGnIu9xjXjywxQFGVgTzLGVAGW6856jAP0raiZJcvIAzjIDBsfN
/ex6DisZfM8vaG8hSB/pLpkA46YwPpzW1BtMLh5OY0+ZiAodepXHvngjtWNR6WGbFskhOInHl5xH
Gzc88DA6+h68ZrJ8RWpvJIpJLULGIwr3Mko2gYbCbMg8Ag568danhu4TPIrOXeIj51OcZHp64wPw
p+YNa02Ni0keFDgFMYJ9c8dWx7Dms6bcJqTHYxGeSSBJJ2mA8t22qoOAcB8bkU9CTkbvwq9FNLaX
sOyKYyOBGN0e3dnJHJAz0J461lRLBbRxeTEIzKuwPG+7aNp35AxwU39DnOB1PNGwkkFwslxFbm4J
8hJc7ceZwrjHG4bWzk/xA9q9Sa51Zgo9Tp3v5FuH1CSONpA0cSzLAzO4bcPlwDhQQ31Knpms7Vwb
u7Nrb3CzNKgnkWU/MhPG3AHygbRwRnmn3bXNxpYuZYt0FuBnaqhU2MWPBJyf3nB96z7O+stO1H+0
LiN3WSPfsXAYq2ABgDrxnisJ01FXS6DunsNvbZbqV57+xiDu52rHmM/KSARnJbPPtxU0Gn3s5W4i
liN3CArgD5WI4B4HBOP895tR16bUdPVFigNvaTSPE5yCxBzjPIP3u39a0dM8nUHGradbxRy78kMx
K5z6DO3jnnH40qk3Bcy/pivc8/8AEj3WnebO9uHlZtjvIM4Pc4z1yP1rh5ZGlkZ26sST+Nd/8RZ/
Omlkgdfs7SgEZ5LYLE454/I+1cG0ym3WLyYwQc+YAdx/Wuqi248z3M5bkNFFFakhSjv9KSlHf6UA
ffFr/wAecH/XNf5UUWv/AB5wf9c1/lRQB8d/Fn/kp2sf9sf/AESlcVXa/Fn/AJKdrH/bH/0SlcVQ
gCiiigArQtxcaTeWV5LE6K2JUP8AfXOMj9aoA4rqdduPO0fR2aRJ4vJYSCBj+76YXJzt7DHqD61M
nql3A663L7ElH7tt2VkyFbHbn1/+vSBN10rJAXmztDls57d/8afA8cltC0TJJuIzMq/f45PoPwNK
ixxzBkAkVsgqhJIGe/P9K8wsvWUyylzIzSCPAYAgYA7dM5q7EGt0UPKsxJO5QCM56469gB/wKshE
LXEbLJGCdx4XaenCk9Tzj8q2BKzq3kqijpweN3bPPXkf981lJDRYilDBxykRG0qOqjj169FH51cD
MWCuPnceWoA6OT1z/vb6yo1uGUokeZCTkso2k5z3/E/gKrXNvez/AGeKJnLdzt3KRnjJ7EcnI/vV
HLqM6CO4jknW4jiEUe5WLFy2N2AfcdM81oWMUauJgxw6hlLrhc7gvY8Dgj/9dY9hAYoYJI7hjCiB
fLUHcTj5Tnv8x/StqVw9g7Qz+WvKrIQCcEbhkfUgVEuwzJ13R53sf7SkmuXVAzRl5t8QyyrwCcgY
J4GKgs2v4rGP5IRDGdgMoDAx7cEhV5PHrjrW19unniltp4hKuGG8f6twzZzgjHT0rntUsLbToyWg
uY1abzVjjw2dpzkjPCnpxVxd/dYipDK8qmHTleTTRKrN5qgsnrwRnt61pskUdxbrHo8WoTXG1dpk
WM7c4Gc/liqGkNGjtKkcm2RlSROxQ/Lnn6mrF5bwLcSoVnH7svFIuAQnoD0GD6frVdQPK/HtoLLx
XMyYTzUWTYvROMYH5e30rmCSTknJrp/G1++q60HSCVY7WBISXU7jjJy2QOTnrXL169G/s1cze4UU
UVoIKKKKACjvRR3oA7X4tf8AJTtY/wC2P/olK4qu1+LX/JTtY/7Y/wDolK4qgAooooAKKKKAHxR+
bIkYIBZgoJPAz61ra5oDaJcLE86ykopLKMDd3A9QCDzx9Kxq6XW9UW6NndWIESwRRqFVifLKg8ZO
DgDHtUSbUlYZt+GLuEWD2m4P9n3bHQthwWJ6cYz27/qK6CRo5UjKPEEd9oAJBDduRk461yelatJe
+JLySFo42vERlRU3YYbeBkdgWz+NdPEySRqyxsCOHjJO5M5x74/xrjqxtK7KWxLHIm4xzgbY22/O
u4MMe/v644q5Zw+fNOGMnlmMZQOAAMnt16H8ePSs5pXlLwx7kKYXnAPTPGc5HNQ2/najYPCm1JBt
RmBJ81Sp+UkHjr1/+vWfI2rrQo37VzHFJaRq6yyF9vmsdrkEhSSPp/hS3VxfxRRiaRbH96RvVA4c
cqAOe/B/Dv3oxxQXdsDbw4mSIAdGIPPAY84PTH19amsHuNVzI4wiOdpDFgcei575yDzS5VrJlXDT
7OWSFEjBuI33NlECLCw3HIIAIwcgegyKiuEhsWFq6yAFlbZIVdAeTGSRgkZRxnr833qfEksayWkc
yQpbZWVVJfei5XauMdR369Peo9X1LYkFiLFkETgLKCGkEa9SrMTzwM+uK2jJ8+mqDcdFqD2GnsIQ
Wt5iVMMhwAGwu7kt/Eo7nn0FQ+SryfaxNAz4UG3R/mIA28FVOMcVUluYHupY7J1W3I+RRKEQcDGC
oGTuweg75zSi5vZXSPypruMLtdFHnRKQMDrjHTPPcgj33ck3qS1Y1Lz7ZrKQR6mI4Y3fZEoVSEVg
B1Awf58GtvSbk6fBGjRrdRXDiMrHGEVduAxOeuck/pXF6hb3pEU0MLoyE/u4m2rs64IABHOfrnti
up0trm406aSW8ikLkTCPP7xdpz26Z29K4a0Wo9LMDiPiNpF6llbavd2wi8xlhXywFQDDsBjJ54P4
Yrzk12/j/VNTvNUUzlmtUClDjK7hu9vrXFO5dyxxknJwMV6FBNQVyJbjaKKK1JClHf6UlKO/0oA+
+LX/AI84P+ua/wAqKLX/AI84P+ua/wAqKAPjv4s/8lO1j/tj/wCiUriq7X4s/wDJTtY/7Y/+iUri
qEAUUUUAFXbO6fK2shVoXIUrI2FAz69uapUUNXA67wlqkZxpU8LOWLPDJv4RsZxt79D37116RjaX
XHJ5VR79M4P8u1edaNC1t4jgSSQBo3OSjjBIB4zyPavXrWWPUP8AR7mZvssavIFOSBgE/Lj8T2zX
n4m0ZXRcTGVlEistwjyE7mLH7pwf6/SrT3RjTcNs2wHeuDuI+nPYdeKluLUm3ia0kJkI/exmJgYQ
RwDlcMc5HHTHvWfDIzKzrM0w2kCPJUFs9Tx9ME46VhuM0oZWuIQ4UN8uTGTlgMjAA/EfkfWpYy0l
ul02+BpSOnJyecYPQHnp6VlNPBExku0Im8sKm4Mdoz+vcelRr5rXWyDG5cAqjAIDn7vA6+3Uc0nE
Zv2EQa5uZE8yKbzSFIYBW4+9gLxjqcVqJDcrGTD5ZYRs/wA0uMDaSQRjp2/SsGO6nzAtrbLLI2RL
n5Dg9N3rwTx2xRZawvlyedNFFJ5TfIvzbj0IORnB5Hp0NZuLY0WCutxxTFFjkhgID5UbipPVcqem
OvOM0SXtlPaylrG+SUJtTzMnd3xkEeg9K6DSPEmm3tiljPCYpVw7Rn5lRcn7o5PQ96v2b2ElssVt
dQTIVEjR8HacqACfxP4ipcmt0PTocNdXNo1rbRwKIZWciWXbhlUnAHBO7PX8Kz/EU1xHoaXFtqnl
taCRQZ0GX43AL+X61299e2Qt/JuLRId+TtUFx7EsBgYOetef+N4/tOkNGEjKRN50bKwzt2sByeCO
Ogya2ovmkkyZHm97qVxfStLM53uAJCpI3kdyPWqdOdCjFWxn2IP8qbXrpJbGQUUUUwCiiigAo70U
d6AO1+LX/JTtY/7Y/wDolK4qu1+LX/JTtY/7Y/8AolK4qgAooooAKKKKACpkn2wSRHzTu6ASYUHj
kjHPGR+NQ1NbeTvYTgkFDtIbGGxwTwc0AavhVHOuI0bqjqjFWbOASMc4+teh3VrsDSRTgSMjKVjB
ZZiqlgPb61yng/SbhXe4kLpFPCVAXuM9/Qcfka7rT7KI27+c8jIowGHG5iQOg9m/SuOvNKRpHaxk
x3j2tnl7cxyKAVUxHLZxnBJ5GSfxFWIVmlmvIfIgXLDEu3BBxgDk8eufpxXSXmmvDoF5c2tgL6QK
ghiaHzG4MWcgcn7zH2xXNXcFxdXJubTT5bFXVS8bEBWk5yUzjAznjtxntWEGql+VFWKkjzXLw7og
JXHySFvLKfwsCOc9M5OevFTR31xZpAsUhgdIlPkqmFZvUHcO/HT261DHczOY7S/il84OSplUhn6E
4x2znpWg8mm3wExiXOdrCTjGO3T2A6DnmtJOwXILC+NtN5aeZNdAIXEjMwTIyeCe5xnp/SkWUDWL
t7x1luptyw7ePKLFtrAAg5Un/PabTrGWDz3EpmWGAm33nvjpkcrnmkv8WzgiXz3uD+7G4fe3AnoO
QR6579aSkpSBOxHaQ/YIbq2hkkm2RPPE2zK5BTIAwT/Fn8O1JbaY9/LH9ohm3ygyF4U2kjAIByOn
zenb8ao2ts8XlwST435TeT+7I5br2B+6cY5Iq9DfupWF2eSOGT/VRuAMAFBguCAvU89ePSumytdb
hqatn4e1We0le11i4YRZiYrIRvxnOCOo9PrXNavol54fWC80/U4bKW7DPOSxwSMY556ZOfrXYS3m
rW1qs+mxQwW5ONjSIeRkscbsZ6c4/SsnVr631GzcWUCz3MUMjTQSn/VswPHOOuD+VcfNNSvpYUrP
U8iur26vGBurmWcqNoMjlsDt1qvTpNpclAQvYE5NNr0zIKKKKAClHf6UlKO/0oA++LX/AI84P+ua
/wAqKLX/AI84P+ua/wAqKAPjv4s/8lO1j/tj/wCiUriq7X4s/wDJTtY/7Y/+iUriqEAUUUUAFFFF
AHVeEdIN9cfbZBvCMUTceC3Hbr0Jr0i0BiZtkOFVSA3QsW9fpnFeR23iXVbO3igt7kJHEdyL5SHB
xjPI61ZbxnrzsWe/JY9cxJ/h7CuStQnUd7lJpHtlpaQGGZHlljea5UzFSVCHcMgEcjGT+lWvFGmy
3trZ3TbJ59j8quGjCk5b2xx055rxGH4heKLd5Gh1QoZDubEEeM5z/d45AqlJ4u8QSS+Z/a11GQMA
RP5aj6KuAK51gql73RXOj0q4t7q32x28ayhh5mw5Ls2cEjJzjOf8Kj+0Nbybnt0Azvj+ZRu5PPB9
hwK8uvNb1XUNovdSvLkL90TTM4X6Anip4fE2swRhE1GYqF2rvO/aPQE5x+FbfVZW1YuY9c02aS4s
LiFViLbQVBQ7t2OOfqOcdBVM3hKXVtKhMCxNcTP5YDBj8vDLghTkd+/vXlx8S60Wib+07lTEpVNr
ldoOc9PqajbxBrLbt2rXx3Dac3D8j069KSwjvuHMex2empBZ5iuo3aXAIBG5JOTwemM7vwqe20e5
ie5jeWCQOjBZSxKoSRnjHK8ZBx9a8ObUr57YW7XtwYB0iMrbR+GcVXLswAZiQPU0/qb6yDmPdheW
Ni01p/wkOmhpcHd9pjUL+Of0riNcuhc2+sW8GsW8scU25X87PmDyyWAwOQWJA+lef5ozWkMKou9x
OVxDRRRXSSFFFFABRRRQAUd6KO9AHa/Fr/kp2sf9sf8A0SlcVXa/Fr/kp2sf9sf/AESlcVQAUUUU
AFFFFABTkKh1LjK5GQO4ptFAHbWfjqCz+VNNPlhdqqZMhQeDgY9Ca2Lf4j6VEyM1veLtkV8RxqOB
nj730rzGisZYenLdDuz2Fvir4emgkhuLDUnjkYEgbQcZz13euPyrBHxDt5bqGScXojjABWIIN3OS
Mdh9DnrzXnlFEKEIppD5megav410O9vBNaWV9CoXBUlRkjkdD696yo/FdkyOLnTGZidytHIFOc5A
PGCPwrlKKpUopWFzM7dvHsKtb+TpSxrFnLCVgz/U1Zm+IOmyoCmiSQzBFAeO6IAIz/DjGDn06dK8
/opewgPmZ3C+ObGbUjdX2kvcAqBhpzuJHqcYx0/Ie9aVv8TNLt5nlXw6CxAVFM/yhRjAxjA78jFe
a0U5UoyVmHMz0K9+J7SzGW201V3n54ppNyAYAwoAB9c5JrgmuJS8jea+ZPvncfm+vrUVFOFOMNkJ
tsDRRRViCiiigApR3+lJSjv9KAPvi1/484P+ua/yootf+POD/rmv8qKAPjv4sj/i5ur/APbH/wBE
pXFV96Q20BH+oj+6v8A9Kc1tB56DyY8bTxtHqKQz4Jor75+zW/8Azwi/74FH2a3/AOeEX/fAoA+B
qK++fs1v/wA8Iv8AvgUfZrf/AJ4Rf98CgD4Gor75+zW//PCL/vgUfZrf/nhF/wB8CgD4Gor75+zW
/wDzwi/74FH2a3/54Rf98CgD4Gor75+zW/8Azwi/74FH2a3/AOeEX/fAoA+BqK++fs1v/wA8Iv8A
vgUfZrf/AJ4Rf98CgD4Gor75+zW//PCL/vgUfZrf/nhF/wB8CgD4Gor75+zW/wDzwi/74FH2a3/5
4Rf98CgD4Gor75+zW/8Azwi/74FH2a3/AOeEX/fAoA+BqK++fs1v/wA8Iv8AvgUfZrf/AJ4Rf98C
gD4Gor75+zW//PCL/vgUfZrf/nhF/wB8CgD4GpQOa++Ps1v/AM8Iv++BR9mgz/qI/wDvgUAfHfxa
B/4WdrHH/PH/ANEpXFV98m2gz/qI/wDvgUfZrf8A54Rf98CgR8DUV98/Zrf/AJ4Rf98Cj7Nb/wDP
CL/vgUDPgaivvn7Nb/8APCL/AL4FH2a3/wCeEX/fAoA+BqK++fs1v/zwi/74FH2a3/54Rf8AfAoA
+BqK++fs1v8A88Iv++BR9mt/+eEX/fAoA+BqK++fs1v/AM8Iv++BR9mt/wDnhF/3wKAPgaivvn7N
b/8APCL/AL4FH2a3/wCeEX/fAoA+BqK++fs1v/zwi/74FH2a3/54Rf8AfAoA+BqK++fs1v8A88Iv
++BR9mt/+eEX/fAoA+BqK++fs1v/AM8Iv++BR9mt/wDnhF/3wKAPgaivvn7Nb/8APCL/AL4FH2a3
/wCeEX/fAoA+BqK++fs1v/zwi/74FH2a3/54Rf8AfAoA+BqUd/pX3x9mt/8AnhF/3wKQ2tuUI8iL
H+4KYhbX/jzg/wCua/yoqUAAAAYAooA//9k=
------=_NextPart_000_0064_01C3EC02.BC5C9660--