ITK/Examples/WishList/Statistics/ImageKmeansModelEstimator: Difference between revisions
Daviddoria (talk | contribs) mNo edit summary |
(Wrong CMakeLists) |
||
Line 189: | Line 189: | ||
</source> | </source> | ||
{{ | {{ITKCMakeLists|ImageKmeansModelEstimator|}} |
Revision as of 22:08, 27 November 2012
Segfault on line 102 (int classLabel = membershipIterator.GetClassLabel();))
ImageKmeansModelEstimator.cxx
<source lang="cpp">
- include "itkImage.h"
- include "itkListSample.h"
- include "itkVector.h"
- include "itkImageKmeansModelEstimator.h"
- include "itkImageRegionIteratorWithIndex.h"
- include "itkImageToListSampleAdaptor.h"
- include "itkDistanceToCentroidMembershipFunction.h"
- include "itkSampleClassifierFilter.h"
- include "itkMinimumDecisionRule.h"
- include "itkImageFileWriter.h"
typedef itk::Vector<unsigned char,3> MeasurementVectorType; typedef itk::Image<MeasurementVectorType,2> ColorImageType; typedef itk::Image<unsigned char,2> ScalarImageType;
static void CreateImage(ColorImageType::Pointer image);
int main(int, char* [] ) {
// Create a demo image ColorImageType::Pointer image = ColorImageType::New(); CreateImage(image);
// Compute pixel clusters using KMeans typedef itk::Statistics::DistanceToCentroidMembershipFunction< MeasurementVectorType > MembershipFunctionType ; typedef MembershipFunctionType::Pointer MembershipFunctionPointer ; typedef std::vector< MembershipFunctionPointer > MembershipFunctionPointerVector;
typedef itk::ImageKmeansModelEstimator<ColorImageType, MembershipFunctionType> ImageKmeansModelEstimatorType;
ImageKmeansModelEstimatorType::Pointer kmeansEstimator = ImageKmeansModelEstimatorType::New(); kmeansEstimator->SetInputImage(image); kmeansEstimator->SetNumberOfModels(3); kmeansEstimator->SetThreshold(0.01 ); kmeansEstimator->SetOffsetAdd( 0.01 ); kmeansEstimator->SetOffsetMultiply( 0.01 ); kmeansEstimator->SetMaxSplitAttempts( 10 ); kmeansEstimator->Update();
// Classify each pixel typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType ; typedef itk::Statistics::SampleClassifierFilter< SampleType > ClassifierType; ClassifierType::Pointer classifier = ClassifierType::New();
typedef itk::Statistics::MinimumDecisionRule DecisionRuleType; DecisionRuleType::Pointer decisionRule = DecisionRuleType::New(); classifier->SetDecisionRule(decisionRule); classifier->SetNumberOfClasses(3);
typedef ClassifierType::ClassLabelVectorObjectType ClassLabelVectorObjectType; typedef ClassifierType::ClassLabelVectorType ClassLabelVectorType; typedef ClassifierType::MembershipFunctionVectorObjectType MembershipFunctionVectorObjectType; typedef ClassifierType::MembershipFunctionVectorType MembershipFunctionVectorType;
// Setup membership functions MembershipFunctionPointerVector kmeansMembershipFunctions = kmeansEstimator->GetMembershipFunctions();
MembershipFunctionVectorObjectType::Pointer membershipFunctionsVectorObject = MembershipFunctionVectorObjectType::New(); classifier->SetMembershipFunctions(membershipFunctionsVectorObject);
MembershipFunctionVectorType & membershipFunctionsVector = membershipFunctionsVectorObject->Get();
for(unsigned int i = 0; i < kmeansMembershipFunctions.size(); i++) { membershipFunctionsVector.push_back(kmeansMembershipFunctions[i].GetPointer()); }
// Setup class labels ClassLabelVectorObjectType::Pointer classLabelsObject = ClassLabelVectorObjectType::New(); classifier->SetClassLabels( classLabelsObject );
ClassLabelVectorType & classLabelsVector = classLabelsObject->Get(); classLabelsVector.push_back( 50 ); classLabelsVector.push_back( 150 ); classLabelsVector.push_back( 250 );
// Perform the classification typedef itk::Statistics::ImageToListSampleAdaptor< ColorImageType > SampleAdaptorType; SampleAdaptorType::Pointer sample = SampleAdaptorType::New(); sample->SetImage(image);
classifier->SetInput(sample); classifier->Update(); // Prepare the output image ScalarImageType::Pointer outputImage = ScalarImageType::New(); outputImage->SetRegions(image->GetLargestPossibleRegion()); outputImage->Allocate(); outputImage->FillBuffer(0);
// Setup the membership iterator const ClassifierType::MembershipSampleType* membershipSample = classifier->GetOutput(); ClassifierType::MembershipSampleType::ConstIterator membershipIterator = membershipSample->Begin();
// Setup the output image iterator - this is automatically synchronized with the membership iterator since the sample is an adaptor itk::ImageRegionIteratorWithIndex<ScalarImageType> outputIterator(outputImage,outputImage->GetLargestPossibleRegion()); outputIterator.GoToBegin(); while(membershipIterator != membershipSample->End()) { int classLabel = membershipIterator.GetClassLabel(); //std::cout << "Class label: " << classLabel << std::endl; outputIterator.Set(classLabel); ++membershipIterator; ++outputIterator; } typedef itk::ImageFileWriter< ColorImageType > WriterType; WriterType::Pointer inputWriter = WriterType::New(); inputWriter->SetFileName("input.mha"); inputWriter->SetInput(image); inputWriter->Update();
typedef itk::ImageFileWriter< ScalarImageType > ScalarWriterType; ScalarWriterType::Pointer outputWriter = ScalarWriterType::New(); outputWriter->SetFileName("output.mha"); outputWriter->SetInput(outputImage); outputWriter->Update(); return EXIT_SUCCESS;
}
void CreateImage(ColorImageType::Pointer image) {
// Create a black image with a red square and a green square ColorImageType::RegionType region; ColorImageType::IndexType start; start[0] = 0; start[1] = 0;
ColorImageType::SizeType size; size[0] = 200; size[1] = 300;
region.SetSize(size); region.SetIndex(start);
image->SetRegions(region); image->Allocate();
itk::ImageRegionIterator<ColorImageType> imageIterator(image,region);
itk::Vector<unsigned char, 3> redPixel; redPixel[0] = 255; redPixel[1] = 0; redPixel[2] = 0;
itk::Vector<unsigned char, 3> greenPixel; greenPixel[0] = 0; greenPixel[1] = 255; greenPixel[2] = 0; itk::Vector<unsigned char, 3> blackPixel; blackPixel[0] = 0; blackPixel[1] = 0; blackPixel[2] = 0; while(!imageIterator.IsAtEnd()) { if(imageIterator.GetIndex()[0] > 100 && imageIterator.GetIndex()[0] < 150 && imageIterator.GetIndex()[1] > 100 && imageIterator.GetIndex()[1] < 150) { imageIterator.Set(redPixel); } else if(imageIterator.GetIndex()[0] > 50 && imageIterator.GetIndex()[0] < 70 && imageIterator.GetIndex()[1] > 50 && imageIterator.GetIndex()[1] < 70) { imageIterator.Set(greenPixel); } else { imageIterator.Set(blackPixel); }
++imageIterator; }
}
</source>
CMakeLists.txt
<syntaxhighlight lang="cmake"> cmake_minimum_required(VERSION 3.9.5)
project(ImageKmeansModelEstimator)
find_package(ITK REQUIRED) include(${ITK_USE_FILE}) if (ITKVtkGlue_LOADED)
find_package(VTK REQUIRED) include(${VTK_USE_FILE})
endif()
add_executable(ImageKmeansModelEstimator MACOSX_BUNDLE ImageKmeansModelEstimator.cxx)
if( "${ITK_VERSION_MAJOR}" LESS 4 )
target_link_libraries(ImageKmeansModelEstimator ITKReview ${ITK_LIBRARIES})
else( "${ITK_VERSION_MAJOR}" LESS 4 )
target_link_libraries(ImageKmeansModelEstimator ${ITK_LIBRARIES})
endif( "${ITK_VERSION_MAJOR}" LESS 4 )
</syntaxhighlight>
Download and Build ImageKmeansModelEstimator
Click here to download ImageKmeansModelEstimator and its CMakeLists.txt file. Once the tarball ImageKmeansModelEstimator.tar has been downloaded and extracted,
cd ImageKmeansModelEstimator/build
- If ITK is installed:
cmake ..
- If ITK is not installed but compiled on your system, you will need to specify the path to your ITK build:
cmake -DITK_DIR:PATH=/home/me/itk_build ..
Build the project:
make
and run it:
./ImageKmeansModelEstimator
WINDOWS USERS PLEASE NOTE: Be sure to add the ITK bin directory to your path. This will resolve the ITK dll's at run time.
Building All of the Examples
Many of the examples in the ITK Wiki Examples Collection require VTK. You can build all of the the examples by following these instructions. If you are a new VTK user, you may want to try the Superbuild which will build a proper ITK and VTK.
ItkVtkGlue
ITK >= 4
For examples that use QuickView (which depends on VTK), you must have built ITK with Module_ITKVtkGlue=ON.
ITK < 4
Some of the ITK Examples require VTK to display the images. If you download the entire ITK Wiki Examples Collection, the ItkVtkGlue directory will be included and configured. If you wish to just build a few examples, then you will need to download ItkVtkGlue and build it. When you run cmake it will ask you to specify the location of the ItkVtkGlue binary directory.