ITK/Examples/Broken/Statistics/ExpectationMaximizationMixtureModelEstimator 1D: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 60: | Line 60: | ||
{ | { | ||
components.push_back( ComponentType::New() ); | components.push_back( ComponentType::New() ); | ||
components[i]->SetSample( sample ); | |||
components[i]->SetParameters( initialParameters[i] ); | |||
} | } | ||
Revision as of 23:33, 8 June 2011
Someone please confirm that this outputs the mean and the variance (i.e. I used a standard deviation of 30 to create the samples and the second estimated parameter is near 1000 (~30^2) . Is this correct?)
ExpectationMaximizationMixtureModelEstimator_1D.cxx
<source lang="cpp">
- include "itkVector.h"
- include "itkListSample.h"
- include "itkGaussianMixtureModelComponent.h"
- include "itkExpectationMaximizationMixtureModelEstimator.h"
- include "itkNormalVariateGenerator.h"
int main(int, char*[]) {
unsigned int numberOfClasses = 2; typedef itk::Vector< double, 1 > MeasurementVectorType; typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType; SampleType::Pointer sample = SampleType::New();
typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType; NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();
normalGenerator->Initialize(101);
MeasurementVectorType mv; double mean = 100; double standardDeviation = 30; for(unsigned int i = 0; i < 10; ++i ) { mv[0] = ( normalGenerator->GetVariate() * standardDeviation ) + mean; std::cout << "m[" << i << "] = " << mv[0] << std::endl; sample->PushBack( mv ); }
normalGenerator->Initialize(3024); mean = 200; standardDeviation = 30; for(unsigned int i = 0; i < 10; ++i ) { mv[0] = ( normalGenerator->GetVariate() * standardDeviation ) + mean; std::cout << "m[" << i << "] = " << mv[0] << std::endl; sample->PushBack( mv ); }
typedef itk::Array< double > ParametersType; ParametersType params1( 2 );
std::vector< ParametersType > initialParameters( numberOfClasses ); params1[0] = 110.0; params1[1] = 50.0; initialParameters[0] = params1;
ParametersType params2( 2 ); params2[0] = 210.0; params2[1] = 50.0; initialParameters[1] = params2;
typedef itk::Statistics::GaussianMixtureModelComponent< SampleType > ComponentType;
std::vector< ComponentType::Pointer > components; for ( unsigned int i = 0 ; i < numberOfClasses ; i++ ) { components.push_back( ComponentType::New() ); components[i]->SetSample( sample ); components[i]->SetParameters( initialParameters[i] ); }
typedef itk::Statistics::ExpectationMaximizationMixtureModelEstimator< SampleType > EstimatorType; EstimatorType::Pointer estimator = EstimatorType::New();
estimator->SetSample(sample); estimator->SetMaximumIteration(500);
itk::Array< double > initialProportions(numberOfClasses); initialProportions[0] = 0.5; initialProportions[1] = 0.5;
estimator->SetInitialProportions( initialProportions );
for(unsigned int i = 0; i < numberOfClasses; i++) { estimator->AddComponent( (ComponentType::Superclass*) (components[i]).GetPointer() ); }
estimator->Update();
for(unsigned int i = 0; i < numberOfClasses; i++ ) { std::cout << "Cluster[" << i << "]" << std::endl; std::cout << " Parameters:" << std::endl; std::cout << " " << (components[i])->GetFullParameters() << std::endl; std::cout << " Proportion: "; std::cout << " " << estimator->GetProportions()[i] << std::endl; }
return EXIT_SUCCESS;
} </source>
CMakeLists.txt
<syntaxhighlight lang="cmake"> cmake_minimum_required(VERSION 3.9.5)
project(ExpectationMaximizationMixtureModelEstimator_1D)
find_package(ITK REQUIRED) include(${ITK_USE_FILE}) if (ITKVtkGlue_LOADED)
find_package(VTK REQUIRED) include(${VTK_USE_FILE})
endif()
add_executable(ExpectationMaximizationMixtureModelEstimator_1D MACOSX_BUNDLE ExpectationMaximizationMixtureModelEstimator_1D.cxx)
if( "${ITK_VERSION_MAJOR}" LESS 4 )
target_link_libraries(ExpectationMaximizationMixtureModelEstimator_1D ITKReview ${ITK_LIBRARIES})
else( "${ITK_VERSION_MAJOR}" LESS 4 )
target_link_libraries(ExpectationMaximizationMixtureModelEstimator_1D ${ITK_LIBRARIES})
endif( "${ITK_VERSION_MAJOR}" LESS 4 )
</syntaxhighlight>
Download and Build ExpectationMaximizationMixtureModelEstimator_1D
Click here to download ExpectationMaximizationMixtureModelEstimator_1D and its CMakeLists.txt file. Once the tarball ExpectationMaximizationMixtureModelEstimator_1D.tar has been downloaded and extracted,
cd ExpectationMaximizationMixtureModelEstimator_1D/build
- If ITK is installed:
cmake ..
- If ITK is not installed but compiled on your system, you will need to specify the path to your ITK build:
cmake -DITK_DIR:PATH=/home/me/itk_build ..
Build the project:
make
and run it:
./ExpectationMaximizationMixtureModelEstimator_1D
WINDOWS USERS PLEASE NOTE: Be sure to add the ITK bin directory to your path. This will resolve the ITK dll's at run time.
Building All of the Examples
Many of the examples in the ITK Wiki Examples Collection require VTK. You can build all of the the examples by following these instructions. If you are a new VTK user, you may want to try the Superbuild which will build a proper ITK and VTK.
ItkVtkGlue
ITK >= 4
For examples that use QuickView (which depends on VTK), you must have built ITK with Module_ITKVtkGlue=ON.
ITK < 4
Some of the ITK Examples require VTK to display the images. If you download the entire ITK Wiki Examples Collection, the ItkVtkGlue directory will be included and configured. If you wish to just build a few examples, then you will need to download ItkVtkGlue and build it. When you run cmake it will ask you to specify the location of the ItkVtkGlue binary directory.