|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ==SinglephaseChanAndVeseSparseFieldLevelSetSegmentation.cxx== | | {{warning|1=The media wiki content on this page is no longer maintained. The examples presented on the https://itk.org/Wiki/* pages likely require ITK version 4.13 or earlier releases. In many cases, the examples on this page no longer conform to the best practices for modern ITK versions.}} |
| | |
| <source lang="cpp">
| |
| | |
| // The use of the ScalarChanAndVeseSparseLevelSetImageFilter is
| |
| // illustrated in the following example. The implementation of this filter in
| |
| // ITK is based on the paper by Chan And Vese. This
| |
| // implementation extends the functionality of the
| |
| // level-set filters in ITK by using region-based variational techniques. These methods
| |
| // do not rely on the presence of edges in the images.
| |
| //
| |
| // ScalarChanAndVeseSparseLevelSetImageFilter expects two inputs. The first is
| |
| // an initial level set in the form of an \doxygen{Image}. The second input
| |
| // is a feature image. For this algorithm, the feature image is the original
| |
| // raw or preprocessed image. Several parameters are required by the algorithm
| |
| // for regularization and weights of different energy terms. The user is encouraged to
| |
| // change different parameter settings to optimize the code example on their images.
| |
| //
| |
| // Let's start by including the headers of the main filters involved in the
| |
| // preprocessing.
| |
| //
| |
| | |
| | |
| #include "itkScalarChanAndVeseSparseLevelSetImageFilter.h"
| |
| #include "itkScalarChanAndVeseLevelSetFunctionData.h"
| |
| #include "itkConstrainedRegionBasedLevelSetFunctionSharedData.h"
| |
| #include "itkFastMarchingImageFilter.h"
| |
| #include "itkImageFileReader.h"
| |
| #include "itkImageFileWriter.h"
| |
| #include "itkImage.h"
| |
| #include "itkAtanRegularizedHeavisideStepFunction.h"
| |
| | |
| int main(int argc, char**argv)
| |
| {
| |
| if( argc < 6 )
| |
| {
| |
| std::cerr << "Missing arguments" << std::endl;
| |
| std::cerr << "Usage: " << std::endl;
| |
| std::cerr << argv[0] << " featureImage outputImage";
| |
| std::cerr << " startx starty seedValue" << std::endl;
| |
| return EXIT_FAILURE;
| |
| }
| |
| | |
| unsigned int nb_iteration = 500;
| |
| double rms = 0.;
| |
| double epsilon = 1.;
| |
| double curvature_weight = 0.;
| |
| double area_weight = 0.;
| |
| double reinitialization_weight = 0.;
| |
| double volume_weight = 0.;
| |
| double volume = 0.;
| |
| double l1 = 1.;
| |
| double l2 = 1.;
| |
| | |
| //
| |
| // We now define the image type using a particular pixel type and
| |
| // dimension. In this case the \code{float} type is used for the pixels
| |
| // due to the requirements of the smoothing filter.
| |
| //
| |
| const unsigned int Dimension = 2;
| |
| typedef float ScalarPixelType;
| |
| typedef itk::Image< ScalarPixelType, Dimension > InternalImageType;
| |
| | |
| | |
| typedef itk::ScalarChanAndVeseLevelSetFunctionData< InternalImageType,
| |
| InternalImageType > DataHelperType;
| |
| | |
| typedef itk::ConstrainedRegionBasedLevelSetFunctionSharedData<
| |
| InternalImageType, InternalImageType, DataHelperType > SharedDataHelperType;
| |
| | |
| typedef itk::ScalarChanAndVeseLevelSetFunction< InternalImageType,
| |
| InternalImageType, SharedDataHelperType > LevelSetFunctionType;
| |
| | |
| | |
| // We declare now the type of the numerically discretized Step and Delta functions that
| |
| // will be used in the level-set computations for foreground and background regions
| |
| //
| |
| typedef itk::AtanRegularizedHeavisideStepFunction< ScalarPixelType,
| |
| ScalarPixelType > DomainFunctionType;
| |
| | |
| DomainFunctionType::Pointer domainFunction = DomainFunctionType::New();
| |
| domainFunction->SetEpsilon( epsilon );
| |
| | |
| // We instantiate reader and writer types in the following lines.
| |
| //
| |
| typedef itk::ImageFileReader< InternalImageType > ReaderType;
| |
| typedef itk::ImageFileWriter< InternalImageType > WriterType;
| |
| | |
| ReaderType::Pointer reader = ReaderType::New();
| |
| WriterType::Pointer writer = WriterType::New();
| |
| | |
| reader->SetFileName( argv[1] );
| |
| reader->Update();
| |
| | |
| writer->SetFileName( argv[2] );
| |
| | |
| InternalImageType::Pointer featureImage = reader->GetOutput();
| |
| | |
| // We declare now the type of the FastMarchingImageFilter that
| |
| // will be used to generate the initial level set in the form of a distance
| |
| // map.
| |
| //
| |
| typedef itk::FastMarchingImageFilter< InternalImageType, InternalImageType >
| |
| FastMarchingFilterType;
| |
| | |
| FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();
| |
| | |
| // The FastMarchingImageFilter requires the user to provide a seed
| |
| // point from which the level set will be generated. The user can actually
| |
| // pass not only one seed point but a set of them. Note the the
| |
| // FastMarchingImageFilter is used here only as a helper in the
| |
| // determination of an initial level set. We could have used the
| |
| // \doxygen{DanielssonDistanceMapImageFilter} in the same way.
| |
| //
| |
| // The seeds are passed stored in a container. The type of this
| |
| // container is defined as \code{NodeContainer} among the
| |
| // FastMarchingImageFilter traits.
| |
| //
| |
| typedef FastMarchingFilterType::NodeContainer NodeContainer;
| |
| typedef FastMarchingFilterType::NodeType NodeType;
| |
| | |
| NodeContainer::Pointer seeds = NodeContainer::New();
| |
| | |
| InternalImageType::IndexType seedPosition;
| |
| | |
| seedPosition[0] = atoi( argv[3] );
| |
| seedPosition[1] = atoi( argv[4] );
| |
| | |
| const double initialDistance = atof( argv[5] );
| |
| | |
| NodeType node;
| |
| | |
| const double seedValue = - initialDistance;
| |
| | |
| node.SetValue( seedValue );
| |
| node.SetIndex( seedPosition );
| |
| | |
| // The list of nodes is initialized and then every node is inserted using
| |
| // the \code{InsertElement()}.
| |
| //
| |
| seeds->Initialize();
| |
| seeds->InsertElement( 0, node );
| |
| | |
| | |
| // The set of seed nodes is passed now to the
| |
| // FastMarchingImageFilter with the method
| |
| // \code{SetTrialPoints()}.
| |
| //
| |
| fastMarching->SetTrialPoints( seeds );
| |
| | |
| | |
| // Since the FastMarchingImageFilter is used here just as a
| |
| // Distance Map generator. It does not require a speed image as input.
| |
| // Instead the constant value $1.0$ is passed using the
| |
| // \code{SetSpeedConstant()} method.
| |
| //
| |
| fastMarching->SetSpeedConstant( 1.0 );
| |
| | |
| // The FastMarchingImageFilter requires the user to specify the
| |
| // size of the image to be produced as output. This is done using the
| |
| // \code{SetOutputSize()}. Note that the size is obtained here from the
| |
| // output image of the smoothing filter. The size of this image is valid
| |
| // only after the \code{Update()} methods of this filter has been called
| |
| // directly or indirectly.
| |
| // | |
| fastMarching->SetOutputSize(
| |
| featureImage->GetBufferedRegion().GetSize() );
| |
| fastMarching->Update();
| |
| | |
| // We declare now the type of the ScalarChanAndVeseSparseLevelSetImageFilter that
| |
| // will be used to generate a segmentation.
| |
| //
| |
| | |
| typedef itk::ScalarChanAndVeseSparseLevelSetImageFilter< InternalImageType,
| |
| InternalImageType, InternalImageType, LevelSetFunctionType,
| |
| SharedDataHelperType > MultiLevelSetType;
| |
| | |
| MultiLevelSetType::Pointer levelSetFilter = MultiLevelSetType::New();
| |
| | |
| // We set the function count to 1 since a single level-set is being evolved.
| |
| //
| |
| levelSetFilter->SetFunctionCount( 1 );
| |
| | |
| // Set the feature image and initial level-set image as output of the
| |
| // fast marching image filter.
| |
| //
| |
| levelSetFilter->SetFeatureImage( featureImage );
| |
| levelSetFilter->SetLevelSet( 0, fastMarching->GetOutput() );
| |
| | |
| // Once activiated the level set evolution will stop if the convergence
| |
| // criteria or if the maximum number of iterations is reached. The
| |
| // convergence criteria is defined in terms of the root mean squared (RMS)
| |
| // change in the level set function. The evolution is said to have
| |
| // converged if the RMS change is below a user specified threshold. In a
| |
| // real application is desirable to couple the evolution of the zero set
| |
| // to a visualization module allowing the user to follow the evolution of
| |
| // the zero set. With this feedback, the user may decide when to stop the
| |
| // algorithm before the zero set leaks through the regions of low gradient
| |
| // in the contour of the anatomical structure to be segmented.
| |
| //
| |
| levelSetFilter->SetNumberOfIterations( nb_iteration );
| |
| levelSetFilter->SetMaximumRMSError( rms );
| |
| | |
| // Often, in real applications, images have different pixel resolutions. In such
| |
| // cases, it is best to use the native spacings to compute derivatives etc rather
| |
| // than sampling the images.
| |
| //
| |
| levelSetFilter->SetUseImageSpacing( 1 );
| |
| | |
| // For large images, we may want to compute the level-set over the initial supplied
| |
| // level-set image. This saves a lot of memory.
| |
| //
| |
| levelSetFilter->SetInPlace( false );
| |
| | |
| // For the level set with phase 0, set different parameters and weights. This may
| |
| // to be set in a loop for the case of multiple level-sets evolving simultaneously.
| |
| //
| |
| levelSetFilter->GetDifferenceFunction(0)->SetDomainFunction( domainFunction );
| |
| levelSetFilter->GetDifferenceFunction(0)->SetCurvatureWeight( curvature_weight );
| |
| levelSetFilter->GetDifferenceFunction(0)->SetAreaWeight( area_weight );
| |
| levelSetFilter->GetDifferenceFunction(0)->SetReinitializationSmoothingWeight( reinitialization_weight );
| |
| levelSetFilter->GetDifferenceFunction(0)->SetVolumeMatchingWeight( volume_weight );
| |
| levelSetFilter->GetDifferenceFunction(0)->SetVolume( volume );
| |
| levelSetFilter->GetDifferenceFunction(0)->SetLambda1( l1 );
| |
| levelSetFilter->GetDifferenceFunction(0)->SetLambda2( l2 );
| |
| | |
| levelSetFilter->Update();
| |
| | |
| writer->SetInput( levelSetFilter->GetOutput() );
| |
| | |
| try
| |
| {
| |
| writer->Update();
| |
| }
| |
| catch( itk::ExceptionObject & excep )
| |
| {
| |
| std::cerr << "Exception caught !" << std::endl;
| |
| std::cerr << excep << std::endl;
| |
| return -1;
| |
| }
| |
| | |
| return EXIT_SUCCESS;
| |
| }
| |
| | |
| </source>
| |
| | |
| {{ITKCMakeLists|SinglephaseChanAndVeseSparseFieldLevelSetSegmentation|}}
| |