ITK/Examples/Broken/Statistics/ExpectationMaximizationMixtureModelEstimator 1D: Difference between revisions

From KitwarePublic
< ITK‎ | Examples
Jump to navigationJump to search
No edit summary
(Deprecated content that is moved to sphinx)
 
Line 1: Line 1:
Someone please confirm that this outputs the mean and the variance (i.e. I used a standard deviation of 30 to create the samples and the second estimated parameter is near 1000 (~30^2) . Is this correct?)
{{warning|1=The media wiki content on this page is no longer maintained. The examples presented on the https://itk.org/Wiki/*  pages likely require ITK version 4.13 or earlier releasesIn many cases, the examples on this page no longer conform to the best practices for modern ITK versions.}}
 
==ExpectationMaximizationMixtureModelEstimator_1D.cxx==
<source lang="cpp">
#include "itkVector.h"
#include "itkListSample.h"
#include "itkGaussianMixtureModelComponent.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"
#include "itkNormalVariateGenerator.h"
 
int main(int, char*[])
{
  unsigned int numberOfClasses = 2;
  typedef itk::Vector< double, 1 > MeasurementVectorType;
  typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
  SampleType::Pointer sample = SampleType::New();
 
  typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
  NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();
 
  normalGenerator->Initialize(101);
 
  MeasurementVectorType mv;
  double mean = 100;
  double standardDeviation = 30;
  for(unsigned int i = 0; i < 10; ++i )
    {
    mv[0] = ( normalGenerator->GetVariate() * standardDeviation ) + mean;
    std::cout << "m[" << i << "] = " << mv[0] << std::endl;
    sample->PushBack( mv );
    }
 
  normalGenerator->Initialize(3024);
  mean = 200;
  standardDeviation = 30;
  for(unsigned int i = 0; i < 10; ++i )
    {
    mv[0] = ( normalGenerator->GetVariate() * standardDeviation ) + mean;
    std::cout << "m[" << i << "] = " << mv[0] << std::endl;
    sample->PushBack( mv );
    }
 
  typedef itk::Array< double > ParametersType;
  ParametersType params1( 2 );
 
  std::vector< ParametersType > initialParameters( numberOfClasses );
  params1[0] = 110.0;
  params1[1] = 50.0;
  initialParameters[0] = params1;
 
  ParametersType params2( 2 );
  params2[0] = 210.0;
  params2[1] = 50.0;
  initialParameters[1] = params2;
 
  typedef itk::Statistics::GaussianMixtureModelComponent< SampleType > ComponentType;
 
  std::vector< ComponentType::Pointer > components;
  for ( unsigned int i = 0 ; i < numberOfClasses ; i++ )
    {
    components.push_back( ComponentType::New() );
    components[i]->SetSample( sample );
    components[i]->SetParameters( initialParameters[i] );
    }
 
  typedef itk::Statistics::ExpectationMaximizationMixtureModelEstimator<
                          SampleType > EstimatorType;
  EstimatorType::Pointer estimator = EstimatorType::New();
 
  estimator->SetSample(sample);
  estimator->SetMaximumIteration(500);
 
  itk::Array< double > initialProportions(numberOfClasses);
  initialProportions[0] = 0.5;
  initialProportions[1] = 0.5;
 
  estimator->SetInitialProportions( initialProportions );
 
   for(unsigned int i = 0; i < numberOfClasses; i++)
    {
    estimator->AddComponent( (ComponentType::Superclass*)
                            components[i].GetPointer() );
    }
 
  estimator->Update();
 
  for(unsigned int i = 0; i < numberOfClasses; i++ )
    {
    std::cout << "Cluster[" << i << "]" << std::endl;
    std::cout << "    Parameters:" << std::endl;
    std::cout << "        " << components[i]->GetFullParameters()
              << std::endl;
    std::cout << "    Proportion: ";
    std::cout << "        " << estimator->GetProportions()[i] << std::endl;
    }
 
  return EXIT_SUCCESS;
}
</source>
{{ITKCMakeLists|{{SUBPAGENAME}}}}

Latest revision as of 20:56, 7 June 2019

Warning: The media wiki content on this page is no longer maintained. The examples presented on the https://itk.org/Wiki/* pages likely require ITK version 4.13 or earlier releases. In many cases, the examples on this page no longer conform to the best practices for modern ITK versions.