ITK/Examples/DICOM/ResampleDICOM: Difference between revisions
No edit summary |
Arnaudgelas (talk | contribs) |
||
Line 26: | Line 26: | ||
// 3) Create a MetaDataDictionary for each slice. | // 3) Create a MetaDataDictionary for each slice. | ||
// 4) Shift data to undo the effect of a rescale intercept by the | // 4) Shift data to undo the effect of a rescale intercept by the | ||
// DICOM reader | // DICOM reader (only for ITK < 4.6) | ||
// 5) Write the new DICOM series | // 5) Write the new DICOM series | ||
// | // | ||
Line 43: | Line 43: | ||
#include "itkResampleImageFilter.h" | #include "itkResampleImageFilter.h" | ||
#if ( ( ITK_VERSION_MAJOR == 4 ) && ( ITK_VERSION_MINOR < 6 ) ) | |||
#include "itkShiftScaleImageFilter.h" | #include "itkShiftScaleImageFilter.h" | ||
#endif | |||
#include "itkIdentityTransform.h" | #include "itkIdentityTransform.h" | ||
Line 68: | Line 71: | ||
if( argc < 4 ) | if( argc < 4 ) | ||
{ | { | ||
std::cerr << "Usage: " | std::cerr << "Usage: " | ||
<< argv[0] | << argv[0] | ||
<< " InputDicomDirectory OutputDicomDirectory spacing_x spacing_y spacing_z" | << " InputDicomDirectory OutputDicomDirectory spacing_x spacing_y spacing_z" | ||
Line 98: | Line 101: | ||
typedef itk::ResampleImageFilter< InputImageType, InputImageType > | typedef itk::ResampleImageFilter< InputImageType, InputImageType > | ||
ResampleFilterType; | ResampleFilterType; | ||
#if ( ( ITK_VERSION_MAJOR == 4 ) && ( ITK_VERSION_MINOR < 6 ) ) | |||
typedef itk::ShiftScaleImageFilter< InputImageType, InputImageType > | typedef itk::ShiftScaleImageFilter< InputImageType, InputImageType > | ||
ShiftScaleType; | ShiftScaleType; | ||
#endif | |||
typedef itk::ImageSeriesWriter< InputImageType, OutputImageType > | typedef itk::ImageSeriesWriter< InputImageType, OutputImageType > | ||
SeriesWriterType; | SeriesWriterType; | ||
//////////////////////////////////////////////// | //////////////////////////////////////////////// | ||
// 1) Read the input series | // 1) Read the input series | ||
Line 110: | Line 115: | ||
inputNames->SetInputDirectory( argv[1] ); | inputNames->SetInputDirectory( argv[1] ); | ||
const ReaderType::FileNamesContainer & filenames = | const ReaderType::FileNamesContainer & filenames = | ||
inputNames->GetInputFileNames(); | inputNames->GetInputFileNames(); | ||
Line 128: | Line 133: | ||
} | } | ||
//////////////////////////////////////////////// | //////////////////////////////////////////////// | ||
// 2) Resample the series | // 2) Resample the series | ||
InterpolatorType::Pointer interpolator = InterpolatorType::New(); | InterpolatorType::Pointer interpolator = InterpolatorType::New(); | ||
Line 175: | Line 180: | ||
ResampleFilterType::Pointer resampler = ResampleFilterType::New(); | ResampleFilterType::Pointer resampler = ResampleFilterType::New(); | ||
resampler->SetInput( reader->GetOutput() ); | |||
resampler->SetTransform( transform ); | |||
resampler->SetInterpolator( interpolator ); | |||
resampler->SetOutputOrigin ( reader->GetOutput()->GetOrigin()); | |||
resampler->SetOutputSpacing ( outputSpacing ); | |||
resampler->SetOutputDirection ( reader->GetOutput()->GetDirection()); | |||
resampler->SetSize ( outputSize ); | |||
resampler->Update (); | |||
//////////////////////////////////////////////// | //////////////////////////////////////////////// | ||
// 3) Create a MetaDataDictionary for each slice. | // 3) Create a MetaDataDictionary for each slice. | ||
Line 192: | Line 197: | ||
ReaderType::DictionaryRawPointer inputDict = (*(reader->GetMetaDataDictionaryArray()))[0]; | ReaderType::DictionaryRawPointer inputDict = (*(reader->GetMetaDataDictionaryArray()))[0]; | ||
ReaderType::DictionaryArrayType outputArray; | ReaderType::DictionaryArrayType outputArray; | ||
// To keep the new series in the same study as the original we need | // To keep the new series in the same study as the original we need | ||
// to keep the same study UID. But we need new series and frame of | // to keep the same study UID. But we need new series and frame of | ||
Line 249: | Line 254: | ||
value << oldSeriesDesc | value << oldSeriesDesc | ||
<< ": Resampled with pixel spacing " | << ": Resampled with pixel spacing " | ||
<< outputSpacing[0] << ", " | << outputSpacing[0] << ", " | ||
<< outputSpacing[1] << ", " | << outputSpacing[1] << ", " | ||
<< outputSpacing[2]; | << outputSpacing[2]; | ||
// This is an long string and there is a 64 character limit in the | // This is an long string and there is a 64 character limit in the | ||
// standard | // standard | ||
unsigned lengthDesc = value.str().length(); | unsigned lengthDesc = value.str().length(); | ||
std::string seriesDesc( value.str(), 0, | std::string seriesDesc( value.str(), 0, | ||
lengthDesc > 64 ? 64 | lengthDesc > 64 ? 64 | ||
Line 279: | Line 284: | ||
: lengthDesc); | : lengthDesc); | ||
itk::EncapsulateMetaData<std::string>(*dict,"0008|2111", derivationDesc); | itk::EncapsulateMetaData<std::string>(*dict,"0008|2111", derivationDesc); | ||
// Image Position Patient: This is calculated by computing the | // Image Position Patient: This is calculated by computing the | ||
// physical coordinate of the first pixel in each slice. | // physical coordinate of the first pixel in each slice. | ||
Line 291: | Line 296: | ||
value.str(""); | value.str(""); | ||
value << position[0] << "\\" << position[1] << "\\" << position[2]; | value << position[0] << "\\" << position[1] << "\\" << position[2]; | ||
itk::EncapsulateMetaData<std::string>(*dict,"0020|0032", value.str()); | itk::EncapsulateMetaData<std::string>(*dict,"0020|0032", value.str()); | ||
// Slice Location: For now, we store the z component of the Image | // Slice Location: For now, we store the z component of the Image | ||
// Position Patient. | // Position Patient. | ||
value.str(""); | value.str(""); | ||
value << position[2]; | value << position[2]; | ||
itk::EncapsulateMetaData<std::string>(*dict,"0020|1041", value.str()); | itk::EncapsulateMetaData<std::string>(*dict,"0020|1041", value.str()); | ||
if (changeInSpacing) | if (changeInSpacing) | ||
Line 309: | Line 314: | ||
value.str()); | value.str()); | ||
} | } | ||
// Save the dictionary | // Save the dictionary | ||
outputArray.push_back(dict); | outputArray.push_back(dict); | ||
} | } | ||
//////////////////////////////////////////////// | #if ( ( ITK_VERSION_MAJOR == 4 ) && ( ITK_VERSION_MINOR < 6 ) ) | ||
//////////////////////////////////////////////// | |||
// 4) Shift data to undo the effect of a rescale intercept by the | // 4) Shift data to undo the effect of a rescale intercept by the | ||
// DICOM reader | // DICOM reader | ||
Line 320: | Line 326: | ||
typedef itk::MetaDataObject< std::string > MetaDataStringType; | typedef itk::MetaDataObject< std::string > MetaDataStringType; | ||
itk::MetaDataObjectBase::Pointer entry = (*inputDict)[interceptTag]; | itk::MetaDataObjectBase::Pointer entry = (*inputDict)[interceptTag]; | ||
MetaDataStringType::ConstPointer interceptValue = | MetaDataStringType::ConstPointer interceptValue = | ||
dynamic_cast<const MetaDataStringType *>( entry.GetPointer() ) ; | dynamic_cast<const MetaDataStringType *>( entry.GetPointer() ) ; | ||
int interceptShift = 0; | int interceptShift = 0; | ||
if( interceptValue ) | if( interceptValue ) | ||
Line 332: | Line 338: | ||
ShiftScaleType::Pointer shiftScale = ShiftScaleType::New(); | ShiftScaleType::Pointer shiftScale = ShiftScaleType::New(); | ||
shiftScale->SetInput( resampler->GetOutput()); | |||
shiftScale->SetShift( interceptShift ); | |||
#endif | |||
//////////////////////////////////////////////// | //////////////////////////////////////////////// | ||
// 5) Write the new DICOM series | // 5) Write the new DICOM series | ||
Line 348: | Line 355: | ||
outputNames->SetStartIndex (1); | outputNames->SetStartIndex (1); | ||
outputNames->SetEndIndex (outputSize[2]); | outputNames->SetEndIndex (outputSize[2]); | ||
SeriesWriterType::Pointer seriesWriter = SeriesWriterType::New(); | SeriesWriterType::Pointer seriesWriter = SeriesWriterType::New(); | ||
#if ( ( ITK_VERSION_MAJOR == 4 ) && ( ITK_VERSION_MINOR < 6 ) ) | |||
seriesWriter->SetInput( shiftScale->GetOutput() ); | |||
#else | |||
seriesWriter->SetInput( resampler->GetOutput() ); | |||
#endif | |||
seriesWriter->SetImageIO( gdcmIO ); | seriesWriter->SetImageIO( gdcmIO ); | ||
seriesWriter->SetFileNames( outputNames->GetFileNames() ); | seriesWriter->SetFileNames( outputNames->GetFileNames() ); | ||
Line 383: | Line 394: | ||
itk::MetaDataObjectBase::Pointer entry = itr->second; | itk::MetaDataObjectBase::Pointer entry = itr->second; | ||
MetaDataStringType::Pointer entryvalue = | MetaDataStringType::Pointer entryvalue = | ||
dynamic_cast<MetaDataStringType *>( entry.GetPointer() ) ; | dynamic_cast<MetaDataStringType *>( entry.GetPointer() ) ; | ||
if( entryvalue ) | if( entryvalue ) | ||
Line 389: | Line 400: | ||
std::string tagkey = itr->first; | std::string tagkey = itr->first; | ||
std::string tagvalue = entryvalue->GetMetaDataObjectValue(); | std::string tagvalue = entryvalue->GetMetaDataObjectValue(); | ||
itk::EncapsulateMetaData<std::string>(toDict, tagkey, tagvalue); | itk::EncapsulateMetaData<std::string>(toDict, tagkey, tagvalue); | ||
} | } | ||
++itr; | ++itr; |
Revision as of 07:27, 18 September 2014
ResampleDICOM.cxx
<source lang="cpp"> // Resample a DICOM study // Usage: ResampleDICOM InputDirectory OutputDirectory // xSpacing ySpacing zSpacing // // Example: ResampleDICOM CT CTResample 0 0 1.5 // will read a series from the CT directory and create a // new series in the CTResample directory. The new series // will have the same x,y spacing as the input series, but // will have a z-spacing of 1.5. // // Description: // ResampleDICOM resamples a DICOM series with user-specified // spacing. The program outputs a new DICOM series with a series // number set to 1001. All non-private DICOM tags are moved from the input // series to the output series. The Image Position Patient is adjusted // for each slice to reflect the z-spacing. The number of slices in // the output series may be larger or smaller due to changes in the // z-spacing. To retain the spacing for a given dimension, specify 0. // // The program progresses as follows: // 1) Read the input series // 2) Resample the series according to the user specified x-y-z // spacing. // 3) Create a MetaDataDictionary for each slice. // 4) Shift data to undo the effect of a rescale intercept by the // DICOM reader (only for ITK < 4.6) // 5) Write the new DICOM series //
- include "itkVersion.h"
- include "itkImage.h"
- include "itkMinimumMaximumImageFilter.h"
- include "itkGDCMImageIO.h"
- include "itkGDCMSeriesFileNames.h"
- include "itkNumericSeriesFileNames.h"
- include "itkImageSeriesReader.h"
- include "itkImageSeriesWriter.h"
- include "itkResampleImageFilter.h"
- if ( ( ITK_VERSION_MAJOR == 4 ) && ( ITK_VERSION_MINOR < 6 ) )
- include "itkShiftScaleImageFilter.h"
- endif
- include "itkIdentityTransform.h"
- include "itkLinearInterpolateImageFunction.h"
- include <itksys/SystemTools.hxx>
- if ITK_VERSION_MAJOR >= 4
- include "gdcmUIDGenerator.h"
- else
- include "gdcm/src/gdcmFile.h"
- include "gdcm/src/gdcmUtil.h"
- endif
- include <string>
static void CopyDictionary (itk::MetaDataDictionary &fromDict,
itk::MetaDataDictionary &toDict);
int main( int argc, char* argv[] )
{
// Validate input parameters if( argc < 4 ) { std::cerr << "Usage: " << argv[0] << " InputDicomDirectory OutputDicomDirectory spacing_x spacing_y spacing_z" << std::endl; return EXIT_FAILURE; }
const unsigned int InputDimension = 3; const unsigned int OutputDimension = 2;
typedef signed short PixelType;
typedef itk::Image< PixelType, InputDimension > InputImageType; typedef itk::Image< PixelType, OutputDimension > OutputImageType; typedef itk::ImageSeriesReader< InputImageType > ReaderType; typedef itk::GDCMImageIO ImageIOType; typedef itk::GDCMSeriesFileNames InputNamesGeneratorType; typedef itk::NumericSeriesFileNames OutputNamesGeneratorType; typedef itk::IdentityTransform< double, InputDimension > TransformType; typedef itk::LinearInterpolateImageFunction< InputImageType, double > InterpolatorType; typedef itk::ResampleImageFilter< InputImageType, InputImageType > ResampleFilterType;
- if ( ( ITK_VERSION_MAJOR == 4 ) && ( ITK_VERSION_MINOR < 6 ) )
typedef itk::ShiftScaleImageFilter< InputImageType, InputImageType > ShiftScaleType;
- endif
typedef itk::ImageSeriesWriter< InputImageType, OutputImageType > SeriesWriterType;
//////////////////////////////////////////////// // 1) Read the input series
ImageIOType::Pointer gdcmIO = ImageIOType::New(); InputNamesGeneratorType::Pointer inputNames = InputNamesGeneratorType::New(); inputNames->SetInputDirectory( argv[1] );
const ReaderType::FileNamesContainer & filenames = inputNames->GetInputFileNames();
ReaderType::Pointer reader = ReaderType::New();
reader->SetImageIO( gdcmIO ); reader->SetFileNames( filenames ); try { reader->Update(); } catch (itk::ExceptionObject &excp) { std::cerr << "Exception thrown while reading the series" << std::endl; std::cerr << excp << std::endl; return EXIT_FAILURE; }
//////////////////////////////////////////////// // 2) Resample the series
InterpolatorType::Pointer interpolator = InterpolatorType::New();
TransformType::Pointer transform = TransformType::New(); transform->SetIdentity();
const InputImageType::SpacingType& inputSpacing = reader->GetOutput()->GetSpacing(); const InputImageType::RegionType& inputRegion = reader->GetOutput()->GetLargestPossibleRegion(); const InputImageType::SizeType& inputSize = inputRegion.GetSize();
std::cout << "The input series in directory " << argv[1] << " has " << filenames.size() << " files with spacing " << inputSpacing << std::endl;
// Compute the size of the output. The user specifies a spacing on // the command line. If the spacing is 0, the input spacing will be // used. The size (# of pixels) in the output is recomputed using // the ratio of the input and output sizes. InputImageType::SpacingType outputSpacing; outputSpacing[0] = atof(argv[3]); outputSpacing[1] = atof(argv[4]); outputSpacing[2] = atof(argv[5]);
bool changeInSpacing = false; for (unsigned int i = 0; i < 3; i++) { if (outputSpacing[i] == 0.0) { outputSpacing[i] = inputSpacing[i]; } else { changeInSpacing = true; } } InputImageType::SizeType outputSize; typedef InputImageType::SizeType::SizeValueType SizeValueType; outputSize[0] = static_cast<SizeValueType>(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5); outputSize[1] = static_cast<SizeValueType>(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5); outputSize[2] = static_cast<SizeValueType>(inputSize[2] * inputSpacing[2] / outputSpacing[2] + .5);
ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetInput( reader->GetOutput() ); resampler->SetTransform( transform ); resampler->SetInterpolator( interpolator ); resampler->SetOutputOrigin ( reader->GetOutput()->GetOrigin()); resampler->SetOutputSpacing ( outputSpacing ); resampler->SetOutputDirection ( reader->GetOutput()->GetDirection()); resampler->SetSize ( outputSize ); resampler->Update ();
////////////////////////////////////////////////
// 3) Create a MetaDataDictionary for each slice.
// Copy the dictionary from the first image and override slice // specific fields ReaderType::DictionaryRawPointer inputDict = (*(reader->GetMetaDataDictionaryArray()))[0]; ReaderType::DictionaryArrayType outputArray;
// To keep the new series in the same study as the original we need // to keep the same study UID. But we need new series and frame of // reference UID's.
- if ITK_VERSION_MAJOR >= 4
gdcm::UIDGenerator suid; std::string seriesUID = suid.Generate(); gdcm::UIDGenerator fuid; std::string frameOfReferenceUID = fuid.Generate();
- else
std::string seriesUID = gdcm::Util::CreateUniqueUID( gdcmIO->GetUIDPrefix()); std::string frameOfReferenceUID = gdcm::Util::CreateUniqueUID( gdcmIO->GetUIDPrefix());
- endif
std::string studyUID; std::string sopClassUID; itk::ExposeMetaData<std::string>(*inputDict, "0020|000d", studyUID); itk::ExposeMetaData<std::string>(*inputDict, "0008|0016", sopClassUID); gdcmIO->KeepOriginalUIDOn();
for (unsigned int f = 0; f < outputSize[2]; f++) { // Create a new dictionary for this slice ReaderType::DictionaryRawPointer dict = new ReaderType::DictionaryType;
// Copy the dictionary from the first slice CopyDictionary (*inputDict, *dict);
// Set the UID's for the study, series, SOP and frame of reference itk::EncapsulateMetaData<std::string>(*dict,"0020|000d", studyUID); itk::EncapsulateMetaData<std::string>(*dict,"0020|000e", seriesUID); itk::EncapsulateMetaData<std::string>(*dict,"0020|0052", frameOfReferenceUID);
- if ITK_VERSION_MAJOR >= 4
gdcm::UIDGenerator sopuid; std::string sopInstanceUID = sopuid.Generate();
- else
std::string sopInstanceUID = gdcm::Util::CreateUniqueUID( gdcmIO->GetUIDPrefix());
- endif
itk::EncapsulateMetaData<std::string>(*dict,"0008|0018", sopInstanceUID); itk::EncapsulateMetaData<std::string>(*dict,"0002|0003", sopInstanceUID);
// Change fields that are slice specific itksys_ios::ostringstream value; value.str(""); value << f + 1;
// Image Number itk::EncapsulateMetaData<std::string>(*dict,"0020|0013", value.str());
// Series Description - Append new description to current series // description std::string oldSeriesDesc; itk::ExposeMetaData<std::string>(*inputDict, "0008|103e", oldSeriesDesc);
value.str(""); value << oldSeriesDesc << ": Resampled with pixel spacing " << outputSpacing[0] << ", " << outputSpacing[1] << ", " << outputSpacing[2]; // This is an long string and there is a 64 character limit in the // standard unsigned lengthDesc = value.str().length();
std::string seriesDesc( value.str(), 0, lengthDesc > 64 ? 64 : lengthDesc); itk::EncapsulateMetaData<std::string>(*dict,"0008|103e", seriesDesc);
// Series Number value.str(""); value << 1001; itk::EncapsulateMetaData<std::string>(*dict,"0020|0011", value.str());
// Derivation Description - How this image was derived value.str(""); for (int i = 0; i < argc; i++) { value << argv[i] << " "; } value << ": " << ITK_SOURCE_VERSION;
lengthDesc = value.str().length(); std::string derivationDesc( value.str(), 0, lengthDesc > 1024 ? 1024 : lengthDesc); itk::EncapsulateMetaData<std::string>(*dict,"0008|2111", derivationDesc);
// Image Position Patient: This is calculated by computing the // physical coordinate of the first pixel in each slice. InputImageType::PointType position; InputImageType::IndexType index; index[0] = 0; index[1] = 0; index[2] = f; resampler->GetOutput()->TransformIndexToPhysicalPoint(index, position);
value.str(""); value << position[0] << "\\" << position[1] << "\\" << position[2]; itk::EncapsulateMetaData<std::string>(*dict,"0020|0032", value.str()); // Slice Location: For now, we store the z component of the Image // Position Patient. value.str(""); value << position[2]; itk::EncapsulateMetaData<std::string>(*dict,"0020|1041", value.str());
if (changeInSpacing) { // Slice Thickness: For now, we store the z spacing value.str(""); value << outputSpacing[2]; itk::EncapsulateMetaData<std::string>(*dict,"0018|0050", value.str()); // Spacing Between Slices itk::EncapsulateMetaData<std::string>(*dict,"0018|0088", value.str()); }
// Save the dictionary outputArray.push_back(dict); }
- if ( ( ITK_VERSION_MAJOR == 4 ) && ( ITK_VERSION_MINOR < 6 ) )
//////////////////////////////////////////////// // 4) Shift data to undo the effect of a rescale intercept by the // DICOM reader
std::string interceptTag("0028|1052"); typedef itk::MetaDataObject< std::string > MetaDataStringType; itk::MetaDataObjectBase::Pointer entry = (*inputDict)[interceptTag];
MetaDataStringType::ConstPointer interceptValue = dynamic_cast<const MetaDataStringType *>( entry.GetPointer() ) ;
int interceptShift = 0; if( interceptValue ) { std::string tagValue = interceptValue->GetMetaDataObjectValue(); interceptShift = -atoi ( tagValue.c_str() ); }
ShiftScaleType::Pointer shiftScale = ShiftScaleType::New(); shiftScale->SetInput( resampler->GetOutput()); shiftScale->SetShift( interceptShift );
- endif
//////////////////////////////////////////////// // 5) Write the new DICOM series
// Make the output directory and generate the file names. itksys::SystemTools::MakeDirectory( argv[2] );
// Generate the file names OutputNamesGeneratorType::Pointer outputNames = OutputNamesGeneratorType::New(); std::string seriesFormat(argv[2]); seriesFormat = seriesFormat + "/" + "IM%d.dcm"; outputNames->SetSeriesFormat (seriesFormat.c_str()); outputNames->SetStartIndex (1); outputNames->SetEndIndex (outputSize[2]);
SeriesWriterType::Pointer seriesWriter = SeriesWriterType::New();
- if ( ( ITK_VERSION_MAJOR == 4 ) && ( ITK_VERSION_MINOR < 6 ) )
seriesWriter->SetInput( shiftScale->GetOutput() );
- else
seriesWriter->SetInput( resampler->GetOutput() );
- endif
seriesWriter->SetImageIO( gdcmIO ); seriesWriter->SetFileNames( outputNames->GetFileNames() ); seriesWriter->SetMetaDataDictionaryArray( &outputArray ); try { seriesWriter->Update(); } catch( itk::ExceptionObject & excp ) { std::cerr << "Exception thrown while writing the series " << std::endl; std::cerr << excp << std::endl; return EXIT_FAILURE; } std::cout << "The output series in directory " << argv[2] << " has " << outputSize[2] << " files with spacing " << outputSpacing << std::endl; return EXIT_SUCCESS;
}
void CopyDictionary (itk::MetaDataDictionary &fromDict, itk::MetaDataDictionary &toDict) {
typedef itk::MetaDataDictionary DictionaryType;
DictionaryType::ConstIterator itr = fromDict.Begin(); DictionaryType::ConstIterator end = fromDict.End(); typedef itk::MetaDataObject< std::string > MetaDataStringType;
while( itr != end ) { itk::MetaDataObjectBase::Pointer entry = itr->second;
MetaDataStringType::Pointer entryvalue = dynamic_cast<MetaDataStringType *>( entry.GetPointer() ) ; if( entryvalue ) { std::string tagkey = itr->first; std::string tagvalue = entryvalue->GetMetaDataObjectValue(); itk::EncapsulateMetaData<std::string>(toDict, tagkey, tagvalue); } ++itr; }
} </source>
CMakeLists.txt
<syntaxhighlight lang="cmake"> cmake_minimum_required(VERSION 3.9.5)
project(ResampleDICOM)
find_package(ITK REQUIRED) include(${ITK_USE_FILE}) if (ITKVtkGlue_LOADED)
find_package(VTK REQUIRED) include(${VTK_USE_FILE})
endif()
add_executable(ResampleDICOM MACOSX_BUNDLE ResampleDICOM.cxx)
if( "${ITK_VERSION_MAJOR}" LESS 4 )
target_link_libraries(ResampleDICOM ITKReview ${ITK_LIBRARIES})
else( "${ITK_VERSION_MAJOR}" LESS 4 )
target_link_libraries(ResampleDICOM ${ITK_LIBRARIES})
endif( "${ITK_VERSION_MAJOR}" LESS 4 )
</syntaxhighlight>
Download and Build ResampleDICOM
Click here to download ResampleDICOM and its CMakeLists.txt file. Once the tarball ResampleDICOM.tar has been downloaded and extracted,
cd ResampleDICOM/build
- If ITK is installed:
cmake ..
- If ITK is not installed but compiled on your system, you will need to specify the path to your ITK build:
cmake -DITK_DIR:PATH=/home/me/itk_build ..
Build the project:
make
and run it:
./ResampleDICOM
WINDOWS USERS PLEASE NOTE: Be sure to add the ITK bin directory to your path. This will resolve the ITK dll's at run time.
Building All of the Examples
Many of the examples in the ITK Wiki Examples Collection require VTK. You can build all of the the examples by following these instructions. If you are a new VTK user, you may want to try the Superbuild which will build a proper ITK and VTK.
ItkVtkGlue
ITK >= 4
For examples that use QuickView (which depends on VTK), you must have built ITK with Module_ITKVtkGlue=ON.
ITK < 4
Some of the ITK Examples require VTK to display the images. If you download the entire ITK Wiki Examples Collection, the ItkVtkGlue directory will be included and configured. If you wish to just build a few examples, then you will need to download ItkVtkGlue and build it. When you run cmake it will ask you to specify the location of the ItkVtkGlue binary directory.