ITK/Examples/Broken/Statistics/ImageKmeansModelEstimator: Difference between revisions

From KitwarePublic
< ITK‎ | Examples
Jump to navigationJump to search
No edit summary
Line 5: Line 5:
#include "itkVector.h"
#include "itkVector.h"
#include "itkImageKmeansModelEstimator.h"
#include "itkImageKmeansModelEstimator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkDistanceToCentroidMembershipFunction.h"
#include "itkDistanceToCentroidMembershipFunction.h"
Line 25: Line 26:
void ITKImagetoVTKImageColor(ColorImageType::Pointer image, vtkImageData* outputImage);
void ITKImagetoVTKImageColor(ColorImageType::Pointer image, vtkImageData* outputImage);
void ITKImagetoVTKImageGrayscale(GrayscaleImageType::Pointer image, vtkImageData* outputImage);
void ITKImagetoVTKImageGrayscale(GrayscaleImageType::Pointer image, vtkImageData* outputImage);
void CreateBlankImage(GrayscaleImageType::Pointer image, ColorImageType::Pointer inputImage);


int main(int, char* [] )
int main(int, char* [] )
Line 31: Line 33:
   CreateImage(image);
   CreateImage(image);
    
    
   typedef itk::Statistics::DistanceToCentroidMembershipFunction< itk::Vector<unsigned char,3> >
   typedef itk::Statistics::DistanceToCentroidMembershipFunction< itk::Vector<unsigned char,3> > MembershipFunctionType ;
    MembershipFunctionType ;
   typedef MembershipFunctionType::Pointer MembershipFunctionPointer ;
   typedef MembershipFunctionType::Pointer MembershipFunctionPointer ;
  typedef std::vector< MembershipFunctionPointer >  MembershipFunctionPointerVector;


  typedef std::vector< MembershipFunctionPointer >
   typedef itk::ImageKmeansModelEstimator<ColorImageType, MembershipFunctionType> ImageKmeansModelEstimatorType;
    MembershipFunctionPointerVector;
 
   typedef itk::ImageKmeansModelEstimator<ColorImageType, MembershipFunctionType>
    ImageKmeansModelEstimatorType;


   ImageKmeansModelEstimatorType::Pointer
   ImageKmeansModelEstimatorType::Pointer
Line 58: Line 56:
    
    
   classifier->SetDecisionRule(decisionRule);
   classifier->SetDecisionRule(decisionRule);
 
   classifier->SetNumberOfClasses(3);
   classifier->SetNumberOfClasses(3);


Line 66: Line 63:
   typedef ClassifierType::MembershipFunctionVectorType            MembershipFunctionVectorType;
   typedef ClassifierType::MembershipFunctionVectorType            MembershipFunctionVectorType;


   MembershipFunctionPointerVector membershipFunctions =
  // Setup membership functions
  kmeansEstimator->GetMembershipFunctions();
   MembershipFunctionPointerVector kmeansMembershipFunctions =
      
    kmeansEstimator->GetMembershipFunctions();
 
  MembershipFunctionVectorObjectType::Pointer  membershipFunctionsVectorObject = MembershipFunctionVectorObjectType::New();
  classifier->SetMembershipFunctions(membershipFunctionsVectorObject);
 
  MembershipFunctionVectorType &  membershipFunctionsVector = membershipFunctionsVectorObject->Get();
 
  std::cout << "There are " << kmeansMembershipFunctions.size() << " kmeans membership functions." << std::endl;
 
  for(unsigned int i = 0; i < kmeansMembershipFunctions.size(); i++)
    {
    membershipFunctionsVector.push_back(kmeansMembershipFunctions[i].GetPointer());
     }
 
  std::cout << "There are " << membershipFunctionsVector.size() << " membership functions." << std::endl;
  std::cout << "There are " << classifier->GetNumberOfClasses() << " classes." << std::endl;
 
  // Setup class labels
   ClassLabelVectorObjectType::Pointer  classLabelsObject = ClassLabelVectorObjectType::New();
   ClassLabelVectorObjectType::Pointer  classLabelsObject = ClassLabelVectorObjectType::New();
   classifier->SetClassLabels( classLabelsObject );
   classifier->SetClassLabels( classLabelsObject );
Line 77: Line 91:
   classLabelsVector.push_back( 250 );
   classLabelsVector.push_back( 250 );


  // Perform the classification
  typedef itk::Statistics::ImageToListSampleAdaptor< ColorImageType > SampleAdaptorType;
  SampleAdaptorType::Pointer sample = SampleAdaptorType::New();
  sample->SetImage(image);
  classifier->SetInput(sample);
  classifier->Update();
 
  // Prepare the output image
   GrayscaleImageType::Pointer outputImage = GrayscaleImageType::New();
   GrayscaleImageType::Pointer outputImage = GrayscaleImageType::New();
   outputImage->SetRegions(image->GetLargestPossibleRegion());
   CreateBlankImage(outputImage, image);


   itk::ImageRegionIterator<ColorImageType> imageIterator(image,image->GetLargestPossibleRegion());
   // Setup the membership iterator
   itk::ImageRegionIterator<GrayscaleImageType> outputIterator(outputImage,outputImage->GetLargestPossibleRegion());
  const ClassifierType::MembershipSampleType* membershipSample = classifier->GetOutput();
  ClassifierType::MembershipSampleType::ConstIterator membershipIterator = membershipSample->Begin();
 
  // Setup the output image iterator - this is automatically synchronized with the membership iterator since the sample is an adaptor
   itk::ImageRegionIteratorWithIndex<GrayscaleImageType> outputIterator(outputImage,outputImage->GetLargestPossibleRegion());
  outputIterator.GoToBegin();
    
    
   while(!imageIterator.IsAtEnd())
   while(membershipIterator != membershipSample->End())
     {
     {
     SampleType::Pointer sample = SampleType::New();
     int classLabel = membershipIterator.GetClassLabel();
     sample->PushBack(imageIterator.Get());
     std::cout << "Class label: " << classLabel << std::endl;
     //sample->Get
     outputIterator.Set(static_cast<unsigned char>(classLabel));
    classifier->SetInput(sample);
     ++membershipIterator;
    unsigned char label = static_cast<unsigned char>(classifier->GetOutput()->GetClassLabel(0));
     ++outputIterator;
     outputIterator.Set(label);
 
     ++imageIterator;
 
     }
     }


   // Visualize
   // Visualize
   vtkSmartPointer<vtkImageData> VTKImage =
  // Original image
   vtkSmartPointer<vtkImageData> originalVTKImage =
     vtkSmartPointer<vtkImageData>::New();
     vtkSmartPointer<vtkImageData>::New();
   
   ITKImagetoVTKImageColor(image, originalVTKImage);
   ITKImagetoVTKImageColor(image, VTKImage);


   vtkSmartPointer<vtkImageActor> actor =
   vtkSmartPointer<vtkImageActor> originalActor =
     vtkSmartPointer<vtkImageActor>::New();
     vtkSmartPointer<vtkImageActor>::New();
   actor->SetInput(VTKImage);
   originalActor->SetInput(originalVTKImage);
 
  // Kmeans image
  vtkSmartPointer<vtkImageData> kmeansVTKImage =
    vtkSmartPointer<vtkImageData>::New();
  ITKImagetoVTKImageGrayscale(outputImage, kmeansVTKImage);


  vtkSmartPointer<vtkImageActor> kmeansActor =
    vtkSmartPointer<vtkImageActor>::New();
  kmeansActor->SetInput(kmeansVTKImage);
 
   // There will be one render window
   // There will be one render window
   vtkSmartPointer<vtkRenderWindow> renderWindow =
   vtkSmartPointer<vtkRenderWindow> renderWindow =
     vtkSmartPointer<vtkRenderWindow>::New();
     vtkSmartPointer<vtkRenderWindow>::New();
   renderWindow->SetSize(300, 300);
   renderWindow->SetSize(600, 300);


  // Define viewport ranges
  // (xmin, ymin, xmax, ymax)
  double leftViewport[4] = {0.0, 0.0, 0.5, 1.0};
  double rightViewport[4] = {0.5, 0.0, 1.0, 1.0};
 
   vtkSmartPointer<vtkRenderWindowInteractor> interactor =
   vtkSmartPointer<vtkRenderWindowInteractor> interactor =
     vtkSmartPointer<vtkRenderWindowInteractor>::New();
     vtkSmartPointer<vtkRenderWindowInteractor>::New();
   interactor->SetRenderWindow(renderWindow);
   interactor->SetRenderWindow(renderWindow);


   vtkSmartPointer<vtkRenderer> renderer =
   vtkSmartPointer<vtkRenderer> leftRenderer =
     vtkSmartPointer<vtkRenderer>::New();
     vtkSmartPointer<vtkRenderer>::New();
   renderWindow->AddRenderer(renderer);
   renderWindow->AddRenderer(leftRenderer);
   renderer->SetBackground(.6, .5, .4);
   leftRenderer->SetViewport(leftViewport);
  leftRenderer->SetBackground(.6, .5, .4);


   renderer->AddActor(actor);
   leftRenderer->AddActor(originalActor);
  leftRenderer->ResetCamera();


   renderer->ResetCamera();
   vtkSmartPointer<vtkRenderer> rightRenderer =
    vtkSmartPointer<vtkRenderer>::New();
  renderWindow->AddRenderer(rightRenderer);
  rightRenderer->SetViewport(rightViewport);
  rightRenderer->SetBackground(.7, .4, .4);
 
  rightRenderer->AddActor(kmeansActor);
  rightRenderer->ResetCamera();


   renderWindow->Render();
   renderWindow->Render();
Line 131: Line 178:


   interactor->Start();
   interactor->Start();
 
  //classdist = membershipFunctions[idx]->Evaluate( outIt.Get() );
  //std::cout << "Distance of first pixel to class " << idx << " is: " << classdist << std::endl;


   return EXIT_SUCCESS;
   return EXIT_SUCCESS;
Line 140: Line 184:
void CreateImage(ColorImageType::Pointer image)
void CreateImage(ColorImageType::Pointer image)
{
{
   // Create an image with 2 connected components
   // Create a black image with a red square and a green square
   ColorImageType::RegionType region;
   ColorImageType::RegionType region;
   ColorImageType::IndexType start;
   ColorImageType::IndexType start;
Line 253: Line 297:
       pixel[0] = image->GetPixel(index);
       pixel[0] = image->GetPixel(index);
       }
       }
    }
}
void CreateBlankImage(GrayscaleImageType::Pointer image, ColorImageType::Pointer inputImage)
{
  image->SetRegions(inputImage->GetLargestPossibleRegion());
  image->Allocate();
  itk::ImageRegionIterator<GrayscaleImageType> imageIterator(image,image->GetLargestPossibleRegion());
  while(!imageIterator.IsAtEnd())
    {
    imageIterator.Set(0);
    ++imageIterator;
     }
     }
}
}

Revision as of 14:55, 12 November 2010

KmeansModelEstimator.cxx

<source lang="cpp">

  1. include "itkImage.h"
  2. include "itkListSample.h"
  3. include "itkVector.h"
  4. include "itkImageKmeansModelEstimator.h"
  5. include "itkImageRegionIteratorWithIndex.h"
  6. include "itkImageToListSampleAdaptor.h"
  7. include "itkDistanceToCentroidMembershipFunction.h"
  8. include "itkSampleClassifierFilter.h"
  9. include "itkMinimumDecisionRule2.h"
  1. include "vtkSmartPointer.h"
  2. include "vtkImageActor.h"
  3. include "vtkImageData.h"
  4. include "vtkInteractorStyleImage.h"
  5. include "vtkRenderer.h"
  6. include "vtkRenderWindow.h"
  7. include "vtkRenderWindowInteractor.h"

typedef itk::Vector<unsigned char,3> MeasurementVectorType; typedef itk::Image<MeasurementVectorType,2> ColorImageType; typedef itk::Image<unsigned char,2> GrayscaleImageType;

void CreateImage(ColorImageType::Pointer image); void ITKImagetoVTKImageColor(ColorImageType::Pointer image, vtkImageData* outputImage); void ITKImagetoVTKImageGrayscale(GrayscaleImageType::Pointer image, vtkImageData* outputImage); void CreateBlankImage(GrayscaleImageType::Pointer image, ColorImageType::Pointer inputImage);

int main(int, char* [] ) {

 ColorImageType::Pointer image = ColorImageType::New();
 CreateImage(image);
 
 typedef itk::Statistics::DistanceToCentroidMembershipFunction< itk::Vector<unsigned char,3> >  MembershipFunctionType ;
 typedef MembershipFunctionType::Pointer MembershipFunctionPointer ;
 typedef std::vector< MembershipFunctionPointer >  MembershipFunctionPointerVector;
 typedef itk::ImageKmeansModelEstimator<ColorImageType, MembershipFunctionType>  ImageKmeansModelEstimatorType;
 ImageKmeansModelEstimatorType::Pointer
   kmeansEstimator = ImageKmeansModelEstimatorType::New();
 kmeansEstimator->SetInputImage(image);
 kmeansEstimator->SetNumberOfModels(3);
 kmeansEstimator->SetThreshold(0.01 );
 kmeansEstimator->SetOffsetAdd( 0.01 );
 kmeansEstimator->SetOffsetMultiply( 0.01 );
 kmeansEstimator->SetMaxSplitAttempts( 10 );
 kmeansEstimator->Update();
 typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType ;
 typedef itk::Statistics::SampleClassifierFilter< SampleType > ClassifierType;
 ClassifierType::Pointer classifier = ClassifierType::New();
 typedef itk::Statistics::MinimumDecisionRule2 DecisionRuleType;
 DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
 
 classifier->SetDecisionRule(decisionRule);
 classifier->SetNumberOfClasses(3);
 typedef ClassifierType::ClassLabelVectorObjectType               ClassLabelVectorObjectType;
 typedef ClassifierType::ClassLabelVectorType                     ClassLabelVectorType;
 typedef ClassifierType::MembershipFunctionVectorObjectType       MembershipFunctionVectorObjectType;
 typedef ClassifierType::MembershipFunctionVectorType             MembershipFunctionVectorType;
 // Setup membership functions
 MembershipFunctionPointerVector kmeansMembershipFunctions =
   kmeansEstimator->GetMembershipFunctions();
 MembershipFunctionVectorObjectType::Pointer  membershipFunctionsVectorObject = MembershipFunctionVectorObjectType::New();
 classifier->SetMembershipFunctions(membershipFunctionsVectorObject);
 MembershipFunctionVectorType &  membershipFunctionsVector = membershipFunctionsVectorObject->Get();
 std::cout << "There are " << kmeansMembershipFunctions.size() << " kmeans membership functions." << std::endl;
 
 for(unsigned int i = 0; i < kmeansMembershipFunctions.size(); i++)
   {
   membershipFunctionsVector.push_back(kmeansMembershipFunctions[i].GetPointer());
   }
 std::cout << "There are " << membershipFunctionsVector.size() << " membership functions." << std::endl;
 std::cout << "There are " << classifier->GetNumberOfClasses() << " classes." << std::endl;
 // Setup class labels
 ClassLabelVectorObjectType::Pointer  classLabelsObject = ClassLabelVectorObjectType::New();
 classifier->SetClassLabels( classLabelsObject );
 ClassLabelVectorType &  classLabelsVector = classLabelsObject->Get();
 classLabelsVector.push_back( 50 );
 classLabelsVector.push_back( 150 );
 classLabelsVector.push_back( 250 );
 // Perform the classification
 typedef itk::Statistics::ImageToListSampleAdaptor< ColorImageType > SampleAdaptorType;
 SampleAdaptorType::Pointer sample = SampleAdaptorType::New();
 sample->SetImage(image);
 classifier->SetInput(sample);
 classifier->Update();
 
 // Prepare the output image
 GrayscaleImageType::Pointer outputImage = GrayscaleImageType::New();
 CreateBlankImage(outputImage, image);
 // Setup the membership iterator
 const ClassifierType::MembershipSampleType* membershipSample = classifier->GetOutput();
 ClassifierType::MembershipSampleType::ConstIterator membershipIterator = membershipSample->Begin();
 // Setup the output image iterator - this is automatically synchronized with the membership iterator since the sample is an adaptor
 itk::ImageRegionIteratorWithIndex<GrayscaleImageType> outputIterator(outputImage,outputImage->GetLargestPossibleRegion());
 outputIterator.GoToBegin();
 
 while(membershipIterator != membershipSample->End())
   {
   int classLabel = membershipIterator.GetClassLabel();
   std::cout << "Class label: " << classLabel << std::endl;
   outputIterator.Set(static_cast<unsigned char>(classLabel));
   ++membershipIterator;
   ++outputIterator;
   }
 // Visualize
 // Original image
 vtkSmartPointer<vtkImageData> originalVTKImage =
   vtkSmartPointer<vtkImageData>::New();
 ITKImagetoVTKImageColor(image, originalVTKImage);
 vtkSmartPointer<vtkImageActor> originalActor =
   vtkSmartPointer<vtkImageActor>::New();
 originalActor->SetInput(originalVTKImage);
 // Kmeans image
 vtkSmartPointer<vtkImageData> kmeansVTKImage =
   vtkSmartPointer<vtkImageData>::New();
 ITKImagetoVTKImageGrayscale(outputImage, kmeansVTKImage);
 vtkSmartPointer<vtkImageActor> kmeansActor =
   vtkSmartPointer<vtkImageActor>::New();
 kmeansActor->SetInput(kmeansVTKImage);
 
 // There will be one render window
 vtkSmartPointer<vtkRenderWindow> renderWindow =
   vtkSmartPointer<vtkRenderWindow>::New();
 renderWindow->SetSize(600, 300);
 // Define viewport ranges
 // (xmin, ymin, xmax, ymax)
 double leftViewport[4] = {0.0, 0.0, 0.5, 1.0};
 double rightViewport[4] = {0.5, 0.0, 1.0, 1.0};
 
 vtkSmartPointer<vtkRenderWindowInteractor> interactor =
   vtkSmartPointer<vtkRenderWindowInteractor>::New();
 interactor->SetRenderWindow(renderWindow);
 vtkSmartPointer<vtkRenderer> leftRenderer =
   vtkSmartPointer<vtkRenderer>::New();
 renderWindow->AddRenderer(leftRenderer);
 leftRenderer->SetViewport(leftViewport);
 leftRenderer->SetBackground(.6, .5, .4);
 leftRenderer->AddActor(originalActor);
 leftRenderer->ResetCamera();
 vtkSmartPointer<vtkRenderer> rightRenderer =
   vtkSmartPointer<vtkRenderer>::New();
 renderWindow->AddRenderer(rightRenderer);
 rightRenderer->SetViewport(rightViewport);
 rightRenderer->SetBackground(.7, .4, .4);
 rightRenderer->AddActor(kmeansActor);
 rightRenderer->ResetCamera();
 renderWindow->Render();
 vtkSmartPointer<vtkInteractorStyleImage> style =
   vtkSmartPointer<vtkInteractorStyleImage>::New();
 interactor->SetInteractorStyle(style);
 interactor->Start();
 return EXIT_SUCCESS;

}

void CreateImage(ColorImageType::Pointer image) {

 // Create a black image with a red square and a green square
 ColorImageType::RegionType region;
 ColorImageType::IndexType start;
 start[0] = 0;
 start[1] = 0;
 ColorImageType::SizeType size;
 size[0] = 200;
 size[1] = 300;
 region.SetSize(size);
 region.SetIndex(start);
 image->SetRegions(region);
 image->Allocate();
 itk::ImageRegionIterator<ColorImageType> imageIterator(image,region);
 itk::Vector<unsigned char, 3> redPixel;
 redPixel[0] = 255;
 redPixel[1] = 0;
 redPixel[2] = 0;
 itk::Vector<unsigned char, 3> greenPixel;
 greenPixel[0] = 0;
 greenPixel[1] = 255;
 greenPixel[2] = 0;
 
 itk::Vector<unsigned char, 3> blackPixel;
 blackPixel[0] = 0;
 blackPixel[1] = 0;
 blackPixel[2] = 0;
 
 while(!imageIterator.IsAtEnd())
   {
   if(imageIterator.GetIndex()[0] > 100 &&
     imageIterator.GetIndex()[0] < 150 &&
     imageIterator.GetIndex()[1] > 100 &&
     imageIterator.GetIndex()[1] < 150)
     {
     imageIterator.Set(redPixel);
     }
   else if(imageIterator.GetIndex()[0] > 50 &&
     imageIterator.GetIndex()[0] < 70 &&
     imageIterator.GetIndex()[1] > 50 &&
     imageIterator.GetIndex()[1] < 70)
     {
     imageIterator.Set(greenPixel);
     }
   else
     {
     imageIterator.Set(blackPixel);
     }
   ++imageIterator;
 }

}


void ITKImagetoVTKImageColor(ColorImageType::Pointer image, vtkImageData* outputImage) {

 outputImage->SetNumberOfScalarComponents(3);
 outputImage->SetScalarTypeToUnsignedChar();
 outputImage->SetDimensions(image->GetLargestPossibleRegion().GetSize()[0],
                            image->GetLargestPossibleRegion().GetSize()[1],
                            1);
 outputImage->AllocateScalars();
 int* dims = outputImage->GetDimensions();
 for (int y = 0; y < dims[1]; y++)
   {
   for (int x = 0; x < dims[0]; x++)
     {
     unsigned char* pixel = static_cast<unsigned char*>(outputImage->GetScalarPointer(x,y,0));
     ColorImageType::IndexType index;
     index[0] = x;
     index[1] = y;
     pixel[0] = image->GetPixel(index)[0];
     pixel[1] = image->GetPixel(index)[1];
     pixel[2] = image->GetPixel(index)[2];
     }
   }

}


void ITKImagetoVTKImageGrayscale(GrayscaleImageType::Pointer image, vtkImageData* outputImage) {

 outputImage->SetNumberOfScalarComponents(1);
 outputImage->SetScalarTypeToUnsignedChar();
 outputImage->SetDimensions(image->GetLargestPossibleRegion().GetSize()[0],
                            image->GetLargestPossibleRegion().GetSize()[1],
                            1);
 outputImage->AllocateScalars();
 int* dims = outputImage->GetDimensions();
 for (int y = 0; y < dims[1]; y++)
   {
   for (int x = 0; x < dims[0]; x++)
     {
     unsigned char* pixel = static_cast<unsigned char*>(outputImage->GetScalarPointer(x,y,0));
     GrayscaleImageType::IndexType index;
     index[0] = x;
     index[1] = y;
     pixel[0] = image->GetPixel(index);
     }
   }

}

void CreateBlankImage(GrayscaleImageType::Pointer image, ColorImageType::Pointer inputImage) {

 image->SetRegions(inputImage->GetLargestPossibleRegion());
 image->Allocate();
 itk::ImageRegionIterator<GrayscaleImageType> imageIterator(image,image->GetLargestPossibleRegion());
 while(!imageIterator.IsAtEnd())
   {
   imageIterator.Set(0);
   ++imageIterator;
   }

} </source>

CMakeLists.txt

<source lang="cmake"> cmake_minimum_required(VERSION 2.6)

PROJECT(ImageKmeansModelEstimator)

FIND_PACKAGE(VTK REQUIRED) INCLUDE(${VTK_USE_FILE})

FIND_PACKAGE(ITK REQUIRED) INCLUDE(${ITK_USE_FILE})

ADD_EXECUTABLE(ImageKmeansModelEstimator ImageKmeansModelEstimator.cxx) TARGET_LINK_LIBRARIES(ImageKmeansModelEstimator ITKIO ITKStatistics vtkHybrid)

</source>