[vtkusers] Jacobi eigenvectors incorrect?
David Doria
daviddoria+vtk at gmail.com
Tue Oct 27 07:56:37 EDT 2009
On Tue, Oct 27, 2009 at 4:18 AM, Bryn Lloyd <blloyd at vision.ee.ethz.ch> wrote:
> Hi David,
>
> I agree. The result is different to what I get in Matlab for a different
> matrix. vtkMath::JacobiN returns the same result as vtkMath::Jacobi.
>
>
> My test programm:
>
>
>
>
> #include <vtkMath.h>
>
>
> template<class TReal>
> TReal **create_matrix(long nrow, long ncol) {
> typedef TReal* TRealPointer;
> TReal **m = new TRealPointer[nrow];
>
> TReal* block = (TReal*)calloc(nrow*ncol, sizeof(TReal));
> m[0] = block;
> for ( int row = 1; row < nrow; ++row ) {
> m[ row ] = &block[ row * ncol ];
> }
> return m;
> }
> /* free a TReal matrix allocated with matrix() */
> template<class TReal>
> void free_matrix(TReal **m) {
> free (m[0]);
> delete[] m;
> }
>
>
> int main(int argc, char ** argv)
> {
> // Matrix
> // 1 3 2
> // 1 -2 3
> // 1 2 -3
>
> double **a = create_matrix<double>(3,3);
> a[0][0] = 1; a[0][1] = 3; a[0][2] = 2;
> a[1][0] = 1; a[1][1] = -2; a[1][2] = 3;
> a[2][0] = 1; a[2][1] = 2; a[2][2] = -3;
>
> double **w = create_matrix<double>(3,3);
> double v[3];
>
> printf("Jacobi\n");
> vtkMath::Jacobi(a,v,w);
> for(int i=0; i<3; i++)
> printf("%g \t%g %g %g\n",v[i],w[i][0],w[i][1],w[i][2]);
>
>
> a[0][0] = 1; a[0][1] = 3; a[0][2] = 2;
> a[1][0] = 1; a[1][1] = -2; a[1][2] = 3;
> a[2][0] = 1; a[2][1] = 2; a[2][2] = -3;
>
> printf("\nJacobiN\n");
> vtkMath::JacobiN(a,3,v,w);
> for(int i=0; i<3; i++)
> printf("%g \t%g %g %g\n",v[i],w[i][0],w[i][1],w[i][2]);
>
> /*
> Output from this program:
> Jacobi
> 4.369 0.729826 -0.677467 0.0916155
> -2.78956 0.540772 0.490118 -0.68363
> -5.57944 0.418234 0.548474 0.724056
>
> JacobiN
> 4.369 0.729826 -0.677467 0.0916155
> -2.78956 0.540772 0.490118 -0.68363
> -5.57944 0.418234 0.548474 0.724056
> */
>
>
> /*
> % Matlab result:
>
> a = [[1,3,2];[1,-2,3];[1,2,-3]];
> [v,w] = eig(a)
>
> v =
>
> 0.8924 0.7816 0.1413
> 0.3570 -0.5541 -0.7279
> 0.2761 -0.2864 0.6709
>
>
> w =
>
> 2.8190 0 0
> 0 -1.8598 0
> 0 0 -4.9593
> */
> return 0;
> }
Thanks for taking a look Bryn. JacobiN seems like it is just a
particular iteration of Jacobi()? Just curious why you would choose to
compare Jacobi to JacobiN?
This seems like a mildly big problem... as any algorithms that are
using eigenvalues/vectors could be producing bogus results silently.
Is anyone familiar with the internals of the Jacobi functions?
Thanks,
David
More information about the vtkusers
mailing list