[vtkusers] vtk/Examples/Medical/Medical3.cxx, bug or not?
Mathieu Malaterre
mathieu.malaterre at kitware.com
Thu Sep 14 14:45:54 EDT 2006
Hi zl2k,
Could you submit that as a bug at:
http://vtk.org/Bug
Thanks
Mathieu
kdsfinger at gmail.com wrote:
> hi, vtk users
>
> The vtk/Examples/Medical/Medical3.cxx runs good as is. However, if the
> SetDisplayExtent() changes to the other values, it has great chances
> to display pure white plane with no texture written on. This result
> has been reproduced on 2 different linux machines. Is this a bug or
> not?
>
> Attached is the copy of the Medical3.cxx. If you change
> saggital->SetDisplayExtent(32,32, 0,63, 0,92); to
> saggital->SetDisplayExtent(20,20, 0,63, 0,92);
>
> or change
> coronal->SetDisplayExtent(0,63, 32,32, 0,92); to
> coronal->SetDisplayExtent(0,63, 20,20, 0,92);
>
> compile and run the program again, you will see what I am saying. On
> the machine I tested, any position less than 25 will show only pure
> white plane. Please help.
>
> zl2k
>
> ---------------------------------------------------
> /*=========================================================================
>
> Program: Visualization Toolkit
> Module: $RCSfile: Medical3.cxx,v $
>
> Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
> All rights reserved.
> See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
>
> This software is distributed WITHOUT ANY WARRANTY; without even
> the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
> PURPOSE. See the above copyright notice for more information.
>
> =========================================================================*/
>
> //
> // This example reads a volume dataset, extracts two isosurfaces that
> // represent the skin and bone, creates three orthogonal planes
> // (saggital, axial, coronal), and displays them.
> //
> #include "vtkRenderer.h"
> #include "vtkRenderWindow.h"
> #include "vtkRenderWindowInteractor.h"
> #include "vtkVolume16Reader.h"
> #include "vtkPolyDataMapper.h"
> #include "vtkActor.h"
> #include "vtkOutlineFilter.h"
> #include "vtkCamera.h"
> #include "vtkStripper.h"
> #include "vtkLookupTable.h"
> #include "vtkImageDataGeometryFilter.h"
> #include "vtkProperty.h"
> #include "vtkPolyDataNormals.h"
> #include "vtkContourFilter.h"
> #include "vtkImageData.h"
> #include "vtkImageMapToColors.h"
> #include "vtkImageActor.h"
>
> int main (int argc, char **argv)
> {
> if (argc < 2)
> {
> cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
> return 1;
> }
>
> // Create the renderer, the render window, and the interactor. The
> // renderer draws into the render window, the interactor enables
> // mouse- and keyboard-based interaction with the data within the
> // render window.
> //
> vtkRenderer *aRenderer = vtkRenderer::New();
> vtkRenderWindow *renWin = vtkRenderWindow::New();
> renWin->AddRenderer(aRenderer);
> vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
> iren->SetRenderWindow(renWin);
>
> // The following reader is used to read a series of 2D slices (images)
> // that compose the volume. The slice dimensions are set, and the
> // pixel spacing. The data Endianness must also be specified. The
> // reader usese the FilePrefix in combination with the slice number to
> // construct filenames using the format FilePrefix.%d. (In this case
> // the FilePrefix is the root name of the file: quarter.)
> vtkVolume16Reader *v16 = vtkVolume16Reader::New();
> v16->SetDataDimensions(64,64);
> v16->SetDataByteOrderToLittleEndian();
> v16->SetFilePrefix (argv[1]);
> v16->SetImageRange(1, 93);
> v16->SetDataSpacing (3.2, 3.2, 1.5);
>
> // An isosurface, or contour value of 500 is known to correspond to
> // the skin of the patient. Once generated, a vtkPolyDataNormals
> // filter is is used to create normals for smooth surface shading
> // during rendering. The triangle stripper is used to create triangle
> // strips from the isosurface; these render much faster on may
> // systems.
> vtkContourFilter *skinExtractor = vtkContourFilter::New();
> skinExtractor->SetInputConnection( v16->GetOutputPort());
> skinExtractor->SetValue(0, 500);
> vtkPolyDataNormals *skinNormals = vtkPolyDataNormals::New();
> skinNormals->SetInputConnection(skinExtractor->GetOutputPort());
> skinNormals->SetFeatureAngle(60.0);
> vtkStripper *skinStripper = vtkStripper::New();
> skinStripper->SetInputConnection(skinNormals->GetOutputPort());
> vtkPolyDataMapper *skinMapper = vtkPolyDataMapper::New();
> skinMapper->SetInputConnection(skinStripper->GetOutputPort());
> skinMapper->ScalarVisibilityOff();
> vtkActor *skin = vtkActor::New();
> skin->SetMapper(skinMapper);
> skin->GetProperty()->SetDiffuseColor(1, .49, .25);
> skin->GetProperty()->SetSpecular(.3);
> skin->GetProperty()->SetSpecularPower(20);
>
> // An isosurface, or contour value of 1150 is known to correspond to
> // the skin of the patient. Once generated, a vtkPolyDataNormals
> // filter is is used to create normals for smooth surface shading
> // during rendering. The triangle stripper is used to create triangle
> // strips from the isosurface; these render much faster on may
> // systems.
> vtkContourFilter *boneExtractor = vtkContourFilter::New();
> boneExtractor->SetInputConnection(v16->GetOutputPort());
> boneExtractor->SetValue(0, 1150);
> vtkPolyDataNormals *boneNormals = vtkPolyDataNormals::New();
> boneNormals->SetInputConnection(boneExtractor->GetOutputPort());
> boneNormals->SetFeatureAngle(60.0);
> vtkStripper *boneStripper = vtkStripper::New();
> boneStripper->SetInputConnection(boneNormals->GetOutputPort());
> vtkPolyDataMapper *boneMapper = vtkPolyDataMapper::New();
> boneMapper->SetInputConnection(boneStripper->GetOutputPort());
> boneMapper->ScalarVisibilityOff();
> vtkActor *bone = vtkActor::New();
> bone->SetMapper(boneMapper);
> bone->GetProperty()->SetDiffuseColor(1, 1, .9412);
>
> // An outline provides context around the data.
> //
> vtkOutlineFilter *outlineData = vtkOutlineFilter::New();
> outlineData->SetInputConnection(v16->GetOutputPort());
> vtkPolyDataMapper *mapOutline = vtkPolyDataMapper::New();
> mapOutline->SetInputConnection(outlineData->GetOutputPort());
> vtkActor *outline = vtkActor::New();
> outline->SetMapper(mapOutline);
> outline->GetProperty()->SetColor(0,0,0);
>
> // Now we are creating three orthogonal planes passing through the
> // volume. Each plane uses a different texture map and therefore has
> // diferent coloration.
>
> // Start by creatin a black/white lookup table.
> vtkLookupTable *bwLut = vtkLookupTable::New();
> bwLut->SetTableRange (0, 2000);
> bwLut->SetSaturationRange (0, 0);
> bwLut->SetHueRange (0, 0);
> bwLut->SetValueRange (0, 1);
> bwLut->Build(); //effective built
>
> // Now create a lookup table that consists of the full hue circle
> // (from HSV).
> vtkLookupTable *hueLut = vtkLookupTable::New();
> hueLut->SetTableRange (0, 2000);
> hueLut->SetHueRange (0, 1);
> hueLut->SetSaturationRange (1, 1);
> hueLut->SetValueRange (1, 1);
> hueLut->Build(); //effective built
>
> // Finally, create a lookup table with a single hue but having a range
> // in the saturation of the hue.
> vtkLookupTable *satLut = vtkLookupTable::New();
> satLut->SetTableRange (0, 2000);
> satLut->SetHueRange (.6, .6);
> satLut->SetSaturationRange (0, 1);
> satLut->SetValueRange (1, 1);
> satLut->Build(); //effective built
>
> // Create the first of the three planes. The filter vtkImageMapToColors
> // maps the data through the corresponding lookup table created above.
> The
> // vtkImageActor is a type of vtkProp and conveniently displays an
> image on
> // a single quadrilateral plane. It does this using texture mapping and as
> // a result is quite fast. (Note: the input image has to be unsigned char
> // values, which the vtkImageMapToColors produces.) Note also that by
> // specifying the DisplayExtent, the pipeline requests data of this extent
> // and the vtkImageMapToColors only processes a slice of data.
> vtkImageMapToColors *saggitalColors = vtkImageMapToColors::New();
> saggitalColors->SetInputConnection(v16->GetOutputPort());
> saggitalColors->SetLookupTable(bwLut);
> vtkImageActor *saggital = vtkImageActor::New();
> saggital->SetInput(saggitalColors->GetOutput());
> saggital->SetDisplayExtent(32,32, 0,63, 0,92);
>
> // Create the second (axial) plane of the three planes. We use the
> // same approach as before except that the extent differs.
> vtkImageMapToColors *axialColors = vtkImageMapToColors::New();
> axialColors->SetInputConnection(v16->GetOutputPort());
> axialColors->SetLookupTable(hueLut);
> vtkImageActor *axial = vtkImageActor::New();
> axial->SetInput(axialColors->GetOutput());
> axial->SetDisplayExtent(0,63, 0,63, 46,46);
>
> // Create the third (coronal) plane of the three planes. We use
> // the same approach as before except that the extent differs.
> vtkImageMapToColors *coronalColors = vtkImageMapToColors::New();
> coronalColors->SetInputConnection(v16->GetOutputPort());
> coronalColors->SetLookupTable(satLut);
> vtkImageActor *coronal = vtkImageActor::New();
> coronal->SetInput(coronalColors->GetOutput());
> coronal->SetDisplayExtent(0,63, 32,32, 0,92);
>
> // It is convenient to create an initial view of the data. The
> // FocalPoint and Position form a vector direction. Later on
> // (ResetCamera() method) this vector is used to position the camera
> // to look at the data in this direction.
> vtkCamera *aCamera = vtkCamera::New();
> aCamera->SetViewUp (0, 0, -1);
> aCamera->SetPosition (0, 1, 0);
> aCamera->SetFocalPoint (0, 0, 0);
> aCamera->ComputeViewPlaneNormal();
>
> // Actors are added to the renderer.
> aRenderer->AddActor(outline);
> aRenderer->AddActor(saggital);
> aRenderer->AddActor(axial);
> aRenderer->AddActor(coronal);
> aRenderer->AddActor(axial);
> aRenderer->AddActor(coronal);
> aRenderer->AddActor(skin);
> aRenderer->AddActor(bone);
>
> // Turn off bone for this example.
> bone->VisibilityOff();
>
> // Set skin to semi-transparent.
> skin->GetProperty()->SetOpacity(0.5);
>
> // An initial camera view is created. The Dolly() method moves
> // the camera towards the FocalPoint, thereby enlarging the image.
> aRenderer->SetActiveCamera(aCamera);
> aRenderer->Render();
> aRenderer->ResetCamera ();
> aCamera->Dolly(1.5);
>
> // Set a background color for the renderer and set the size of the
> // render window (expressed in pixels).
> aRenderer->SetBackground(1,1,1);
> renWin->SetSize(640, 480);
>
> // Note that when camera movement occurs (as it does in the Dolly()
> // method), the clipping planes often need adjusting. Clipping planes
> // consist of two planes: near and far along the view direction. The
> // near plane clips out objects in front of the plane; the far plane
> // clips out objects behind the plane. This way only what is drawn
> // between the planes is actually rendered.
> aRenderer->ResetCameraClippingRange ();
>
> // interact with data
> iren->Initialize();
> iren->Start();
>
> // It is important to delete all objects created previously to prevent
> // memory leaks. In this case, since the program is on its way to
> // exiting, it is not so important. But in applications it is
> // essential.
> v16->Delete();
> skinExtractor->Delete();
> skinNormals->Delete();
> skinStripper->Delete();
> skinMapper->Delete();
> skin->Delete();
> boneExtractor->Delete();
> boneNormals->Delete();
> boneStripper->Delete();
> boneMapper->Delete();
> bone->Delete();
> outlineData->Delete();
> mapOutline->Delete();
> outline->Delete();
> bwLut->Delete();
> hueLut->Delete();
> satLut->Delete();
> saggitalColors->Delete();
> saggital->Delete();
> axialColors->Delete();
> axial->Delete();
> coronalColors->Delete();
> coronal->Delete();
> aCamera->Delete();
> aRenderer->Delete();
> renWin->Delete();
> iren->Delete();
>
> return 0;
> }
> _______________________________________________
> This is the private VTK discussion list. Please keep messages on-topic.
> Check the FAQ at: http://www.vtk.org/Wiki/VTK_FAQ
> Follow this link to subscribe/unsubscribe:
> http://www.vtk.org/mailman/listinfo/vtkusers
>
More information about the vtkusers
mailing list