[Paraview] capability of ParaView, Catalyst in distributed computing environment ...
Ufuk Utku Turuncoglu (BE)
u.utku.turuncoglu at be.itu.edu.tr
Thu Aug 4 02:48:27 EDT 2016
Hi,
After getting help from the list, i finished the initial implementation
of the code but in this case i have a strange experience with Catalyst.
The prototype code is working with allinputsgridwriter.py script and
could write multi-piece dataset in VTK format without any problem. In
this case, the code also handles four different input ports to get data
in different grid structure and dimensions (2d/3d).
The main problem is that if i try to use the same code to output a png
file after creating iso-surface from single 3d field (141x115x14 =
227K), it is hanging. In this case, if i check the utilization of the
processors (on Linux, Centos 7.1,
12064 turuncu 20 0 1232644 216400 77388 R 100.0 0.7 10:44.17 main.x
12068 turuncu 20 0 1672156 483712 70420 R 100.0 1.5 10:44.17 main.x
12069 turuncu 20 0 1660620 266716 70500 R 100.0 0.8 10:44.26 main.x
12070 turuncu 20 0 1660412 267204 71204 R 100.0 0.8 10:44.22 main.x
12071 turuncu 20 0 1659988 266644 71360 R 100.0 0.8 10:44.18 main.x
12065 turuncu 20 0 1220328 202224 77620 R 99.7 0.6 10:44.08 main.x
12066 turuncu 20 0 1220236 204696 77444 R 99.7 0.6 10:44.16 main.x
12067 turuncu 20 0 1219644 199116 77152 R 99.7 0.6 10:44.18 main.x
12078 turuncu 20 0 1704272 286924 102940 S 10.6 0.9 1:12.91 main.x
12074 turuncu 20 0 1704488 287668 103456 S 10.0 0.9 1:08.50 main.x
12072 turuncu 20 0 1704444 287488 103316 S 9.6 0.9 1:09.09 main.x
12076 turuncu 20 0 1704648 287268 102848 S 9.6 0.9 1:10.16 main.x
12073 turuncu 20 0 1704132 284128 103384 S 9.3 0.9 1:05.27 main.x
12077 turuncu 20 0 1706236 286228 103380 S 9.3 0.9 1:05.49 main.x
12079 turuncu 20 0 1699944 278800 102864 S 9.3 0.9 1:05.87 main.x
12075 turuncu 20 0 1704356 284408 103436 S 8.6 0.9 1:07.03 main.x
they seems normal because the co-processing component only works on a
subset of the resource (8 processor, has utilization around 99 percent).
The GPU utilization (from nvidia-smi command) is
+------------------------------------------------------+
| NVIDIA-SMI 352.79 Driver Version: 352.79 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |
|===============================+======================+======================|
| 0 Quadro K5200 Off | 0000:42:00.0 On
| Off |
| 26% 42C P8 14W / 150W | 227MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1937 G /usr/bin/Xorg
81MiB |
| 0 3817 G /usr/bin/gnome-shell
110MiB |
| 0 9551 G paraview
16MiB |
+-----------------------------------------------------------------------------+
So, the GPU is not overloaded in this case. I tested the code with two
different version of ParaView (5.0.0 and 5.1.0). The results are same
for both cases even if i create the co-processing Python scripts with
same version of the ParaView that is used to compile the code. I also
tried to use 2d field (141x115) but the result is also same and the code
is still hanging. The different machine (MacOS+ParaView 5.0.0) works
without problem. There might be a issue of Linux or installation but i
am not sure and it was working before. Is there any flag or tool that
allows to analyze Paraview deeply to find the source of the problem.
Regards,
--ufuk
More information about the ParaView
mailing list