No subject
Thu Sep 19 15:20:57 EDT 2013
but neither does. Any hints
First, I am copying arrays in the PF, so I should be able to manipulate
either input or output, but neither works
It is also a composite (Exodus dataset)
First version - error is can't find output.Points
import math
def process_block(block):
displ=block.PointData['DISPL']
# Coords of Points are locked into individual Point structures
# Assume Displacements applied (Points are deformed)
numPts=output.GetNumberOfPoints()
# for i in range(numPts):
# #x_coords[i], y_coords[i], z_coords[i] = output.GetPoint(i)
x_coords=output.Points[:,0]
y_coords=output.Points[:,1]
z_coords=output.Points[:,2]
x_undef=x_coords-displ[:,0]
y_undef=y_coords-displ[:,1]
z_undef=z_coords-displ[:,2]
# Undeformed scalar Coordinates
block.PointData.append(x_undef,"X_undef")
block.PointData.append(y_undef,"Y_undef")
block.PointData.append(z_undef,"Z_undef")
# Deformed scalar Coordinates
block.PointData.append(x_coords,"X_def")
block.PointData.append(y_coords,"Y_def")
block.PointData.append(z_coords,"Z_def")
# Calc angles (no atan2 in vtk)
Angles_undef=math.atan2(z_undef,x_undef)
block.PointData.append(Angles_undef,"Angle_undef")
for block in output:
process_block(block)
For second version I comment out x_coords=output.Points[;0] and use
# for i in range(numPts):
# #x_coords[i], y_coords[i], z_coords[i] = output.GetPoint(i)
This error is can't find output.GetPoint
Both of these are used in examples online of Programmable Filter, so what
am I missing?
I have substituted input for output above and no change.
Also, output.GetNumberOfPoints works, so why doesn't output.GetPoints
work?
Thanks
Dennis Conklin
RDE & Q Senior Engineer
Engineering Mechanics
The Goodyear Tire & Rubber Company
200 Innovation Way, Akron, OH 44316
phone.330-796-5701
dennis_conklin at goodyear.com
--=_alternative 0053D32F85257C07_=
Content-Type: text/html; charset="US-ASCII"
<br><font size=2 face="sans-serif">From all the examples online, I think
either of these examples should work but neither does. Any hints</font>
<br><font size=2 face="sans-serif">First, I am copying arrays in the PF,
so I should be able to manipulate either input or output, but neither works</font>
<br><font size=2 face="sans-serif">It is also a composite (Exodus dataset)</font>
<br>
<br><font size=2 face="sans-serif">First version - error is can't find
output.Points</font>
<br>
<br><font size=2 face="Courier New">import math</font>
<br>
<br><font size=2 face="Courier New">def process_block(block):</font>
<br><font size=2 face="Courier New"> displ=block.PointData['DISPL']</font>
<br><font size=2 face="Courier New"> # Coords of Points are
locked into individual Point structures</font>
<br><font size=2 face="Courier New"> # Assume Displacements
applied (Points are deformed)</font>
<br><font size=2 face="Courier New"> numPts=output.GetNumberOfPoints()</font>
<br><font size=2 face="Courier New"># for i in range(numPts):</font>
<br><font size=2 face="Courier New"># #x_coords[i],
y_coords[i], z_coords[i] = output.GetPoint(i)</font>
<br>
<br><font size=2 face="Courier New"> x_coords=output.Points[:,0]</font>
<br><font size=2 face="Courier New"> y_coords=output.Points[:,1]</font>
<br><font size=2 face="Courier New"> z_coords=output.Points[:,2]</font>
<br><font size=2 face="Courier New"> x_undef=x_coords-displ[:,0]</font>
<br><font size=2 face="Courier New"> y_undef=y_coords-displ[:,1]</font>
<br><font size=2 face="Courier New"> z_undef=z_coords-displ[:,2]</font>
<br><font size=2 face="Courier New"> # Undeformed scalar Coordinates</font>
<br><font size=2 face="Courier New"> block.PointData.append(x_undef,"X_undef")</font>
<br><font size=2 face="Courier New"> block.PointData.append(y_undef,"Y_undef")
</font>
<br><font size=2 face="Courier New"> block.PointData.append(z_undef,"Z_undef")</font>
<br><font size=2 face="Courier New"> # Deformed scalar Coordinates</font>
<br><font size=2 face="Courier New"> block.PointData.append(x_coords,"X_def")</font>
<br><font size=2 face="Courier New"> block.PointData.append(y_coords,"Y_def")</font>
<br><font size=2 face="Courier New"> block.PointData.append(z_coords,"Z_def")</font>
<br><font size=2 face="Courier New"> # Calc angles (no atan2
in vtk)</font>
<br><font size=2 face="Courier New"> Angles_undef=math.atan2(z_undef,x_undef)</font>
<br><font size=2 face="Courier New"> block.PointData.append(Angles_undef,"Angle_undef")</font>
<br>
<br><font size=2 face="Courier New">for block in output:</font>
<br><font size=2 face="Courier New"> process_block(block)</font>
<br>
<br><font size=2 face="sans-serif">For second version I comment out x_coords=output.Points[;0]
and use </font>
<br><font size=2 face="Courier New"># for i in range(numPts):</font>
<br><font size=2 face="Courier New"># #x_coords[i],
y_coords[i], z_coords[i] = output.GetPoint(i)</font>
<br>
<br><font size=2 face="sans-serif">This error is can't find output.GetPoint</font>
<br>
<br><font size=2 face="sans-serif">Both of these are used in examples online
of Programmable Filter, so what am I missing?</font>
<br><font size=2 face="sans-serif">I have substituted input for output
above and no change. </font>
<br><font size=2 face="sans-serif">Also, output.GetNumberOfPoints works,
so why doesn't output.GetPoints work?</font>
<br>
<br><font size=2 face="sans-serif">Thanks</font>
<br>
<br><font size=1 color=#002060 face="Verdana"><b>Dennis Conklin</b><i><br>
<b>RDE & Q Senior Engineer </i></b></font>
<br><font size=1 color=#002060 face="Verdana"><b><i>Engineering Mechanics</i></b><i><br>
</i>The Goodyear Tire & Rubber Company</font>
<br><font size=1 color=#002060 face="Verdana">200 Innovation Way, Akron,
OH 44316<br>
phone.330-796-5701<br>
dennis_conklin at goodyear.com</font>
<br>
<br><img src=cid:_2_06BC817006BC7F040053D32F85257C07>
--=_alternative 0053D32F85257C07_=--
--=_related 0053D32F85257C07_=
Content-Type: image/jpeg
Content-ID: <_2_06BC817006BC7F040053D32F85257C07>
Content-Transfer-Encoding: base64
/9j/4AAQSkZJRgABAQEAZABkAAD/4RXDRXhpZgAASUkqAAgAAAAHAAABBAABAAAAdwAAAAEBBAAB
AAAAFgAAABoBBQABAAAAsAAAABsBBQABAAAAuAAAACgBAwABAAAAAgAAADEBAgAoAAAAwAAAAHOH
BwBIDAAA6AAAAGIAAAAGAAMBAwABAAAABgAAABoBBQABAAAAMA0AABsBBQABAAAAOA0AACgBAwAB
AAAAAgAAAAECBAABAAAAQA0AAAICBAABAAAAewgAAAAAAABkAAAAAQAAAGQAAAABAAAAUGFpbnRT
aG9wIFBybyAxNC4wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADEhMaW5vAhAAAG1udHJSR0IgWFla
IAfOAAIACQAGADEAAGFjc3BNU0ZUAAAAAElFQyBzUkdCAAAAAAAAAAAAAAAAAAD21gABAAAAANMt
SFAgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWNwcnQA
AAFQAAAAM2Rlc2MAAAGEAAAAbHd0cHQAAAHwAAAAFGJrcHQAAAIEAAAAFHJYWVoAAAIYAAAAFGdY
WVoAAAIsAAAAFGJYWVoAAAJAAAAAFGRtbmQAAAJUAAAAcGRtZGQAAALEAAAAiHZ1ZWQAAANMAAAA
hnZpZXcAAAPUAAAAJGx1bWkAAAP4AAAAFG1lYXMAAAQMAAAAJHRlY2gAAAQwAAAADHJUUkMAAAQ8
AAAIDGdUUkMAAAQ8AAAIDGJUUkMAAAQ8AAAIDHRleHQAAAAAQ29weXJpZ2h0IChjKSAxOTk4IEhl
d2xldHQtUGFja2FyZCBDb21wYW55AABkZXNjAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAA
AAAAAAAAEnNSR0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAA81EAAQAAAAEWzFhZWiAAAAAAAAAAAAAAAAAAAAAA
WFlaIAAAAAAAAG+iAAA49QAAA5BYWVogAAAAAAAAYpkAALeFAAAY2lhZWiAAAAAAAAAkoAAAD4QA
ALbPZGVzYwAAAAAAAAAWSUVDIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAWSUVDIGh0dHA6
Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGRlc2MAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0IgY29sb3VyIHNwYWNlIC0gc1JH
QgAAAAAAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0IgY29sb3VyIHNwYWNlIC0gc1JH
QgAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAACxSZWZlcmVuY2UgVmlld2luZyBDb25k
aXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0
aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdmlldwAAAAAAE6T+
ABRfLgAQzxQAA+3MAAQTCwADXJ4AAAABWFlaIAAAAAAATAlWAFAAAABXH+dtZWFzAAAAAAAAAAEA
AAAAAAAAAAAAAAAAAAAAAAACjwAAAAJzaWcgAAAAAENSVCBjdXJ2AAAAAAAABAAAAAAFAAoADwAU
ABkAHgAjACgALQAyADcAOwBAAEUASgBPAFQAWQBeAGMAaABtAHIAdwB8AIEAhgCLAJAAlQCaAJ8A
pACpAK4AsgC3ALwAwQDGAMsA0ADVANsA4ADlAOsA8AD2APsBAQEHAQ0BEwEZAR8BJQErATIBOAE+
AUUBTAFSAVkBYAFnAW4BdQF8AYMBiwGSAZoBoQGpAbEBuQHBAckB0QHZAeEB6QHyAfoCAwIMAhQC
HQImAi8COAJBAksCVAJdAmcCcQJ6AoQCjgKYAqICrAK2AsECywLVAuAC6wL1AwADCwMWAyEDLQM4
A0MDTwNaA2YDcgN+A4oDlgOiA64DugPHA9MD4APsA/kEBgQTBCAELQQ7BEgEVQRjBHEEfgSMBJoE
qAS2BMQE0wThBPAE/gUNBRwFKwU6BUkFWAVnBXcFhgWWBaYFtQXFBdUF5QX2BgYGFgYnBjcGSAZZ
BmoGewaMBp0GrwbABtEG4wb1BwcHGQcrBz0HTwdhB3QHhgeZB6wHvwfSB+UH+AgLCB8IMghGCFoI
bgiCCJYIqgi+CNII5wj7CRAJJQk6CU8JZAl5CY8JpAm6Cc8J5Qn7ChEKJwo9ClQKagqBCpgKrgrF
CtwK8wsLCyILOQtRC2kLgAuYC7ALyAvhC/kMEgwqDEMMXAx1DI4MpwzADNkM8w0NDSYNQA1aDXQN
jg2pDcMN3g34DhMOLg5JDmQOfw6bDrYO0g7uDwkPJQ9BD14Peg+WD7MPzw/sEAkQJhBDEGEQfhCb
ELkQ1xD1ERMRMRFPEW0RjBGqEckR6BIHEiYSRRJkEoQSoxLDEuMTAxMjE0MTYxODE6QTxRPlFAYU
JxRJFGoUixStFM4U8BUSFTQVVhV4FZsVvRXgFgMWJhZJFmwWjxayFtYW+hcdF0EXZReJF64X0hf3
GBsYQBhlGIoYrxjVGPoZIBlFGWsZkRm3Gd0aBBoqGlEadxqeGsUa7BsUGzsbYxuKG7Ib2hwCHCoc
Uhx7HKMczBz1HR4dRx1wHZkdwx3sHhYeQB5qHpQevh7pHxMfPh9pH5Qfvx/qIBUgQSBsIJggxCDw
IRwhSCF1IaEhziH7IiciVSKCIq8i3SMKIzgjZiOUI8Ij8CQfJE0kfCSrJNolCSU4JWgllyXHJfcm
JyZXJocmtyboJxgnSSd6J6sn3CgNKD8ocSiiKNQpBik4KWspnSnQKgIqNSpoKpsqzysCKzYraSud
K9EsBSw5LG4soizXLQwtQS12Last4S4WLkwugi63Lu4vJC9aL5Evxy/+MDUwbDCkMNsxEjFKMYIx
ujHyMioyYzKbMtQzDTNGM38zuDPxNCs0ZTSeNNg1EzVNNYc1wjX9Njc2cjauNuk3JDdgN5w31zgU
OFA4jDjIOQU5Qjl/Obw5+To2OnQ6sjrvOy07azuqO+g8JzxlPKQ84z0iPWE9oT3gPiA+YD6gPuA/
IT9hP6I/4kAjQGRApkDnQSlBakGsQe5CMEJyQrVC90M6Q31DwEQDREdEikTORRJFVUWaRd5GIkZn
RqtG8Ec1R3tHwEgFSEtIkUjXSR1JY0mpSfBKN0p9SsRLDEtTS5pL4kwqTHJMuk0CTUpNk03cTiVO
bk63TwBPSU+TT91QJ1BxULtRBlFQUZtR5lIxUnxSx1MTU19TqlP2VEJUj1TbVShVdVXCVg9WXFap
VvdXRFeSV+BYL1h9WMtZGllpWbhaB1pWWqZa9VtFW5Vb5Vw1XIZc1l0nXXhdyV4aXmxevV8PX2Ff
s2AFYFdgqmD8YU9homH1YklinGLwY0Njl2PrZEBklGTpZT1lkmXnZj1mkmboZz1nk2fpaD9olmjs
aUNpmmnxakhqn2r3a09rp2v/bFdsr20IbWBtuW4SbmtuxG8eb3hv0XArcIZw4HE6cZVx8HJLcqZz
AXNdc7h0FHRwdMx1KHWFdeF2Pnabdvh3VnezeBF4bnjMeSp5iXnnekZ6pXsEe2N7wnwhfIF84X1B
faF+AX5ifsJ/I3+Ef+WAR4CogQqBa4HNgjCCkoL0g1eDuoQdhICE44VHhauGDoZyhteHO4efiASI
aYjOiTOJmYn+imSKyoswi5aL/IxjjMqNMY2Yjf+OZo7OjzaPnpAGkG6Q1pE/kaiSEZJ6kuOTTZO2
lCCUipT0lV+VyZY0lp+XCpd1l+CYTJi4mSSZkJn8mmia1ZtCm6+cHJyJnPedZJ3SnkCerp8dn4uf
+qBpoNihR6G2oiailqMGo3aj5qRWpMelOKWpphqmi6b9p26n4KhSqMSpN6mpqhyqj6sCq3Wr6axc
rNCtRK24ri2uoa8Wr4uwALB1sOqxYLHWskuywrM4s660JbSctRO1irYBtnm28Ldot+C4WbjRuUq5
wro7urW7LrunvCG8m70VvY++Cr6Evv+/er/1wHDA7MFnwePCX8Lbw1jD1MRRxM7FS8XIxkbGw8dB
x7/IPci8yTrJuco4yrfLNsu2zDXMtc01zbXONs62zzfPuNA50LrRPNG+0j/SwdNE08bUSdTL1U7V
0dZV1tjXXNfg2GTY6Nls2fHadtr724DcBdyK3RDdlt4c3qLfKd+v4DbgveFE4cziU+Lb42Pj6+Rz
5PzlhOYN5pbnH+ep6DLovOlG6dDqW+rl63Dr++yG7RHtnO4o7rTvQO/M8Fjw5fFy8f/yjPMZ86f0
NPTC9VD13vZt9vv3ivgZ+Kj5OPnH+lf65/t3/Af8mP0p/br+S/7c/23//0gAAAABAAAASAAAAAEA
AAD/2P/bAEMABgQFBgUEBgYFBgcHBggKEAoKCQkKFA4PDBAXFBgYFxQWFhodJR8aGyMcFhYgLCAj
JicpKikZHy0wLSgwJSgpKP/bAEMBBwcHCggKEwoKEygaFhooKCgoKCgoKCgoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKP/AABEIABYAdwMBIQACEQEDEQH/xAAfAAABBQEB
AQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYT
UWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZX
WFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPE
xcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAA
AQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGh
scEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlq
c3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV
1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APofxf418PeD4Y38QalFatIMxxYL
yOPUKoJx79Ki8H+OtD8XTXMGjTTtPbqHkimt3iYKeh+YAEGtfYT5PaW0J5lexla78WfB+jalNYXG
ptPcwZMy2sDzCIDruKggY788V0mneJ9F1Hw9/btpqVs+khS7XJfaiAdd2cbSPQ805YepGKk1uCkn
ocnB8ZvA812sI1Z1ieTyluXtpFhLem8rjuOtbPjD4heGvB8tpFr2oeQ90hkiCRPJuUd/lB9ap4Wq
pKNtWHOrXIPDHxM8J+JdTXTtK1UNfMNyQTRPEzjGfl3AZ45wO1ebfFH4n+Il0/XLXSdOuNDhtRsW
8ueJ5MSqjMijIVeeG5z2Oa1o4Vqpy1dNvmTKel0edaGNUhj03XvF3ivVvDmi6ksn2f7PLcSTzFMD
POQM5ByeCOgr2Tws3hXwlBpviK68U61rU2sj7PYveSSTO+4jISIDIOQASRx04zXRiLv3acVZ6X06
bkx82bF/8ZvA9jqFxZXGrSC5t5GikVbWVsMpwRkLzyK6Sz8Y6JdeEpPE0d2U0ZFZ2nljZOFOD8pG
eowOOe1cM8NUgk2tzRTTIfBfjrQPGi3Z8PXjXP2Tb526J49u7OPvAZ+6a5x/jb4EWWWMatKzRk7t
tpKwGDgnIXp701hark4paoOdJXOs8JeLdE8XWUl14ev47yKJtkmFKsh7ZVgCKKxnBwk4y3GnfVHy
14hSfUf2j5E8UzC3totT3brlgiC2jJZACeMFVGPUn3rvPDXxc8SeOY/FFlpulWsBt9KuZ4poN5l3
AYjAyeuWr1qtGM4xk9opfiYqTTPH/CNxFpfw78Zag0yC9vRBpcKlhvKu++U4642oB+Nadzput6Z8
AYZpI549O1HWPOZcEZjEeEY/7JYH67V9q6ZNc3vdZL8iFsUPFny+DPA3h3TiLi5likv5Y4TvZpZ3
wikD+IKg4681d+JaTah498P+G765QPptnZaVNK7gKj7VMhLHjALkE+1Ed0+vvP8AEDa8PrL4s/aG
k1LTD/xK9OvPOa4X/Vx20ACqc+hVAB9afc6zr3xA8Wz3nhuGIWd9O0E1m0YZZCmPLZ1P3yFCNycK
VPQdcXGKacvsxX9fgVd9Op6L+0basvwc00660R1eC4hVXixhpNrBuw4KgngYyK5/4C6JBp/ge98d
61I9w+mQ3CadFKcpbooLMyj1Ziw/P1rnhK2GsursvmU175558EluJ/GNzqqeItL0S4gXcZ78I3me
Y2GChiOcZ5/xr1L47eJo9f1lvC1vHqE2kafG81/JYQGXfc7CYoiRwFBwT/iK3rRviE7Wst3t5fmT
F+6ee/ArxD/wj2jePZw2110rzY+f4w2xf/HpBXGeHNQu9F8L6/dRWJkh1OIaX9r34EJJEjLjHJZU
x2rfkXPNvq0TfRH0V+y3oVtpHhN9Ue+hkvNabckCtgokRZcYPU5LE/hRXjYuXNWk/wCtNDogrRR6
xrXhnQ9dkSTWdH0+/kQYVrm3WQqPQEjpS6J4a0PQZJZNF0iwsHlAWRraBYywHQHA5rL2k+Xlu7Ds
r3KNx4F8KXOom/n8O6VJdlt5ka2Qkt6njBPvW7c2ltdWj2lzbwzWrrsaGRAyMvoVPGKJVJytd7Ak
kY+jeDPDWiXf2rSdC060ue0sUChh9Djj8KZfeB/Ct/eTXV74d0m4uZmLySy2qMzsepJI5NV7apfm
5ncOVbWOe+Ifh5LTwZ/Y3hRLTRY9RuY7Wb7NAse9HJUjIHGcgFsHjPFbHw+8Ead4M0tILRVe5K7X
m24467V9Bnn1J5PbFus/Z8vVvUXLrc2tb0PS9dgjg1rTrS/hjbeiXMQkCtjGQD3waI9C0qLRTpEe
m2iaUVKG0WJREQTkjbjHJ5rHnla19B2RkJ8PfByOrL4X0UMpyCLOPg/lW3p+lafpyXCWFlb2y3Ej
TTCKML5jt1ZsdSfU1Uqs56SbYJJbGRD4E8KQxzxxeHNIRJ12SqtogDrkNg8cjIB/CpR4L8MjTDpw
8P6X9gMvnm3+yps8zGN23GM44zT9tU/mf3hyrsXdM0HSNKSFdN02ztFg3eUIYVTZu+9jA4z3orNy
cndsdrH/2f/bAEMABgQFBgUEBgYFBgcHBggKEAoKCQkKFA4PDBAXFBgYFxQWFhodJR8aGyMcFhYg
LCAjJicpKikZHy0wLSgwJSgpKP/bAEMBBwcHCggKEwoKEygaFhooKCgoKCgoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKP/AABEIABYAdwMBIgACEQEDEQH/xAAfAAAB
BQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiEx
QQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNU
VVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6
wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAA
AAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgU
QpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZn
aGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS
09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APofxf418PeD4Y38QalFatIM
xxYLyOPUKoJx79Ki8H+OtD8XTXMGjTTtPbqHkimt3iYKeh+YAEGvmTxCk+o/tHyJ4pmFvbRanu3X
LBEFtGSyAE8YKqMepPvXeeGvi54k8cx+KLLTdKtYDb6VczxTQbzLuAxGBk9ctXfLCJQTWrte/TUz
U9T0rXfiz4P0bUprC41Np7mDJmW1geYRAddxUEDHfniuk07xPouo+Hv7dtNStn0kKXa5L7UQDruz
jaR6HmvjHwjcRaX8O/GWoNMgvb0QaXCpYbyrvvlOOuNqAfjWnc6bremfAGGaSOePTtR1jzmXBGYx
HhGP+yWB+u1fatJYGC0T62JVRn0fB8ZvA812sI1Z1ieTyluXtpFhLem8rjuOtbPjD4heGvB8tpFr
2oeQ90hkiCRPJuUd/lB9a+SPFny+DPA3h3TiLi5likv5Y4TvZpZ3wikD+IKg4681d+JaTah498P+
G765QPptnZaVNK7gKj7VMhLHjALkE+1NYKm5LV21/APaM+o/DHxM8J+JdTXTtK1UNfMNyQTRPEzj
Gfl3AZ45wO1ebfFH4n+Il0/XLXSdOuNDhtRsW8ueJ5MSqjMijIVeeG5z2Oa8/wDD6y+LP2hpNS0w
/wDEr06885rhf9XHbQAKpz6FUAH1p9zrOvfEDxbPeeG4YhZ307QTWbRhlkKY8tnU/fIUI3JwpU9B
1I4aEJ36WT16A5tor6GNUhj03XvF3ivVvDmi6ksn2f7PLcSTzFMDPOQM5ByeCOgr2Tws3hXwlBpv
iK68U61rU2sj7PYveSSTO+4jISIDIOQASRx04zWR+0basvwc00660R1eC4hVXixhpNrBuw4KgngY
yK5/4C6JBp/ge98d61I9w+mQ3CadFKcpbooLMyj1Ziw/P1om1Vpe0btray6gtHY9Pv8A4zeB7HUL
iyuNWkFzbyNFIq2srYZTgjIXnkV0ln4x0S68JSeJo7spoyKztPLGycKcH5SM9Rgcc9q+SfgktxP4
xudVTxFpeiXEC7jPfhG8zzGwwUMRzjPP+NepfHbxNHr+st4Wt49Qm0jT43mv5LCAy77nYTFESOAo
OCf8RWdTCQjUUI38/wCrDU3a7PXvBfjrQPGi3Z8PXjXP2Tb526J49u7OPvAZ+6a5x/jb4EWWWMat
KzRk7ttpKwGDgnIXp714F8CvEP8Awj2jePZw2110rzY+f4w2xf8Ax6QVxnhzULvRfC+v3UViZIdT
iGl/a9+BCSRIy4xyWVMdq1WAhzyWtlawvaOyPtzwl4t0TxdZSXXh6/jvIom2SYUqyHtlWAIory39
lvQrbSPCb6o99DJea025IFbBRIiy4wepyWJ/CivPrwjCo4x2RpF3V2esa14Z0PXZEk1nR9Pv5EGF
a5t1kKj0BI6UuieGtD0GSWTRdIsLB5QFka2gWMsB0BwOaKKjmdrX0KsUbjwL4UudRN/P4d0qS7Lb
zI1shJb1PGCfet25tLa6tHtLm3hmtXXY0MiBkZfQqeMUUUOTe7Cxj6N4M8NaJd/atJ0LTrS57SxQ
KGH0OOPwpl94H8K395NdXvh3Sbi5mYvJLLaozOx6kkjk0UUc8r3uKyOe+Ifh5LTwZ/Y3hRLTRY9R
uY7Wb7NAse9HJUjIHGcgFsHjPFbHw+8Ead4M0tILRVe5K7Xm24467V9Bnn1J5PbBRWjnL2aV9xWV
za1vQ9L12CODWtOtL+GNt6JcxCQK2MZAPfBoj0LSotFOkR6baJpRUobRYlERBOSNuMcnmiisuZ7X
KsZCfD3wcjqy+F9FDKcgizj4P5Vt6fpWn6clwlhZW9stxI00wijC+Y7dWbHUn1NFFNzk92KxkQ+B
PCkMc8cXhzSESddkqraIA65DYPHIyAfwqUeC/DI0w6cPD+l/YDL55t/sqbPMxjdtxjOOM0UUc8u4
WRd0zQdI0pIV03TbO0WDd5QhhVNm772MDjPeiiik23uM/9k=
--=_related 0053D32F85257C07_=--
More information about the ParaView
mailing list