[Insight-users] Question on 3d deformable registration

Stephen Yip stephen.fyip1 at gmail.com
Sun Oct 24 23:42:40 EDT 2010


Hi,

I successfully ran DeformableRegistration 3 (symmetric demon force).
However, these codes only registration 2D images. Building upon the 2D
example, how can I promote the code to account for 3D registration?

Below is the C code that I copy directly from the example. Thanks Stephen.

/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: DeformableRegistration3.cxx,v $
  Language:  C++
  Date:      $Date: 2007-09-07 14:17:42 $
  Version:   $Revision: 1.18 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"


// Software Guide : BeginLatex
//
// This example demonstrates how to use a variant of the ``demons''
algorithm to
// deformably register two images. This variant uses a different formulation
// for computing the forces to be applied to the image in order to compute
the
// deformation fields. The variant uses both the gradient of the fixed image
// and the gradient of the deformed moving image in order to compute the
// forces. This mechanism for computing the forces introduces a symmetry
with
// respect to the choice of the fixed and moving images. This symmetry only
// holds during the computation of one iteration of the PDE updates. It is
// unlikely that total symmetry may be achieved by this mechanism for the
// entire registration process.
//
// The first step for using this filter is to include the following header
files.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkSymmetricForcesDemonsRegistrationFilter.h"
#include "itkHistogramMatchingImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"
// Software Guide : EndCodeSnippet





//  The following section of code implements a Command observer
//  that will monitor the evolution of the registration process.
//
  class CommandIterationUpdate : public itk::Command
  {
  public:
    typedef  CommandIterationUpdate   Self;
    typedef  itk::Command             Superclass;
    typedef  itk::SmartPointer<CommandIterationUpdate>  Pointer;
    itkNewMacro( CommandIterationUpdate );
  protected:
    CommandIterationUpdate() {};

    typedef itk::Image< float, 2 > InternalImageType;
    typedef itk::Vector< float, 2 >    VectorPixelType;
    typedef itk::Image<  VectorPixelType, 2 > DeformationFieldType;

    typedef itk::SymmetricForcesDemonsRegistrationFilter<
                                InternalImageType,
                                InternalImageType,
                                DeformationFieldType>
RegistrationFilterType;

  public:

    void Execute(itk::Object *caller, const itk::EventObject & event)
      {
        Execute( (const itk::Object *)caller, event);
      }

    void Execute(const itk::Object * object, const itk::EventObject & event)
      {
         const RegistrationFilterType * filter =
          dynamic_cast< const RegistrationFilterType * >( object );
        if( !(itk::IterationEvent().CheckEvent( &event )) )
          {
          return;
          }
        std::cout << filter->GetMetric() << std::endl;
      }
  };





int main( int argc, char *argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile movingImageFile ";
    std::cerr << " outputImageFile " << std::endl;
    return EXIT_FAILURE;
    }

  // Software Guide : BeginLatex
  //
  // Second, we declare the types of the images.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int Dimension = 2;
  typedef unsigned short PixelType;

  typedef itk::Image< PixelType, Dimension >  FixedImageType;
  typedef itk::Image< PixelType, Dimension >  MovingImageType;
  // Software Guide : EndCodeSnippet

  // Set up the file readers
  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer fixedImageReader   =
FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader =
MovingImageReaderType::New();

  fixedImageReader->SetFileName( argv[1] );
  movingImageReader->SetFileName( argv[2] );


  // Software Guide : BeginLatex
  //
  // Image file readers are set up in a similar fashion to previous
examples.
  // To support the re-mapping of the moving image intensity, we declare an
  // internal image type with a floating point pixel type and cast the input
  // images to the internal image type.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef float InternalPixelType;
  typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
  typedef itk::CastImageFilter< FixedImageType,
                                InternalImageType > FixedImageCasterType;
  typedef itk::CastImageFilter< MovingImageType,
                                InternalImageType > MovingImageCasterType;

  FixedImageCasterType::Pointer fixedImageCaster   =
FixedImageCasterType::New();
  MovingImageCasterType::Pointer movingImageCaster =
MovingImageCasterType::New();

  fixedImageCaster->SetInput( fixedImageReader->GetOutput() );
  movingImageCaster->SetInput( movingImageReader->GetOutput() );
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The demons algorithm relies on the assumption that pixels representing
the
  // same homologous point on an object have the same intensity on both the
  // fixed and moving images to be registered. In this example, we will
  // preprocess the moving image to match the intensity between the images
  // using the \doxygen{HistogramMatchingImageFilter}.
  //
  // \index{itk::Histogram\-Matching\-Image\-Filter}
  //
  // The basic idea is to match the histograms of the two images at a
user-specified number of quantile values. For robustness, the histograms are
  // matched so that the background pixels are excluded from both
histograms.
  // For MR images, a simple procedure is to exclude all gray values that
are
  // smaller than the mean gray value of the image.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::HistogramMatchingImageFilter<
                                    InternalImageType,
                                    InternalImageType >
MatchingFilterType;
  MatchingFilterType::Pointer matcher = MatchingFilterType::New();
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // For this example, we set the moving image as the source or input image
and
  // the fixed image as the reference image.
  //
  // \index{itk::Histogram\-Matching\-Image\-Filter!SetInput()}
  // \index{itk::Histogram\-Matching\-Image\-Filter!SetSourceImage()}
  // \index{itk::Histogram\-Matching\-Image\-Filter!SetReferenceImage()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  matcher->SetInput( movingImageCaster->GetOutput() );
  matcher->SetReferenceImage( fixedImageCaster->GetOutput() );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // We then select the number of bins to represent the histograms and the
  // number of points or quantile values where the histogram is to be
  // matched.
  //
  //
\index{itk::Histogram\-Matching\-Image\-Filter!Set\-Number\-Of\-Histogram\-Levels()}
  //
\index{itk::Histogram\-Matching\-Image\-Filter!Set\-Number\-Of\-Match\-Points()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  matcher->SetNumberOfHistogramLevels( 1024 );
  matcher->SetNumberOfMatchPoints( 7 );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // Simple background extraction is done by thresholding at the mean
  // intensity.
  //
  //
\index{itk::Histogram\-Matching\-Image\-Filter!Threshold\-At\-Mean\-Intensity\-On()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  matcher->ThresholdAtMeanIntensityOn();
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // In the \doxygen{SymmetricForcesDemonsRegistrationFilter}, the
deformation field is
  // represented as an image whose pixels are floating point vectors.
  //
  // \index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Vector< float, Dimension >    VectorPixelType;
  typedef itk::Image<  VectorPixelType, Dimension > DeformationFieldType;
  typedef itk::SymmetricForcesDemonsRegistrationFilter<
                                InternalImageType,
                                InternalImageType,
                                DeformationFieldType>
RegistrationFilterType;
  RegistrationFilterType::Pointer filter = RegistrationFilterType::New();
  // Software Guide : EndCodeSnippet



  // Create the Command observer and register it with the registration
filter.
  //
  CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
  filter->AddObserver( itk::IterationEvent(), observer );




  // Software Guide : BeginLatex
  //
  // The input fixed image is simply the output of the fixed image casting
  // filter.  The input moving image is the output of the histogram matching
  // filter.
  //
  //
\index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter!SetFixedImage()}
  //
\index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter!SetMovingImage()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetFixedImage( fixedImageCaster->GetOutput() );
  filter->SetMovingImage( matcher->GetOutput() );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The demons registration filter has two parameters: the number of
  // iterations to be performed and the standard deviation of the Gaussian
  // smoothing kernel to be applied to the deformation field after each
  // iteration.
  //
\index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter!SetNumberOfIterations()}
  //
\index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter!SetStandardDeviations()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetNumberOfIterations( 50 );
  filter->SetStandardDeviations( 1.0 );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The registration algorithm is triggered by updating the filter. The
  // filter output is the computed deformation field.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->Update();
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The \doxygen{WarpImageFilter} can be used to warp the moving image with
  // the output deformation field. Like the \doxygen{ResampleImageFilter},
  // the WarpImageFilter requires the specification of the input image to be
  // resampled, an input image interpolator, and the output image spacing
and
  // origin.
  //
  // \index{itk::WarpImageFilter}
  // \index{itk::WarpImageFilter!SetInput()}
  // \index{itk::WarpImageFilter!SetInterpolator()}
  // \index{itk::WarpImageFilter!SetOutputSpacing()}
  // \index{itk::WarpImageFilter!SetOutputOrigin()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::WarpImageFilter<
                          MovingImageType,
                          MovingImageType,
                          DeformationFieldType  >     WarperType;
  typedef itk::LinearInterpolateImageFunction<
                                   MovingImageType,
                                   double          >  InterpolatorType;
  WarperType::Pointer warper = WarperType::New();
  InterpolatorType::Pointer interpolator = InterpolatorType::New();
  FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

  warper->SetInput( movingImageReader->GetOutput() );
  warper->SetInterpolator( interpolator );
  warper->SetOutputSpacing( fixedImage->GetSpacing() );
  warper->SetOutputOrigin( fixedImage->GetOrigin() );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // Unlike the ResampleImageFilter, the WarpImageFilter
  // warps or transform the input image with respect to the deformation
field
  // represented by an image of vectors.  The resulting warped or resampled
  // image is written to file as per previous examples.
  //
  // \index{itk::WarpImageFilter!SetDeformationField()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  warper->SetDeformationField( filter->GetOutput() );
  // Software Guide : EndCodeSnippet


  // Write warped image out to file
  typedef  unsigned char  OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
  typedef itk::CastImageFilter<
                        MovingImageType,
                        OutputImageType > CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >  WriterType;

  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();

  writer->SetFileName( argv[3] );

  caster->SetInput( warper->GetOutput() );
  writer->SetInput( caster->GetOutput()   );
  writer->Update();


  // Software Guide : BeginLatex
  //
  // Let's execute this example using the rat lung data from the previous
example.
  // The associated data files can be found in \code{Examples/Data}:
  //
  // \begin{itemize}
  // \item \code{RatLungSlice1.mha}
  // \item \code{RatLungSlice2.mha}
  // \end{itemize}
  //
  // \begin{figure} \center
  //
\includegraphics[width=0.44\textwidth]{DeformableRegistration2CheckerboardBefore.eps}
  //
\includegraphics[width=0.44\textwidth]{DeformableRegistration2CheckerboardAfter.eps}
  // \itkcaption[Demon's deformable registration output]{Checkerboard
comparisons
  // before and after demons-based deformable registration.}
  // \label{fig:DeformableRegistration3Output}
  // \end{figure}
  //
  // The result of the demons-based deformable registration is presented in
  // Figure \ref{fig:DeformableRegistration3Output}. The checkerboard
  // comparison shows that the algorithm was able to recover the
misalignment
  // due to expiration.
  //
  // Software Guide : EndLatex


  // Software Guide : BeginLatex
  //
  // It may be also desirable to write the deformation field as an image of
  // vectors.  This can be done with the following code.
  //
  // Software Guide : EndLatex

  if( argc > 4 ) // if a fourth line argument has been provided...
    {

  // Software Guide : BeginCodeSnippet
  typedef itk::ImageFileWriter< DeformationFieldType > FieldWriterType;

  FieldWriterType::Pointer fieldWriter = FieldWriterType::New();
  fieldWriter->SetFileName( argv[4] );
  fieldWriter->SetInput( filter->GetOutput() );

  fieldWriter->Update();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Note that the file format used for writing the deformation field must
be
  // capable of representing multiple components per pixel. This is the case
  // for the MetaImage and VTK file formats for example.
  //
  // Software Guide : EndLatex

    }

  return EXIT_SUCCESS;
}
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.itk.org/pipermail/insight-users/attachments/20101024/c22b2b1b/attachment.htm>


More information about the Insight-users mailing list