[Insight-users] KdTreeBasedKMeansClustering for 3D vector image
Sara Rolfe
smrolfe at u.washington.edu
Fri Dec 3 12:44:10 EST 2010
I've updated my version of ITK so I'm now working with version 3.16.
I am still getting errors when I try to link to
itkSampleClassifierFilter.h. Is there something I need to do to add
this filter? I've double checked my CMake file to make sure it's ok.
Thanks,
Sara
On Dec 2, 2010, at 3:55 PM, Sara Rolfe wrote:
> I did clear this error up, I needed to define the sample classifier
> as:
>
> typedef itk::Statistics::SampleClassifier< AdaptorType >
> ClassifierType;
>
> instead of:
>
> typedef itk::Statistics::SampleClassifier< SampleType >
> ClassifierType;
>
> Since I'm using the ImageToListAdaptor to get the samples from my
> image.
>
> On Dec 2, 2010, at 2:30 PM, Sara Rolfe wrote:
>
>> Thanks for the additional example. I have not yet gotten it to
>> run, since I think I'm dealing with some version issues (I'm using
>> itk-3.14). RIght now it's not recognizing itkMinimumDecisionRule2,
>> itkSampleClassifierFilter, etc. I will let you know when I'm able
>> to get this working. Is it possible that using older versions of
>> these filters is part of my problem?
>>
>> In the meantime, with my code, the estimated mean vectors are
>> calculated correctly, but when I add the classification I getting
>> the following error:
>>
>> error: no matching function for call to
>> ‘itk
>> ::Statistics
>> ::SampleClassifier
>> <
>> main
>> (int
>> ,char
>> **)::SampleType
>> >
>> ::SetSample
>> (itk::SmartPointer<itk::Statistics::ImageToListAdaptor<main(int,
>> char**)::ImageType, main(int, char**)::PixelType> >&)’
>>
>> ...itkSampleClassifier.txx:56: note: candidates are: void
>> itk::Statistics::SampleClassifier<TSample>::SetSample(const
>> TSample*) [with TSample = main(int, char**)::SampleType]
>>
>>
>> So there's a problem when I set my classifier sample. My full code
>> is below.
>>
>> #include "itkKdTree.h"
>> #include "itkKdTreeBasedKmeansEstimator.h"
>> #include "itkWeightedCentroidKdTreeGenerator.h"
>>
>> #include "itkImageToListAdaptor.h"
>> #include "itkImageFileReader.h"
>> #include "itkImage.h"
>>
>> #include "itkMinimumDecisionRule.h"
>> #include "itkEuclideanDistance.h"
>> #include "itkSampleClassifier.h"
>>
>> #include "itkVector.h"
>> #include "itkListSample.h"
>> #include "itkDistanceToCentroidMembershipFunction.h"
>>
>>
>>
>> int main( int argc, char * argv[] )
>> {
>> if( argc < 5 )
>> {
>> std::cerr << "Usage: " << std::endl;
>> std::cerr << argv[0];
>> std::cerr << " inputVectorImage.vtk outputLabeledImage.vtk";
>> std::cerr << " numberOfClasses numberOfComponents " << std::endl;
>> return EXIT_FAILURE;
>> }
>>
>> typedef itk::Vector< unsigned char, 2 > PixelType;
>> typedef itk::Image< PixelType, 3 > ImageType;
>> typedef itk::ImageFileReader< ImageType > ReaderType;
>> typedef itk::Statistics::ImageToListAdaptor< ImageType >
>> AdaptorType;
>> typedef
>> itk::Statistics::WeightedCentroidKdTreeGenerator<AdaptorType >
>> TreeGeneratorType;
>> typedef TreeGeneratorType::KdTreeType TreeType;
>> typedef itk:: Statistics:: KdTreeBasedKmeansEstimator< TreeType >
>> EstimatorType;
>> typedef itk::Vector< PixelType, 3 > MeasurementVectorType;
>> typedef itk::Statistics::EuclideanDistance< MeasurementVectorType
>> > MembershipFunctionType;
>> typedef itk::MinimumDecisionRule DecisionRuleType;
>> typedef itk::Statistics::ListSample< MeasurementVectorType >
>> SampleType;
>> typedef itk::Statistics::SampleClassifier< SampleType >
>> ClassifierType;
>>
>> const char * inputImageFileName = argv[1];
>> const char * outputImageFileName = argv[2];
>> int numberOfClasses = atoi( argv[3] );
>> int numberOfComponents = atoi( argv[4] );
>>
>> ReaderType::Pointer reader = ReaderType::New();
>> reader->SetFileName( inputImageFileName );
>> reader->Update();
>>
>> AdaptorType::Pointer adaptor = AdaptorType::New();
>> adaptor->SetImage( reader->GetOutput() );
>>
>> TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
>> treeGenerator->SetSample( adaptor );
>> treeGenerator->SetBucketSize( 16 );
>> treeGenerator->Update();
>>
>> EstimatorType::Pointer estimator = EstimatorType::New();
>> EstimatorType::ParametersType initialMeans( numberOfClasses *
>> numberOfComponents );
>> estimator->SetParameters( initialMeans );
>> estimator->SetKdTree( treeGenerator->GetOutput() );
>> estimator->SetMaximumIteration( 200 );
>> estimator->SetCentroidPositionChangesThreshold(0.0);
>> estimator->StartOptimization();
>>
>> EstimatorType::ParametersType estimatedMeans = estimator-
>> >GetParameters();
>>
>> for ( int i = 0 ; i < numberOfClasses ; ++i )
>> {
>> std::cout << "cluster[" << i << "] ";
>> std::cout << " estimated mean : ";
>> for ( int j = 0 ; j < numberOfComponents ; ++j )
>> {
>> std::cout << " " << estimatedMeans[ i * numberOfComponents +
>> j ];
>> }
>> std::cout << std::endl;
>> }
>>
>> //classification using estimated means - this is the part that is
>> not working correctly
>> DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
>>
>> ClassifierType::Pointer classifier = ClassifierType::New();
>> classifier->SetDecisionRule( (itk::DecisionRuleBase::Pointer)
>> decisionRule);
>> classifier->SetSample( adaptor );
>> classifier->SetNumberOfClasses( 7 );
>>
>> std::vector< unsigned int > classLabels;
>> classLabels.resize( numberOfClasses );
>> for ( int i = 0 ; i < numberOfClasses ; ++i )
>> {
>> classLabels[i] = i;
>> }
>> classifier->SetMembershipFunctionClassLabels( classLabels );
>>
>> }
>>
>> On Dec 1, 2010, at 6:32 PM, Luis Ibanez wrote:
>>
>>> Voila !
>>>
>>> http://www.itk.org/Wiki/ITK/Examples/Statistics/KdTreeBasedKMeansClustering_3D
>>>
>>> Thanks for pointing to these examples David.
>>>
>>>
>>> Sara,
>>>
>>> when running the example above,
>>> the code seems to behave correctly.
>>>
>>> Please give it a try and let us know
>>> if you see anything out of order.
>>>
>>>
>>> Thanks
>>>
>>>
>>> Luis
>>>
>>>
>>> -----------------------------------------
>>> On Wed, Dec 1, 2010 at 8:31 PM, David Doria <daviddoria at gmail.com>
>>> wrote:
>>>> On Wed, Dec 1, 2010 at 8:16 PM, Luis Ibanez <luis.ibanez at kitware.com
>>>> > wrote:
>>>>> Hi Sara,
>>>>>
>>>>> The KdTree should work in N-D.
>>>>>
>>>>> We tend to do 2D test just because they are
>>>>> easier to debug, but we probably should add
>>>>> a 3D one in this case.
>>>>>
>>>>> Could you tell us more about the behavior of
>>>>> this class that lead you to believe that is doing
>>>>> something incorrect ?
>>>>>
>>>>> A minimal example will be greatly appreciated...
>>>>
>>>>
>>>> Are these the examples you were looking at?
>>>>
>>>> http://www.vtk.org/Wiki/ITK/Examples/Statistics/KdTreeBasedKMeansClustering_1D
>>>> http://www.vtk.org/Wiki/ITK/Examples/Statistics/KdTreeBasedKMeansClustering_2D
>>>>
>>>> If not, maybe they will help. If so, please add
>>>> http://www.vtk.org/Wiki/ITK/Examples/Statistics/KdTreeBasedKMeansClustering_3D
>>>>
>>>> and we can work on it there.
>>>>
>>>> David
>>>>
>>
>> _____________________________________
>> Powered by www.kitware.com
>>
>> Visit other Kitware open-source projects at
>> http://www.kitware.com/opensource/opensource.html
>>
>> Kitware offers ITK Training Courses, for more information visit:
>> http://www.kitware.com/products/protraining.html
>>
>> Please keep messages on-topic and check the ITK FAQ at:
>> http://www.itk.org/Wiki/ITK_FAQ
>>
>> Follow this link to subscribe/unsubscribe:
>> http://www.itk.org/mailman/listinfo/insight-users
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.itk.org/pipermail/insight-users/attachments/20101203/2bc7427e/attachment.htm>
More information about the Insight-users
mailing list