[Insight-users] Need Help --- Registration of Two Labelled Volumes !!!!
Deepak Roy Chittajallu
cdeepakroy at gmail.com
Mon Mar 16 16:09:54 EDT 2009
Hello,
PROBLEM:
I am trying to perform registration of two labelled volumes using ITK. I
intend to get it to work with 3D medical images.
STUDY:
I went through the Image Registration Section of the ITK software guide and
I came to know that the appropriate metric for my problem is the
itk::MatchCardinalityImageToImageMetric. I also went through the
corresponding example in itk ---
"Examples\Registration\ImageRegistration10.cxx".
I found that the MatchCardinalityImageToImageMetric does not provide
analytical derivatives and simply counts the number of matches/mismatches.
Hence the regular optimizers wouldnt work, and hence i tried to use the
AmoebaOptimizer as shown in the example.
However i want to perform registration in the following order: Similarity
Transform, Affine, Deformable
To start with, i am just trying it with the Similarity3DTransform.
itk::Similarity3DTransform derives from the itk::VersorRigid3DTransform and
i read in the ITK software guide that the most appropriate optimizer for
this transform is itk::VersorTransformOptimizer as it computes the versor
derivatives as defined by hamilton.
QUESTION:
Now Im confused as to which optimizer to use for my problem
1. AmoebaOptimizer ( that is appropriate for
MatchCardinalityImageToImageMetric)
2. VersorTransformOptimizer (that is appropriate for Similarity3DTransform)
Also, does the VersorTransformOptimizer require analytical derivates of the
metric (which the MatchCardinalityImageToImageMetric does not provide).
MY EXPERIMENTS:
I tried to use the AmoebaOptimizer with the
MatchCardinalityImageToImageMetric and Similarity3DTransform.
I was not clear how to assign the Initial Simplex for my transform
parameters particularly those of the quaternion. So i let the optimizer
determine it automatically.
However, the registration method fails with an exception.
My Input test data (i created "simple" toy images to test my code):
> Fixed Image: Stack of two 2D slices with a rectangle positioned at the
center of the image
> Moving Image: Stack of two 2D slices with an ellipse (of smaller size than
a rectangle) position at the center of the image. The major axis of the
ellipse is at 45 degrees about the image x-axis.
I think it is failing when the optimizer is working with the scaling
parameter ... I dont see a reason why it should do so ....
Below is the command line output:
****************************************************************************************
Iter 1 : 0.1122 --- [0, 0, 0, 0, 0, 0, 1]
Iter 2 : 0.117374 --- [0.00025, 0, 0, 0, 0, 0, 1]
Iter 3 : 0.114343 --- [0, 0.00025, 0, 0, 0, 0, 1]
Iter 4 : 0.114466 --- [0, 0, 0.00025, 0, 0, 0, 1]
Iter 5 : 0.113333 --- [0, 0, 0, 0.00025, 0, 0, 1]
Iter 6 : 0.113333 --- [0, 0, 0, 0, 0.00025, 0, 1]
Iter 7 : 0.1122 --- [0, 0, 0, 0, 0, 0.00025, 1]
ERROR-REGISTRATION :
itk::ExceptionObject (013FFA90)
Location: "double __thiscall itk::MatchCardinalityImageToImageMetric<class
itk::Image<unsigned char,3>,class itk::Image<unsigned char,3>
>::GetNonconstValue(const class itk::Array<double> &)"
File:
c:\itk\insighttoolkit-3.10.2\code\algorithms\itkMatchCardinalityImageToImageMetric.txx
Line: 130
Description: itk::ERROR: MatchCardinalityImageToImageMetric(018DCEE0): All
the points mapped to outside of the moving image
***************************************************************************************************
At the end of this message is a section of the code that i wrote ...
Any help would be greatly appreciated.
Thanks in advance.
Regards,
Deepak
****************************** CODE ******************************
// Perform registration with Similarity3DTransform first
typedef itk::ImageRegistrationMethod<FixedImageType, MovingImageType>
RegistrationType;
RegistrationType::Pointer pRegistrationMethod = RegistrationType::New();
// Metric
typedef
itk::MatchCardinalityImageToImageMetric<FixedImageType,MovingImageType>
MetricType;
MetricType::Pointer pMetric = MetricType::New();
pMetric->MeasureMatchesOff();
pRegistrationMethod->SetMetric( pMetric );
// Interpolator
typedef itk::NearestNeighborInterpolateImageFunction< MovingImageType,
double> InterpolatorType;
InterpolatorType::Pointer pInterpolator = InterpolatorType::New();
pRegistrationMethod->SetInterpolator( pInterpolator );
// transform
typedef itk::Similarity3DTransform<double> SimilarityTransformType;
typedef
itk::CenteredTransformInitializer<SimilarityTransformType,FixedImageType,MovingImageType>
TransformInitializerType;
SimilarityTransformType::Pointer pTransform =
SimilarityTransformType::New();
TransformInitializerType::Pointer pTransformInitializer =
TransformInitializerType::New();
pTransformInitializer->SetFixedImage( pFixedImage );
pTransformInitializer->SetMovingImage( pMovingImage );
pTransformInitializer->SetTransform( pTransform );
pTransformInitializer->MomentsOn();
pTransformInitializer->InitializeTransform();
// rotation
typedef SimilarityTransformType::VersorType VersorType;
typedef VersorType::VectorType VectorType;
VectorType rot_axis;
rot_axis[0] = 0.0;
rot_axis[1] = 0.0;
rot_axis[2] = 1.0;
pTransform->SetRotation( rot_axis , 0.0 );
// scaling
pTransform->SetScale( 1.0 );
pRegistrationMethod->SetInitialTransformParameters(
pTransform->GetParameters() );
pRegistrationMethod->SetTransform( pTransform );
// Optimizer
typedef itk::AmoebaOptimizer OptimizerType;
OptimizerType::Pointer pOptimizer = OptimizerType::New();
OptimizerType::ParametersType simplexDelta(
pTransform->GetNumberOfParameters() );
// simplexDelta.Fill( 5.0 );
// pOptimizer->AutomaticInitialSimplexOff();
// pOptimizer->SetInitialSimplexDelta( simplexDelta );
pOptimizer->SetParametersConvergenceTolerance( 0.25 ); // quarter pixel
pOptimizer->SetFunctionConvergenceTolerance( 0.001 ); // 0.1%
pOptimizer->SetMaximumNumberOfIterations( 10 );
pRegistrationMethod->SetOptimizer( pOptimizer );
// Observer
typedef CommandIterationUpdate ObserverType;
ObserverType::Pointer pObserver = ObserverType::New();
pOptimizer->AddObserver( itk::IterationEvent() , pObserver);
pRegistrationMethod->SetFixedImage( pFixedImage );
pRegistrationMethod->SetMovingImage( pMovingImage );
pRegistrationMethod->SetFixedImageRegion(
pFixedImage->GetLargestPossibleRegion() );
try
{
pRegistrationMethod->Initialize();
pRegistrationMethod->StartRegistration();
}
catch(itk::ExceptionObject & err)
{
std::cout << "\nERROR-REGISTRATION : " << err << std::endl;
return EXIT_FAILURE;
}
RegistrationType::ParametersType finalParameters;
finalParameters = pRegistrationMethod->GetLastTransformParameters();
std::cout << "Final: " << pMetric->GetValue( finalParameters ) << " --- " <<
finalParameters << std::endl;
// Resampling -- Transform the moving image using the obtained transform
parameters
typedef itk::ResampleImageFilter<MovingImageType,FixedImageType>
ResampleFilterType;
ResampleFilterType::Pointer pResampleImageFilter =
ResampleFilterType::New();
// transform
SimilarityTransformType::Pointer pFinalTransform =
SimilarityTransformType::New();
pFinalTransform->SetParameters(
pRegistrationMethod->GetLastTransformParameters() );
pResampleImageFilter->SetTransform( pFinalTransform );
pResampleImageFilter->SetInput( pMovingImage );
pResampleImageFilter->SetSize(
pFixedImage->GetLargestPossibleRegion().GetSize() );
pResampleImageFilter->SetOutputOrigin( pFixedImage->GetOrigin() );
pResampleImageFilter->SetOutputSpacing( pFixedImage->GetSpacing() );
pResampleImageFilter->SetOutputDirection( pFixedImage->GetDirection() );
pResampleImageFilter->SetDefaultPixelValue( 0 );
pResampleImageFilter->SetInterpolator( pInterpolator );
pResampleImageFilter->Update();
************************************************************************************************
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.itk.org/pipermail/insight-users/attachments/20090316/7143d61f/attachment.htm>
More information about the Insight-users
mailing list