[Insight-users] Fwd: KMeans type mismatch
David Doria
daviddoria+itk at gmail.com
Tue Jul 28 07:52:27 EDT 2009
---------- Forwarded message ----------
From: David Doria <daviddoria+itk at gmail.com <daviddoria%2Bitk at gmail.com>>
Date: Thu, Jul 23, 2009 at 9:18 AM
Subject: KMeans type mismatch
To: ITK <insight-users at itk.org>
I want to do a KMeans clustering of 3d points. So I setup a 3-vector like
this:
typedef itk::Vector< double, 3 > MeasurementVectorType;
and fill it with some points that are clearly in 3 clusters:
MeasurementVectorType p0, p1, p2, p3, p4, p5, p6, p7, p8;
//cluster 1
p0[0]= 0.0; p0[1]= 0.0; p0[2]= 0.0;
p1[0]= 0.1; p1[1]= 0.0; p1[2]= 0.0;
p2[0]= 0.0; p2[1]= 0.1; p2[2]= 0.0;
//cluster 2
p3[0]= 5.0; p3[1]= 5.0; p3[2]= 5.0;
p4[0]= 5.1; p4[1]= 5.0; p4[2]= 5.0;
p5[0]= 5.0; p5[1]= 5.1; p5[2]= 5.0;
//cluster 3
p6[0]= -5.0; p6[1]= -5.0; p6[2]= -5.0;
p7[0]= -5.1; p7[1]= -5.0; p7[2]= -5.0;
p8[0]= -5.0; p8[1]= -5.1; p8[2]= -5.0;
Then I setup the ListSample for the KdTree:
typedef itk::Statistics::ListSample< MeasurementVectorType >
SampleType;
SampleType::Pointer sample = SampleType::New();
sample->PushBack(p0);
sample->PushBack(p1);
sample->PushBack(p2);
sample->PushBack(p3);
sample->PushBack(p4);
sample->PushBack(p5);
sample->PushBack(p6);
sample->PushBack(p7);
sample->PushBack(p8);
typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType
> TreeGeneratorType;
//typedef itk::Statistics::KdTreeGenerator< SampleType >
TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
treeGenerator->SetSample( sample );
treeGenerator->SetBucketSize( 3 ); //number of measurement vectors in
a terminal node
treeGenerator->Update();
Now I want to seed the KMeans algorithm with 3 points in the 3d space:
// Once we have the k-d tree, it is a simple procedure to produce k
mean estimates
typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator<TreeType>
EstimatorType;
EstimatorType::Pointer estimator = EstimatorType::New();
MeasurementVectorType InitialMean0, InitialMean1, InitialMean2;
InitialMean0[0] = 1.0;
InitialMean0[1] = 1.0;
InitialMean0[2] = 1.0;
InitialMean1[0] = -1.0;
InitialMean1[1] = -1.0;
InitialMean1[2] = -1.0;
InitialMean2[0] = 0.0;
InitialMean2[1] = 0.0;
InitialMean2[2] = 0.0;
I create a vector of 3d vectors:
unsigned int NumClasses = 3;
EstimatorType::ParametersType initialMeans(NumClasses);
initialMeans[0] = InitialMean0;
initialMeans[1] = InitialMean1;
initialMeans[2] = InitialMean2;
In hopes to do something like this:
estimator->SetParameters( initialMeans );
estimator->SetKdTree( treeGenerator->GetOutput() );
estimator->SetMaximumIteration( 200 );
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
But it complains on these lines:
initialMeans[0] = InitialMean0;
error: cannot convert 'main()::MeasurementVectorType' to 'double' in
assignment
How would I setup these initial means?
On a separate note: is there an agglomerative clustering algorithm in
ITK? That is, have it start with the 9 points in a single cluster and
then split the clusters until some "continue splitting" tolerance is
met?
Thanks,
David
----------------
Anyone know how to fix this type issue?
Thanks,
David
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.itk.org/pipermail/insight-users/attachments/20090728/9187172a/attachment.htm>
More information about the Insight-users
mailing list