[Insight-users] Specifying boundary modes

Benjamin King king.benjamin at mh-hannover.de
Wed, 11 Feb 2004 13:46:23 +0100


------------egWs0xPWTPmG8LOH0F5ncz
Content-Type: text/plain; format=flowed; charset=iso-8859-15
Content-Transfer-Encoding: 8bit

Hi Luis,

and thank you for the clarification of the boundary conditions! I followed 
your suggestion and added a third template parameter to 
itk::MeanImageFilter that defaults to 
ZeroFluxNeumannBoundaryCondition<TInputImage>. I also added a member 
variable and a GetBoundaryCondition() method. Right now this is only 
necessary to access ConstantBoundaryCondition::SetConstant(...), but that 
might change some time.


> That will be fine for C++, but may raise some concerns
> for python, tcl and java wrapping.

Sorry, I didn't test the wrapping. I also didn't include the possibility 
to change the boundary condition at runtime because I don't need to do 
that.

But my test with C++ worked fine, so feel free to assimilate the changes =)


Best regards,

   Benjamin



-- 
Benjamin King
Institut für Medizinische Informatik
Medizinische Hochschule Hannover
Tel.: +49  511  532-2663
------------egWs0xPWTPmG8LOH0F5ncz
Content-Disposition: attachment; filename=MeanImageModification.zip
Content-Type: application/zip; name=MeanImageModification.zip
Content-Transfer-Encoding: Base64

UEsDBAoAAAAAAOhrSzAAAAAAAAAAAAAAAAANAAAASW5zaWdodC9Db2RlL1BLAwQK
AAAAAAD5a0swAAAAAAAAAAAAAAAAGgAAAEluc2lnaHQvQ29kZS9CYXNpY0ZpbHRl
cnMvUEsDBBQAAAAIAExuSzBfka4VEgcAADcTAAAuAAAASW5zaWdodC9Db2RlL0Jh
c2ljRmlsdGVycy9pdGtNZWFuSW1hZ2VGaWx0ZXIuaK1YbW/bNhD+7l9xaIsgSV07
6TpgU9IAbpa0xhInsJV1HQoEtHS2uUqiRlJ2vCD77bsjZVu2lTYdpi+WeLw33nMv
dHv/7f/1NBoA11qNtUgDAOhmRo4nFgY4TjGzwkqVwQ70cSyN1f4zVCr5Ii0xXqq4
SJD54EX/dDCS/CHtl0sUWTcVYzyXiUXdmjSn8IL2X4hsXNAycZy+fEkLvwjr2UmA
f399cPBD++Dn9uEBHL4JXv8U/HjoWH9DbUh54FThVPqPw9YbohL5VOVz7SzfjfZW
XqiRnQmNRM6M0lYWaQs6SQJuqwGNBvUU4xZJGCBCN/x1Kahl7ywoDRNr86Ddns1m
LfKspfS4/SG8vGivNk5sCiPaGaMVMjEttoeecCINmIUF9B7zEcphYTGGj93ww9VN
CJ3eJ/jY6fc7vfDTEcyknajCAk4xAy/FTog3zRNJTCRIi8zOQY3g8qx/+oG4Ou+6
F93wE1t63g17Z4MBnF/1oQPXnX7YPb256PRLSdc3/eurwVnLu8pyxVBNEaLl0WXK
ygiNcyZVbHRGr6mLOnn1bTA98dlvN57LURbjCG5vt+FyO2k8J5rM8DEysWdRUsQI
z4juaKFaA9yzmi1bq70iRS2jUAtpzRb1D9TqPCnuelikIsveqSKLhZ4TlGLpToQY
GplI0eQiQoZ9477R3t+Hz1EijIENsxtAlKGW5HQn53gaEBmIKWoxltkYRm4XWMXL
kvmIg5lOVZoTZsxyHWYTpOAIGEvGSS7vMGF8cUhTUgpTkRTIIKEVlsAEt8tQRIkv
Qwr3UOmJUjGDgBDHWyKlKSFy9o/skRlp9Wyt0pKOF19aShpVtlADI5HKxCEzocAJ
Xe4yBLeS+7MR0C39ch+9ihl1a1c5nY1Vuo7WtSuao5PJWhU5pb5Fyn47rxy9oR3t
hkVKI6oxcOzjE3bZQ7etCeXSVWGXa5Q15epW6OEtfAsdxxXxJ3DS8KKowNye/X59
1Q834QGBy9K8GCYygm1IH6/bW7WUpN83PCMLYQie3VGxjiyVnJRPgyweaZWWMRVZ
DMqxezy1+HSAATzggh9xsbSXItJqd6Xyl4WkJhRcXTOqRzKzTV9btp6KsUGwLmDv
6BFlFZe+V1uFtUZdeSikivJFUlsDO8+RSowvdcbV19GcUR8jBcr3OVOeS7m36hKs
XkOiHlV3VQNTed/atw2qrRXPU1pPx8XUuATlwoMNIzdRNcBkVFVbB6x1Z5qbVp/A
oKBMdGqrogap0PZaUVhICOs5gfLr0V0RBxv8XteT7ZKj9PISqQPGLiyRRj9v2All
9njiyowa/omE6xGBW+n5Crk9nHkQsfBVyPtF9soSEpw51XYGu5wFGrkgxFTWWKvZ
W8ljx73AjRNt1hzhSp8P+8J3U+Q5TR0bIeJfbhsb5x4E11xr+dVTlp9HdcwbQapy
e9LX2dda3/G6vpMg6KOoWLL4YklPcYSnRY/eCmm1+DR/KkIqtKqUp5gykH/jypDF
1yqp0Lc+LWJZmEUvW+uPhSGAUFeOfBtedtlK1cSygPWdlOa6rhU43v93ZUtdJMPl
TR9HNANkEX6X5mFZYUj+YoiBjie5LBki10CVUSPnSrvPGoPAKaS5c7ti4V2uDE8m
ZQax6amKqZZ6djK8TFhhQReZU0Ipahcid31FWEJvZ2+Rg1OpbSGS+qJINxJyaYu0
u0eM965HaLSF5tIhzauT9HZrK2PwoeHx7OvOet3MEGP2i5rBmGcd1zg1/lWg4YKh
HQxJvMi8p642+Z66uYsmoA5dBIpo0qxXU0pQkGs1lTR9ukEvT3B1A+N6+B4znnmw
TMlSiU8I5znHiw5cx36M9NWuHP5y5LGMAoZR4SRSmNxgBzycQXU8WyttQfB1tevB
mioZf8NOV81nNFjQkCrjDfKZ1spVUzoJS7DBmAeajUPbdQPEQuU/W1S4f2A6m3Kt
qbtwR9g1Ng4CRfcvFOkOKJcqMU8C0v3sgQNipQ2txymikAxxFRUKrnCwLxJLdzaS
GtOSH3n9odL1jxKUIkANlVG4GdEy1iwkLPkXB0cXYbEIKHU+y4GbTWQ04ZE7EkmC
vkGioCWSQ1c2w3nr7Wix5hKLJShcU4pJKgsgfhW5ricKq7gbssg5DOcOKmbZ60m0
VIwkL4V3sZZ6a1tQS3AHx/XEy5hpyUVNeVDyhZxOoqyD1YkUTI6RHPGd15vl2XOa
zKjQUDye+d0eNedKe93PngDnevObnomfr+WA31xingFWK83XtNqmtQO1hj821/pH
8sDq9nVj8Nkhp/xnSU1urCasnb0jaLfzQnOJpvjS5b6K34UHqrxkvf0O1gasNxpI
b30D4sSsL9i1JfjBDRQPpAuQprH1u/TyLwK+M112ejedi9tubxB2emG3E3aveuu3
9c2/nOzdHd3nSawcNRa//wJQSwMEFAAAAAgAC1RLMF6Yof9QBwAAJBUAADAAAABJ
bnNpZ2h0L0NvZGUvQmFzaWNGaWx0ZXJzL2l0a01lYW5JbWFnZUZpbHRlci50eHjN
GGtv2sj2O7/ilK5ak6Qm2Ye06zwkyiYtujQgoLvq/YIG+wBzazzszDhpbrf/fc+Z
sQ0G0lZqr3T9AY9nzvs9tI8uv9fTaAAMtVposYoAoJcZuVhaGONihZkVVqoMnsEI
F9JY7T8nSqXvpSXENyrJU2Q8+GHUHc8lf0j7/g2KrLcSC7yRqUUd2g8fTu7gB8Lo
i2yR0wHhdI+PaeN3YT0BIuHXP56e/tQ+/a19dgpnP0c//hr9cuZQ/0BtiH3kmOGd
9B9n4dlPdEznXbV+0E74IG5tFFFzey800nFmlLYyX4XQSVNwoAY0GtR3mIREYYwI
vcm/KkIktwWlYWntOmq37+/vQ1IuVHrRfj15029vAJd2BXOCTNAKmZqQ5aFnspQG
TCkBrRO2opzlFhP4szd5PXg7gc7tO/izMxp1bifvzuFe2qXKLeAdZuCp2CXhrtap
JCQipEVmH0DN4c31qPuasDove/3e5B1LetOb3F6Px3AzGEEHhp3RpNd92++MCkrD
t6PhYHwdelWZrpipO4S4Ml2mrIzROGVWioXOaLlyjietvhxPX/kctRtP5TxLcA7T
/YCZUsA0ntKhzPDxc5nFaZ4gNA9E3LLZqAOw++0tkpIzpZdKJT0CE1Y50BpkDSjL
UFN6JHls9wAdP84MlX0VsU66UJrcu9qDGsznBvcZuLxEY0a4psgttMrECs1axMiJ
1vjYaFik2KDMgYs4FcbApJetc+uEO4Fia5Dbvb2XKs8SoR/IMolk/141dqx4USNV
J3IIPYp2CAQtEhBgNR2JROYmpN00OGud094e+uRhjQS5t3/e+PRddbxTMoFv1/QV
ZuxydHgj/CtHQ0ntoyFoUW5pdQ9BL7sTqUx2zq+1Vtqbpt2GWFA14lw0+Rq1E/y5
y3fcVGDKdsu1ZIVUHRIuVRXsl0RhY3tGC7SwVjIjfQ1Y5esK44DIElBOZ4K05AgO
shqPjXmGnoLHHFoNl764xJxg01gYe7HtHjiCq8AJ/+LqFVp3QPZxYh3ktGX7kpUX
zfOqKHm4Sj85hwCeVEL9/Tc82aC1nIQf3a9Gm+vs3K0/NTaWEa4KekuXdtGlMWnF
1oTAUHFOE6B94Z1WmY3I7IK3tnXcskkUeee4kJcHvMbSHdon/UsNnQ0OONtLshbJ
59SYPXjZ175qgXbp+QjTcCiSlw8+g4Mql6HiFWu1/hwzYTenzw2kQi/onCLRGDlL
sQArXXhQgi6xCGqa9z2VYUGk1L9Vc/UGY7xvq8MGbp0fCBIATA1uESatuxwH2XO7
Ub8MkT0DUN5SlBiZ+JZbGKAktGOHVshjAxcPkQF+iHFdtN4C3FjuyvdLsuo90dM8
FFAuF0whWGtJDuXs1g8yW/CKJWx9o0FK9rNcUvhvi+ZOPlPnAIPp9KbXv55OT2A6
7fduaVVQHYxJgWxBvyhWsDILv00LuLggVan4xb6kuOoC8VJoOLoKqiJwS5k1mHe5
cpDzHTI/hNz8Ul1sel4Ykin6KnZ1NiDOIU1oQSuMp+7d2oL6HU2spVM6aI4OeDkg
p6QoOLgFTZpU1x9ah1y/6/OwWWMjrBjM/oOxrUK+OPZNBcuwpOr1vRvjt/dFil0U
CSal8VmbwHtvC3tT/54VFdTv3CjtCZxUvtx5qCOwHQikl/gWmvOkn5Ej+Eie+6vA
I8PexUYdZn4FM2nZnAdGuYstcT2sB/VFj24QHDN4oG3u4EVRvY091sMqfKjLGEVO
m1rbhW0iRUvdyHYjM1/9E7L9CxosYVZ4CppzGhxNc5vdwQmVGj7zLz18w1hdkcZ5
esiKUcQAfbrbuI42Lz5You9AHWZdplRSJdVnXZ8ZJ4/ETtWkfI/636kaRbKIFphz
dHj70xzH8zqsi/G9mNpMmye9mYjfc6fdne0raFfcTqoYf0THkItfvpqhHsyH8gP1
p6JWNYr4GaFInTdMvioFI54xy4MiXpaDThUaLjJc86EbMfB99fZFWdwMNRxJOGS7
BLUnxsiY0IBXEsrnc7qisKfIHAHZ47J0WTgjKjydsJXgyWXlyxCzhLePj+mg6Ny+
1VBekqO/Oo+D0uOP1o3PPkU0HbEUvrrWikq2JcFY/hc5BKUNeRkU8E7cr6kigXdn
jRkTG9yh1tQn9opq8OzApWgL8ZWaqJeFff2UQL6i1kLTsDvvmY69ZjND2R8/Fm+K
DBKaogi1jCdaSGsuarFD0f5v1Oq8gHd+lYRyeg4SLvbMwn6Umyb8sVoxo+PLWj+v
8wm8JmhdKAeyVY4d/HwqVsWrGNc55FbUrIAGjxyLM3YK2qDGyTvAEfa8WJo2JCqn
Bhzs6tDaYl28jo+LJuE/NusyY8Ou4tsazQJe/IqAl9w16vbRUYOuQmMr2JEJNIc0
+NgxpvNmdak7av//tfNKzIB0MTaJImXctEZ9m6qUqzYJcuN1r5a/Brq+vH2p25Bx
aB7YW1oZHteKHR7cfCJH0OSv6rrh5kFiTxUjpTgnk37iUKBPqP8j0nhKe3Le+AdQ
SwMECgAAAAAAKWhLMAAAAAAAAAAAAAAAAAgAAABJbnNpZ2h0L1BLAQIUAAoAAAAA
AOhrSzAAAAAAAAAAAAAAAAANAAAAAAAAAAAAEAD/QQAAAABJbnNpZ2h0L0NvZGUv
UEsBAhQACgAAAAAA+WtLMAAAAAAAAAAAAAAAABoAAAAAAAAAAAAQAP9BKwAAAElu
c2lnaHQvQ29kZS9CYXNpY0ZpbHRlcnMvUEsBAhQAFAAAAAgATG5LMF+RrhUSBwAA
NxMAAC4AAAAAAAAAAQAhACSBYwAAAEluc2lnaHQvQ29kZS9CYXNpY0ZpbHRlcnMv
aXRrTWVhbkltYWdlRmlsdGVyLmhQSwECFAAUAAAACAALVEswXpih/1AHAAAkFQAA
MAAAAAAAAAABACEAJIHBBwAASW5zaWdodC9Db2RlL0Jhc2ljRmlsdGVycy9pdGtN
ZWFuSW1hZ2VGaWx0ZXIudHh4UEsBAhQACgAAAAAAKWhLMAAAAAAAAAAAAAAAAAgA
AAAAAAAAAAAQAP9BXw8AAEluc2lnaHQvUEsFBgAAAAAFAAUAcwEAAIUPAAAAAA==

------------egWs0xPWTPmG8LOH0F5ncz--