[Insight-users] Volview Adds more contours than needed

Yasser Bashir itk_at_stanford at yahoo . com
Thu, 27 Nov 2003 22:45:58 -0800


This is a multi-part message in MIME format.

------=_NextPart_000_00EB_01C3B538.39C2CE50
Content-Type: text/plain;
	charset="iso-8859-1"
Content-Transfer-Encoding: 7bit

Hi Luis,

Thank you for your response.

Does it mean that the marchingCubes alone is insufficient for generating
surface representation of objects in a labelled image.  Can you also explain
the difference between a labelled and a segmented image in ITKs context?

Attached are a few slices from my labelled image.

Yasser
----- Original Message ----- 
From: "Luis Ibanez" <luis . ibanez at kitware . com>
To: "ITK Stanford" <itk_at_stanford at yahoo . com>
Cc: <insight-users at itk . org>
Sent: Thursday, November 27, 2003 8:42 PM
Subject: Re: [Insight-users] Volview Adds more contours than needed


>
> Hi ITK-Stanford
>
> There is something strange in your description of the
> problem.  Adding contours in VolView should only generate
> iso-level at a particular value. It will not select a
> region that has an assigned value.
>
> If what you did was to *label* the segmented images and
> you assigned a label value of 182 to the aorta, and a
> label value of 0 to the trachea then spurious contours may
> appear around the trachea if the trachea has bordering
> labels that are at values > 182.
>
> Keep in mind that when you ask for an iso-contours at level
> 182 what you are computing is a surface with values < 182
> in one side and values > 182 on the other side. You are not
> asking for the surface surrounding a region whose value is 182.
>
>
>
> Here is a simple solution for your problem:
>
>                      Use the ITK plugins in VolView.
>
> Simply load your stack of images, then go to the menu
>
>                     "View" -> "Filter"
>
> and select the group
>
>                  "Segmentation - Region Growing"
>
> Then the filter
>
>                  "Confidence Connected (ITK)"
>
> Set
>
> the number of iterations to 2
> the multiplier to 1.0
> the output value to 255
>
> Then go to the menu
>
>                   "View" -> "Markers"
>
> enable "Display 3D cursor" and "Display 3D markers"
>
> Add a 3D marker inside the structure that you want to
> contour.
>
> Then go back to the filters menu (there should be a
> tab for it now) and click in "Apply Filter" the
> segmentation result will be a binary image of your
> label (eg. the region at label value 182 if that's
> where you put the 3D marker).  Once there, you can
> enable a contour at value level 128.
>
> You will also find useful to run the AntiAlias image
> filter available in the group " Surface Generation"
> it will smooth the iso-surface of your binary segmenation
> by reducing the staircase effects of the typical binary
> images.
>
>
> Please let us know if you find any problems,
>
>
> Thanks
>
>
>     Luis
>
>
> --------------------------------------------------------
> ITK Stanford wrote:
>
> >
> > Hi,
> >
> > I have a stack of .pgm files containing a segmented volume of the
> > heart.  I can open and view the intensity values of pixels in
> volview.
> > However, adding a contour at a certain intensity value, adds contours
> > for that value and all values lower than it.  For example the
> intensity
> > value of the descending aorta is 182 and the intensity value of
> trachea
> > is 0.  However adding a contour at value 182 also adds a contour at
> value 0.
> >
> > Any idea why this is happening and how can it be fixed??
> >
> > All help will be appreciated
> > --
> >
>
>
> _______________________________________________
> Insight-users mailing list
> Insight-users at itk . org
> http://www . itk . org/mailman/listinfo/insight-users

------=_NextPart_000_00EB_01C3B538.39C2CE50
Content-Type: application/x-zip-compressed;
	name="partimage.zip"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
	filename="partimage.zip"

UEsDBBQAAAAIAEGwey/dyHIqGgIAAA8ABAAdAAAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA2OS5w
Z23t0stxG0EQBUGeYYVcECPgh4xdA/kBCQxFUXXu2cyIvc2+S/Wf6+X6+/nX63d5vl4vTwAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAi+Ndv2NDx0M/Zi/H3/oX
tvGtvhM4kX/XdwBn8WN/B3AGP+d3ACfwv/wuYH/R3wHsrfI7gK11/sMFbKzjv+kdRur073qIkTr9
TS8xUIf/1FvM090/9RbzdPe7HmOarv7Qa0zT1R96jWm6+qLnGKajL3qOYTr6oucYpqOveo9Zuvmq
95ilm696j1m6+ar3GKWTf9GDjNLJv+hBZunmq95jlm6+6DmG6eiLnmOYjr7oOYbp6IueY5qu/tBr
TNPV73qMcTr7XY8xT3f/0FMM1OE/9BQTdfmbXmKiLn/TS4zU6d/0DjN1+0P+nXV9/bcm/8mpf3bq
n536Zyf/ycl/cuLzJD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsI0XUEsDBBQAAAAIAEGwey8HR2rIDgIAAA8ABAAdAAAA
cGFydGltYWdlL0xhYmVsVGhvcmF4LjA3MC5wZ23t0stt3EAQRVGvJwqnYAGTh4NlgPqNhwRk6a6r
+xyAu+bb3Pp7v93/vPx++24v9/vtFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAwKfjOPoRKzqu+jkrOb7of1jG1/wOYB//q+8CdvFdfRewh5/6O4Dl/ZjfBayu
8juAtXV/B7Cwrq//wjr+u95hpm7/rncYqdN/6iUm6vIPPcVAHf6hp5inuz/1GON09qceY5zOfuo1
punqp15jmq5+6jWm6eoXPccs3fyq95ilm1/1HrN086veY5ZuftV7zNLNL3qOYTr6Rc8xTEe/6DmG
6einXmOarn7qNcbp7E89xjid/anHmKe7/9NbzNPdH3qKgTr8Q08xUId/6Ckm6vIfeoiROv2HHmKm
bn/Iv7KuL//S5N+d/LuTf3Pq70793am/OfF3Jz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsJBXUEsDBBQAAAAIAEGwey/1
gva1AQQAAA8ABAAdAAAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3MS5wZ23t20FSHEcURVGPtQpv
wYpgH94Zm2GBNkJAdUNz6YEd+SvPidCs6/3BzSH6++HHw18///z334+fDw8//gAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAOA/8Pisf8YpPb7qn3I+j+/6x5zN41H/nHO5yK//di77ewCbucqv/2b035v+W7vOr/9W
PuTXfyv67+xjffk38kl+/fch/6ZeSn+WX//z+7S7/Lv4Kr/+pyf/3uTf2lf59T8/+bcm/97k35r8
e5N/a/LvTf29yb83+fcm/97U35z6e5N/c/JvTv3dqQ8AAAAAAAAAAAAA/zd/xL2Vq9j+E8dWrmI/
Xvj6U+a7iv14pT5ntqvY1/k9gHP72Fv/jXR+D+C8uv2z3mGiLv+ilxiow//WU8zT3V/1FtN09Xe9
xizd/Kj3GKWTH/Ueo3TyCz3IKJ38Qg8ySRe/1ItM0sUv9CCjdPILPcgonfyo95ilmx/1HqN08qPe
Y5ROfqEHGaSDX+pF5uje13qTMTr3td5kjM79QY8yRMf+qFcZoVN/qocZoEN/rpcZoEPf0NOsrzvf
0NOsrivf1OMsriN/oedZWzf+Qs+ztm78hZ5nYR049AmW1XlL32BZnTf1EVbVdVMfYVVdt/UVFtVx
W19hUR33G/oMa+mm9+h7rKSL3qcvspAOep++yEI66J36JAvpoPfpiyykg96pT7KQDnqfvshKuuh9
+iIr6aJ36YMspZPeo++xmI76bX2M5XTWb+tjrKe7flOfYkVd9lv6EIvquN/QZ1hZF/5SH2BxHfm2
Xmd93fmGnmaETv2JnmWMzn2pF5mlm7/qLSbq8s96h6nU54+bz6A/BAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAIAtPD3rn3FKT5f6A07k6YP+hrP4WN8L2Mjn+T2ATdzKr/8Wbuf3AnZws//vV8CpRX4v
4Nw6vwdwYh3/We8wUqf/pYcYqdO/6CUm6vK/9RTzdPdXvcU83f1NjzFOZ3/TY0zT1d/1GtN09Xe9
xjRd/aDnGKajH/Qcw3T0g55jlm5+1HvM0s0v9CCjdPILPcgonfxCDzJKJz/qPWbp5ke9xzAd/aDn
GKajH/Qcw3T0g55jmI5+0HMM09Hf9RrjdPY3PcY4nf1NjzFOZ3/VWwzU4X/rKQbq8C96iZE6/S89
xEzd/kn+U5N/c/JvTv7dyb858ben/u7k35z6uxMfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHP5B1BLAwQUAAAACABBsHsv
iRV1mhIDAAAPAAQAHQAAAHBhcnRpbWFnZS9MYWJlbFRob3JheC4wNzIucGdt7dXBbdtQFEXBrF1F
WkgA95ESWKQLTOzIEuVIPMiOj5wBDHjBfzfnAfr1+vL64+f3P38vP19fX74BAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHuxLEt+w3EtH/Iz
jmm59HcCJ7Tc+ebH4GSWh/IZx/A4/5LvOIIn9R3AOTzPv+RbRttI7wCOL/MvOcFcWX9xAAeW7T/k
DENl+r9yh5Ey/EUOMVKG/5RLzJPVb3KLYTL5nZxjliz+RQ4ySgb/IgeZJHt/lYuMkbEfyFGGyNSP
5S4zZOkncpgJsvNTOc3+ZeUNOc7uZeQNOc7uZeQNOc7uZeQtuc7eZeMtuc7OZeJNOc/OZeJNOc/O
ZeJNOc/OZeJNOc/eZeMNOc7uZeTncpsBMvMzucwIGfqx3GWITP1IrjJJ9v4iBxkmk9/LPYbJ5Hdy
jnEy+kqOMU9Wv8ophsr073KFyS6F5T+r5fqP/Gcn/+lpDgAAAAAAAAAAAAAAAAAAAAAAAAAAAADw
H97+6K84pLd7/YAjeftXP+IgHtR3AOfxOL8DOIdn9V3AOWz1dwCHt5nfARxe9HcAx1b5HcChdX4H
cGAd/13vMFO3/9BDTNTlL3qKgTr8RU8xT3e/6jHG6exXPcY0Xf2m15imq9/0GtN09ZteY5quvtJz
DNPRV3qOYTr6Wu8xSzdf6z1m6eZrvccs3Xyt95ilm6/1HrN087XeY5ZuvtZ7zNLN13qPWbr5Wu8x
Szdf6TmG6egrPcc0Xf2m15imq1/1GPN090+9xTzd/aKnmKjL/9VLjNTp3/UOQ3V8+Q+t8+t/aPKf
nPwnp/7JyX926p+d+qh/duqfnfYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA0fwGUEsDBBQAAAAIAEGwey8zK1FpIQMAAA8A
BAAdAAAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3My5wZ23t1MttI1cURdEeKwqn4AaUh0NgkArQ
Zktk6UNy07N3q9YCukfFcwf7Qf+8vrz+/fuv//69/H59ffkFAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDJOpz//P/6InTpd5Jfs0DX/KT9l
hz719wgO6PRN/oCd+F5+ewCewf7dqf/pFbBbEf/slz8D+xXtP8kpxsnon+Uaw2Tyr3KPUTL4NznI
JNn7h5xkjqx9S64yRKa+LXcZIUPfk8sMkJnvymkGyMz35TaLy8QP5Txry8KP5T5Ly8AlL7Cy7Bvy
ACvLviUvsLLsW/ICK8u+IQ+wsuxb8gIry74lL7Cy7FvyAgvLvCUvsLDMm/IE68q6LW+wrIz7hDzC
sjLuE/IIy8q4T8gjLCvjPiOvsKps+4y8wrIy7hPyCMvKuC1vsLDMm/IES8vAIQ+wuEz8SK4zQGa+
J5cZIUPflLOMkbFvyFHmyNo/5CSjZPCvco9xMvomt5gq25/kP4JzZfGPawutPAAAAAAAAAAAAAAA
AAAAAAAAAAAAAADA//T2ob9kd96+6h+wJ2/f9U/Yjx/5vYAjuZXfAziM2/m9gIO4m98DOIIH+fXf
v0f5PYDde5zfA9i5yq//rmV+D2DPur7+O9bxz3qHkTr9Hz3ERF3+XS8xUZf/0FMM1OE/9BTzdPeL
3mKe7n7VY4zT2a96jHE6+1WPMU5n3/Qa03T1Ta8xTVff9BrTdPVNrzFNV9/0GtN09U2vMU1X3/Qa
03T1Ta8xTme/6jHG6ewXvcU83f2it5inu1/0FvN094veYqAO/66XmKjLv+slRur0Z73DUB1f/n3T
/9jkPzj5D07+g5P/2NQ/OPUPTv2jk58z8QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC9+RdQSwMEFAAAAAgAQbB7LxghKyw3
AwAADwAEAB0AAABwYXJ0aW1hZ2UvTGFiZWxUaG9yYXguMDc0LnBnbe3SwVEbWRSGUa+JYlIYV5HH
hECQBDjGKoFASF/L3rzbfU4VLKjmv4vv/ff89Pzvz39+/Tz9fH5++gEAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAKl5O8jv25+Vc3wM4oJcv
8h/Yk6/5PYADuY7vDRzGzfiewP5F/De5wVgZ/7ecYaYsf5ZLDJTZP+QW42T0T3KOYTL5Z7nHKBn8
Sk4ySOa+lpuMkbG/k6tMka2/lbMMkam/l7vMkKVvyGFmyNI35DCLezn9/lN3t1lc5k15gmVl3C3y
CmvKstvkHZaUYbfKSywos26Wp1hQZt0ub7GerLpd3mJBmXWzPMV6suoD8hiryaaPyGusJps+Iq+x
mmz6iLzGYjLpHT+u/8IwVwn/Rl5jORn1AXmM5WTUB+QxlpNRH5DHWE9W3S5vsaDMulmeYkXZdau8
xJqy7CZ5hmVl3A3yCAvLvClPsLQMfF/us7psfE+us76sfFNOM0OW/lbOMkfW/ioXmSabX8gxJsru
v+UMo0l+eKIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyx15P+kP15/aS/Z09er/U/sRPf1PcCDuNG
fQ/gGG7n9wAO4F5+D2D37uf3APat6uu/a53fA9izrv/qAexXt3/TO4zU6U96iYm6/EkvMVCHP+st
5unuZ73FOJ39XY8xTmd/12OM09nf9RjTdPULPccwHf1CzzFMR7/QcwzT0S/0HMN09Eu9xyzd/FLv
MUs3v9R7zNLNL/Ues3TzCz3HMB39Qs8xTVf/0GtM09U/9BrTdPUPvcY0Xf1DrzFOZz/rLebp7me9
xUAd/qSXGKnTv+kdhur4r/rvWdeXf886v/67Jv/ByX9w6h+c+gcn/9GJf3Dqc3oF/RW7pT4AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAALBb/wNQSwMEFAAAAAgAQbB7L0B+jIp2AwAADwAEAB0AAABwYXJ0aW1hZ2UvTGFiZWxUaG9y
YXguMDc1LnBnbe3S3W0bVxRG0TyrirQQA+ojJbBIFRj5R9RQIrlJIA/3zKwFG5Dh0Xce9v339eX1
nx9/v/99+fH6+vIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAACwqlN+wU6dTu9/3uWH7M9pIz9mZ04X8nP25fTFxX/d+B324mv9zyfw/TmwO1fz
/4p+8Q/250b6j+jbn9mdG9k30Tc/sju3sl+TY0yTzbdyjWEy+YWcY5hMfiHnmCWLf5OTzJG1v8tN
xsjY1+QqQ2Tqq3KWITL1dbnLCBn6llxmgux8U04zQXa+KaeZIDvflNMMkJlvymmWdS54L3CJGywq
wz4oD7GgzPq4vMVyMuoT8hjLyajPyGusJps+I6+xmEz6lDzHYjLpU/Ici8mkT8lzrCWLPikPspLs
+ay8yEIy59PyJAvJnE/Lkywkcz4tT7KQzPm0PMl6surj8hbryaqPy1usJ6s+Lm+xnqz6sDzFgjLr
w/IUC8qsD8tTLCizPixPsaQM+6A8xKIy7UPyDKvKtg/IIyws86Y8wdIy8H25z9qy8F05z+qy8R05
zvreM1bn63KZMTL2NznJJNn7Uu4xTkY/yylmyvIn8fdN/MNTHgAAAAAAAAAAAAAAAAAAAAAAAAAA
/mdvG/01+/L2Vf8K+/EtvxdwINfqewGHcSu/F3AId/J7APt3N78XsHeV3wPYtc7vAexZ19d/xzr+
T73DTN3+lx5ioi7/Wy8xUZf/o6cYqMP/0VPM090/9BbzdPezHmOczn7WY4zT2c96jGm6+kbPMUxH
3+g5hunoGz3HMB19q/eYpZtv9R6zdPOt3mOWbr7Ve8zSzbd6j1m6+VbvMUs33+o9ZunmW73HLN18
q/eYpZtv9R7DdPRPvcY0Xf1TrzFNVz/rMebp7h96i4E6/G+9xERd/pceYqRO/1PvMFTHf9N/xzr+
m/57pv7BqX9w8h+c+kcn/8Gpf3TiH5z6Byf+0YkPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDe/QdQSwMEFAAAAAgAQbB7LxJF
lGLgBwAADwAEAB0AAABwYXJ0aW1hZ2UvTGFiZWxUaG9yYXguMDc2LnBnbe3ZUXLbZhKFUT97FbOF
pMr7mCX4lfvTAmckkRRA/sAFCYAE0OdUpSqJyQbVX0txOf/98/vPP//+5/9//f73z5/fvwAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD06teS3sXPN7mPySHYix27K
g9myXHiK/By2KJd9VH4mm5BTznV+SvogvEGMt4jvx+RPwyuFaN+eec+w5ufgHZYrFSb15XG8wLKN
RqfdyfNY2SpdmkOb8ixWtHqT5gNu5TGs4qUlGuFf8VgGvD7D+Rn3D37Bs7nxzv27gDd7++5bB/CO
z1HTJrbePAAX8AJbWXnzAN79oY5vW4tu59/ABzuiLW75/jNt6uMdyVa32yq/uQ+5e1vebKP7Rj/p
bm1+p63wm/2we7OLhbbKb/oD78a+ltk8ABfwvN0t0gUsaac7dACL2PMGncBsu1+eA5jhCKtzAE87
yt4cwDMOtLXel+ICJjnWyhzAg462sFNffkNtx9uVA3jAATd1upPfU9Uhl+QApjroihzANIdekANI
Dr6e/gG4gDvH340DGFFhM70DcAFdRfbiAAZUWYsDaKuzFQfQUGkpDuBOsZU4gBvVFuIA+urtwwF0
FdyGA+gquAsH0FFxFQ7gquYmHMBF0T04gLOqa9D/S90tOIBPhZfgAGrv4FT5iz8rvQH9a/d3AL+K
f/366+/rd/9VF1C+f/EfgPqX3oD8tXegvz8Bq97fn4D7P6BF1+Db/5v+tRVdwyW//rX751ceXc1F
6H9Run9+4eHV/E7Q/6riAdQ8+jb9a9O/uHq7kL+r3jb079K/trL98wtr0L+2cj8A9O+p1r/cvQf6
F6d/bTX75xdWoX9t+tdWayEn/W/oX5v+tZXsn19Yhv616V+b/rXpX5v+telfW8n+DuBK/9r0r63Y
QvS/UbO/A7jQvzb9a6u2DwfQp39p5dahf0+9dTiALv1LK7gM/TsqLkP/H/qXVvJnof5X+temf2kl
8+t/pX9pl/z6l1Q0v/5n+pdWPH/1/lXz6//lml//ksrm95//T3Xz6/+p8A9B/Ut/++tfO7/+hX/v
/0n/0vn1r52/fP/i+av/+c81v/4lVc//igX8/RRf9Rblv/1f8APg79mv7V2B/Ov/APjbc/+Ljbe8
jPy/1v4B8PfG3S8NvO8V5P+06hJu8/8EbxzEi8n/bcU1NPKfm/f+4S2u+fVfaw0D+b9/L3j9+/eQ
/2KVPQyEb4ijViH/j+U3EaN3xGFrkL9j8VXE5l1x2grk71p6GTF5V5y2gp/8+n9adhkxeUcctgb5
byy7jhi9K05bnvx3ltxHTN4X5y1N/ntLbiQWvxUnLkr+luVWEnPfiSOXpH7TYluJte/FmQvy3T9g
oa3E2A1x6GI69eXvq9Bf/hFLLCambopjF6L+mNm7iZ0HxdHLkH/M3OXEyiPi8CXIP27eemLjMXH6
AuRP5mwoJh4Vx8+nfnTqyi/viYnHxflzzbntMnoH8NCiYuAkPmEm+ac43cpv+Rb7RvERs8g/zd0B
TNtYrJvFZ8wh/1SNA5iwtVg3i8+YQf7pnjqAWDdLj5hD/0c0L2B0dTHuBGPzZ5L/UQ8eQIw7xcj8
eeR/wkMHENtOMjx/lkkXTMPkA4hpJxkcP4v8c0w7gJh2mqHxc8g/14QDiGWnGZg+h/zzdQ+gvcZY
dqLm8Dny6TJF2GMMO1Fr9hzyL6WzycYqY9iJ7ifP0P3I8s81tszYdarGc58m/7JG1hm7TtV67pPk
X9rwQmPXiZqPfUqvvvzLGNpo7DpV+7GP69eXfzHtncauUw089VHqr2bdAxh46GP69eVf2Ir9B574
EPVX1lptLDvN0CMnOt3Lb+JR6x3A0BOnEf81WguOaScZfGR0117+9bQ2HNtOMPS8pBVf/fU0lxzr
RkOPG9eML/+q2muOgYOBh41T/x3WOICBR40S/00Gth0jj2g/aJT2bzOw81h50MBzxsj/RgsfwMBT
xkj/VkO7j6nvtR8wTv13G1x/7N3TnB2J/34jDWL1q9bg5NSTX886xirE8J8aMyeQfytih6Hwp5bm
hFtPvYmVTCnx/X0+WP3G0JSzx17N2h6ocVre+AN5halBBhLOMPIwXmdalWbBWQYexMuFMM1687Q+
BW8zUKjxr5eRPg8vlpNdrDmCt8nVzuZPGZ3A2+Ryp0fj3bztiQm8zlDzjjxk1PwJrGrN+Gyf9MWJ
X5z0AAAAAAAAAAAAAAAAALBlH/klHNRHR341x/JxK7+F47jL7wAqaeR3AnUM5HcBNQzndwEVjPZ3
AEc3nt8BHFzK7wCOLfd3AAeW6384gAPL8T/0P7Ac/1Oewy7l9F/yIHYpp/+SB7FHufy3PIkdyuEv
8iz2J3e/yLPYnZz9Kg9jd3L2H3kaO5Ojd+Rx7EyO3pHHsTM5ekcex87k6B15HPuSm3fleexLbt6V
57EvuXlXnse+5OZdeR77kpt35XnsTI7ekcexMzl6Rx7HzuToP/I09iZXv8rD2J/c/SyPYody+LM8
ij3K5b/kQexSTv8lD2KfcvsP+Q8sx//Q/8hyffkPTf7a5K9O/eLEL0796tSvTv3ixK9OfAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA4Mj+B1BLAwQUAAAACABBsHsvLP3e+IoDAAAPAAQAHQAAAHBhcnRpbWFnZS9MYWJlbFRob3Jh
eC4wNzcucGdt7dLBbRxHFEVRrRmFU7AA5uEQGCQDtCiJYtPk8NYsDNTvPgeY3fT7i1v/PD48/v39
rx+/h++Pjw/fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAmOjpp/wbJ/R0lP/mXJ4+yE84hY/lPYDLuBnfA7iAL+vrf3JR/4dvTznCRFn+j5xinIx+
lGsMk8nfyTlmyeLv5R6zZPH3co9RMvh/5CCTZO8PcpI5svYncpQhMvWncpYRMvQNOcwE2fmGHGaC
7HxLLjNBdr4pp9lfVr4tt9leRv5KrrO5TPylnGdfWbflDbaVcVfkFXaVbVfkFTaVadfkHfaUZdfk
HbaUYRflIbaUYRflIXaUXVflJXaUXVflJXaUXVflJTaUWdflLfaTVe+Qx9hORr1DHmM7GfUeeY3t
ZNR75DW2k1HvkMfYUGZdlqfYUGZdlqfYT1Zdl7fYT1Zdl7fYT1a9Qx5jOxn1DnmM3WTTe+Q1tpNR
75DH2E5GvUMeYzsZ9Q55jP1k1XV5iw1l1mV5ig1l1mV5ig1l1lV5iS1l2EV5iC1l2EV5iC1l2EV5
iC1l2EV5iC1l2EV5iD1l2SV5hl1l2xV5hW1l3AV5hI1l3pIX2F02/kKOs7+sfEMOM0OW/ig3GUdp
/hQX/5o0BwAAAAAAAAAAAAAAAAAAAAAAAID/0/Mv/UfO5/m9/oATef6gv+E0Pub3Ai7k0/zewFXc
zu8FnN+X9T2As6v8HsCpdX4P4MQ6/oveYaRO/1MPMVGX/62nGKjD/9ZTzNPdX/UW43T2N73GNF39
Ta8xTVd/02sM09GPeo9ZuvlR7zFLNz/qPWbp5ke9xyzd/Kj3GKWTv9ODzNLNj3qPWbr5Ue8xSzc/
6j1m6eZHvccs3fyo95ilmx/1HsN09IOeY5iOftBzDNPR3/Qa03T1N73GOJ39VW8xT3d/1VsM1OF/
6SUm6vK/9BIjdfoXvcNM3f5F7zBUx5f/1OS/OPUvTv2LU//i1L84/a9O/quT//KkBwAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg
7P4FUEsDBBQAAAAIAEGwey/aSh3xrgMAAA8ABAAdAAAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3
OC5wZ23t1dFNHFkURdH5JopJYSyRx4RAkAQ4NoamMDS7q6WR7qtaS/KXq+/52M/yv48Pj//8+Pvn
n4cfj48PfwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAsLCnn/IjjunpIj/lcJ628muO5elP+QuO41N9D+AUfof+qr4XcAbXynsA5xD9vYAjy/i/5BXW
lOVf5SEWlNnf5S3Wk9Xf5S0Wk8k/ynusJHt/kidZRbb+Wt5lCRn6mrzMCrLzFXmYBWTmq/I002Xj
b+RxRsvAJReYK+u23GCurNtyg7Ey7g1yhLEybssN5sq6N8gRpsq2N8kZZsqyt8kdRsqwt8olJsqu
t8olBsqsN8spBsqst8stpsmme+Qas2TRfXKPWbLoTjnIKBl0pxxkliy6T+4xTCbdJecYJpPuknMM
k0n3yDWGyaR75BrDZNJ9co9RMuheucggmXO/3GSOrHmHHGWKbHmPXGWKbHmPXGWITHmf3GWGLHmf
3GWEDHmnHGaGLHmf3GWKbHmPXGWOrLlfbjJH1twvN5kja+6XmwySOXfLScbImHfIUabIlvfIVabI
lvfIVcbImHfIUebImvvlJpNkz71ykVEy6E45yCxZdJ/cY56serOcYqQMe5vcYapf8SpvqAmGy8Lf
yOMsIDN/Le+yimz94T+KusbSruR/+9urv+Mgts39cwcAAAAAAAAAAAAAAAAAAAAAAAD4Hzxf9Lcc
zfMH/T1H8vyn/gnH8Sm/F3AmX+X3BE7jWn5P4Ay+q+8BHF7k9wCOLfN7AAfW8Z/1P65u/6IPsaRO
/6IPsaIu/6pPsZ7u/qZvsZ7uftHHWE1Xf9fXWE1Xf9fXWE1X3+hzLKajb/Q51tLNt/oea+nmW32P
tXTzrb7HWrr5B32QpXTyD/oga+nmW32PtXTzrb7HWrr5Rp9jMR19o8+xmI6+0edYTVd/19dYTVd/
19dYTVe/6GMsp7Nf9DGW09kv+hjr6e5v+hbr6e6v+hQL6vCv+hQr6vK/9SVW1OVf9CHW1O2f5T8y
9c9N/pNT/+zkPznxT07+s9P/9OQ/PfUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADi4/wBQSwMEFAAAAAgAQbB7L+ThckDAAwAA
DwAEAB0AAABwYXJ0aW1hZ2UvTGFiZWxUaG9yYXguMDc5LnBnbe3Sy20jRxhGUa8VhVPwAMrDITBI
BmjPgw9ZJK+66UFXNc8BtBGa/7e49ff72/tf3/789+/t2/v72x8AAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNQOh0N+w04dTvJL9udwJT9mZw4f5ffs
yeGT/Ak78bm9B/Aq7rT3BF7B4/jf5QmmlfEP+u9Ytv8urzClDH+Sl5hPVr+Sx5hORr+W15hMJv8g
zzGXLP4feZCJZO4H8jijux3183/veHycwd0reuP/dzw8z9juFL3573tqgzFl2C/KIQaUWb8utxhP
Vv263GI4GXWJXGM02XSJXGMwmXSRnGMsWXShHGQk2XOpXGQk2XOpXGQk2XOpXGQgmXOxnGQU2XKN
XGUU2XKNXGUYGXOFHGUYGXOFHGUYGXOFHGUYGXOFHGUcWXOxnGQgmXOxnGQgmXOxnGQcWXOxnGQg
mXOxnGQcWXO53GQQmXKd3GUIGXKlHGYE2XGtXGYE2XGtXGYAmXG1nGYAmXG1nGZ7WfEJOc7WsuEz
cp2tZcMn5Dhby4bPyHU2lgmfkvNsKws+J/fZVhZ8Tu6zrSz4nNxnW1nwObnPtrLgc3KfjWXCp+Q8
W8uGz8h1tpcV18ttBpAZ18plxpAlV8lZhpExV8hRhpJBl8k9BnP4X99ArTGizPpFOcSYsuyX5Axj
y8IP5HHGl5VvyrPM4pTzcfArj88xLdlfnO6v7tRbdgAAAAAAAAAAAAAAAAAAAAAAAPjtjsdjf8Qe
HT/qH7Ajx1v6Z+zCzfpewKu4m98DeAEP6nsBuxf1PYB96/wewI51/KP++9Xtf+hDzKjL/9SXmFCH
P+lbzKe7n/QtptPZz/oY0+nsZ32M2XT1K32OyXT0K32OyXT0K32OyXT0i77GbLr6RV9jNl39oq8x
m65+0deYTVe/0ueYTEe/0ueYTEe/0ueYTEe/0ueYTVe/6GvMpqtf9DVm09Uv+hqz6epnfYzpdPaz
PsZ0OvtZH2M6nf2sjzGf7v5Ln2JCHf6XPsWMuvxPfYkZdfkf+hBz6vZH+Xes48u/a51f/12T/8XJ
/+LUf3Xyvzr1X536L099tAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYNf+AVBLAwQUAAAACABBsHsvp4F/AtYDAAAPAAQAHQAA
AHBhcnRpbWFnZS9MYWJlbFRob3JheC4wODAucGdt7dJbbhtHEEDRfGsV2UIMaB9ZAhepBSaRbD5s
mVckJ+ju4TkA/4ZVBdz++/Xl9a9vf/77e/n2+vryBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALC8w7v8jF06nOS37M7hXH7Nzhwu5ffsyuFn+Q/24Jfu
XsAzuZLfE9i/yO8B7FrWP3gA+5XpP+QcVpTdj3IU68nqZ3IYi8nkl3IeS8ngP8uJLCRzfyKHsops
/ZmPP14fzAqq9FU5nbll4ZALmFn2LbmBiWXeljuYVKb9klzDlDLsV+UmJpRZvy53MZ2MeoNcxmyy
6S1yG7PJpjfJdcwli94oFzKT7Hmr3MhEMuftcifTyJj3yK1MIlPeJdcyiUx5n9zLFDLknXIxU8iQ
d8rFzCFL3if3MoUMeadczAyy471yMxPIjPfL3QyXER+QyxktGz4k1zNWFnxQHsBI2e9heQLjZL0N
5BGMku02kWcwRpbbRt7BEBluI3kII2S3reQlDJDZNpOnMEBm20pewgjZbSt5CQNktm3kHYyR5baR
dzBGlttG3sEYWW4TeQajZLst5BWMku02kEcwTMZ7XN7AQJnvYXkCw2S8DeQRDJPxHpc3MFDme1Re
wEjZ71F5AaNlwwfkcsbLivfL3cwgO94pFzOHLHmXXMs0MubtcifzyJq3y51MJHPeKjcylfdk0fQG
tY45ZdgvyTVMK+Nel/OZXTa+IoezhAx9cvzDtXksKMIrvnfq85+z3tIDAAAAAAAAAAAAAAAAAAAA
AAD8/95O+mP25O1X/Sf24ZP4XsDz+F1+D+AZ/L6+F7B/1+t7ADuX+T2APev6bx7AfnX7dz2IJXX6
Dz2JBXX473oUC+rwP/QsltPZj3oYy+nsRz2M5XT2k57GYjr6mR7HYjr6mR7HYjr6uZ7HUjr5hR7I
Ujr5hR7IUjr5hR7IUjr5hR7IUjr5hR7IUjr5hR7IUjr5hR7IUjr5hR7IWrr5mR7HYjr6mR7HYjr6
mR7HYjr6SU9jNV39pKexmq5+0tNYTmc/6mEsp7Mf9TCW09l/6FksqMN/16NYUIf/0JNYUqd/14NY
U7d/k3/Pur78e6b+k5P/ycn/5PR/cuo/O/mfnfhPT3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHbvH1BLAwQKAAAAAADPs3sv
AAAAAAAAAAAAAAAACgAAAHBhcnRpbWFnZS9QSwECFAAUAAAACABBsHsv3chyKhoCAAAPAAQAHQAA
AAAAAAAAACAAtoEAAAAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA2OS5wZ21QSwECFAAUAAAACABB
sHsvB0dqyA4CAAAPAAQAHQAAAAAAAAAAACAAtoFVAgAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3
MC5wZ21QSwECFAAUAAAACABBsHsv9YL2tQEEAAAPAAQAHQAAAAAAAAAAACAAtoGeBAAAcGFydGlt
YWdlL0xhYmVsVGhvcmF4LjA3MS5wZ21QSwECFAAUAAAACABBsHsviRV1mhIDAAAPAAQAHQAAAAAA
AAABACAAtoHaCAAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3Mi5wZ21QSwECFAAUAAAACABBsHsv
MytRaSEDAAAPAAQAHQAAAAAAAAAAACAAtoEnDAAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3My5w
Z21QSwECFAAUAAAACABBsHsvGCErLDcDAAAPAAQAHQAAAAAAAAAAACAAtoGDDwAAcGFydGltYWdl
L0xhYmVsVGhvcmF4LjA3NC5wZ21QSwECFAAUAAAACABBsHsvQH6MinYDAAAPAAQAHQAAAAAAAAAA
ACAAtoH1EgAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3NS5wZ21QSwECFAAUAAAACABBsHsvEkWU
YuAHAAAPAAQAHQAAAAAAAAAAACAAtoGmFgAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3Ni5wZ21Q
SwECFAAUAAAACABBsHsvLP3e+IoDAAAPAAQAHQAAAAAAAAAAACAAtoHBHgAAcGFydGltYWdlL0xh
YmVsVGhvcmF4LjA3Ny5wZ21QSwECFAAUAAAACABBsHsv2kod8a4DAAAPAAQAHQAAAAAAAAAAACAA
toGGIgAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3OC5wZ21QSwECFAAUAAAACABBsHsv5OFyQMAD
AAAPAAQAHQAAAAAAAAAAACAAtoFvJgAAcGFydGltYWdlL0xhYmVsVGhvcmF4LjA3OS5wZ21QSwEC
FAAUAAAACABBsHsvp4F/AtYDAAAPAAQAHQAAAAAAAAAAACAAtoFqKgAAcGFydGltYWdlL0xhYmVs
VGhvcmF4LjA4MC5wZ21QSwECFAAKAAAAAADPs3svAAAAAAAAAAAAAAAACgAAAAAAAAAAABAA/0F7
LgAAcGFydGltYWdlL1BLBQYAAAAADQANALwDAACjLgAAAAA=

------=_NextPart_000_00EB_01C3B538.39C2CE50--