[Insight-users] ImageMomentsCalculator Bug?
Benjamin King
king . benjamin at mh-hannover . de
Thu, 28 Aug 2003 14:55:09 +0100
------------6rg1VCxrIjycakBZV5WC1I
Content-Type: text/plain; charset=iso-8859-15; format=flowed
Hi all,
I experienced a strange behaviour of itk::ImageMomentsCalculator, but I'm
not sure if it is a bug or a misconception on my behalf. The attached code
and image demonstrate what's happening:
The program reads the test image, extracts a small region around the voxels
with value 63 and binarises this region by setting all voxels with value 63
to a new value x (supplied on the command line) and the other ones to 0.
When it calculates the image moments, I get errors for _some_ values of x
(e.g. for 1,2,4,8,15,16) but everything runs fine for other values (3,5-
7,9-14,17-20).
I don't know much about moments, but I think that at least the pricipal
axes and the center of gravity should be invariant to the pixel values.
If this is no bug, under which circumstances does the moment calculation
fail then? I assume it has something to do with the eigensystem of the
covariance matrix, but what can I do about that?
Thank you for any suggestion,
Benjamin
--
Benjamin King
Institut für Medizinische Informatik
Medizinische Hochschule Hannover
Tel.: +49 511 532-2663
------------6rg1VCxrIjycakBZV5WC1I
Content-Disposition: attachment;
filename="DebugMoments.zip"
Content-Type: application/zip;
name="DebugMoments.zip"
Content-Transfer-Encoding: Base64
UEsDBBQAAgAIAJdsHC/edCBbVQMAAO4IAAAaAAAARGVidWdNb21lbnRzQ2Fs
Y3VsYXRvci5jcHCFVU1z2jAQvfMrtuRiOg6JoUlaIJlpM2mGmTbp5KOXTg7C
XrBaWWJkOYRm+O9dSQYMmPQQIu2+fd7VW60OuIxFkSAMuMqNRpZdNA5Wttwk
+BLj1FSNMVkFH1VMTW7+DDM2wXbarLF+5QLvkCWod/x3OOFK3o6H0qDG3Czx
pgb7hUum5w8p4VIlkregVy5pyzz6jbGpT+u7ylCa/JKJuBDMKEfTKHIuJ0Al
9nqxKky/akCZiH6jwaWBjHEZ2AXTkziEOGUa3tP6+ddTC14bAHwMgfXBu3Po
eBOAZYTBAJqPOSXQg6bduKjjJ2cfjFyRviwYypwn+JOJAi8c1CdgmTSaQkuI
7G7RoB8zn2KCY6Dqej1X36Cg8InEBOi8tAmhewHO8UDQfm3IWqnBClkGeXNt
6BsirmlCqDDe3Q69f38qO+pUM9px1vLsb5g9aW0FVFMk7qMjsIcAJkUwVCZw
G0mOrfPp9X4obo+CRLI2ON9F3OAsaNmEPeTw4h6NPfwblmHQTHBUTMoa22mi
m61lAlcvRrOYug6MVsVIYE4oIrECgKK6Swna8OjalklF6WqYajXRLIMhpOwZ
PVeChu4G+oIyLqkcsaQyKTPUrdJQm+fAhIBn9YIihxk3KQg2QgGn3bYnerDg
MpDnkE8x5mNOxPRltJgNuSvHo3jZ6OfbkNX5rNShtpA0jOySqqSV9bqFvTt0
x/rlLrK7s+Wu43ydLap7/tetIKeF9dn/nieK+n7neKKTctcpd5s8vvMdk68/
cF8NXYzXd1mjk3j7pgQ+qgY5lNPCun13XKO5LYy1tFatcKncdNCgpJg7DZ1E
mwoRdG9Tr4XYGDrnb0WsdKmGuIS/qRmBljHBabce9jid1sConPuHu88311c9
GBqYKf0ntxO0MgBJT3jthnByeBbCp8PoQwjR2WHneAEjmqljxoWL4MbTUR/a
gCiETgiE/UjwE/o7XdRlVflOQOOEB24mR0+t+iJIizX+uB5TCrgWdUfDzZDH
acIM+sOtHW9rubJtN2m2J2Sl106MT9K2crCZyE6eRs/L56uG5FJlBC3zXkDM
TJxC4F/L5SMMuPP+rR7o8g3E9oyGSND6zyO3jK9JhNK+RHs8t+NrzZ65mQc+
/ZLkuN9YNP4BUEsDBBQAAgAIAJZrHC8qA4k3LQAAAFwBAAAQAAAAZGVidWdN
b21lbnRzLmhkcothZGAIDfbwDwphwA4cQEQRAwuDDhgyQiEqaGEQgLKWFNja
wzADQwMaHlkAAFBLAwQUAAIACACYaxwvjfq6+yIdAACAmQIAEAAAAGRlYnVn
TW9tZW50cy5pbWft3VtfU9fWwOFpX7Vu9d3arRW1dVdoUCSowQSSACnr+3+q
DYRkrXkY57GEwBzzonf/+gMu8mSsQwh16tSpU6dOnTp16tSpU6dOnTp16tSp
c7vn9OIcXR3fZtv1ap8Wuke3tnsKdI9uafdL53yOzv3qBqAbbm03FLp+03br
1KlTp06dOnXq3HUZ+qpws1zYj7NOke6RUzXvHt2L7imjqyl/yc7nwrk93cDo
hnvRDUT3fn3/0O/3BOG6W6dOnTp16tSpc9e8WV3Yl7P66Z4yu0d3unsq6ErK
X4rnM3BuvhsE3XCnu/V7jU3/nqB6vk6dOnXq1Lkdgq3e3BRvbpaz+ume3pLu
0R3tfhE69nPt9tqt32vcpu8Jqueh+ud6xX2dOnXq1LkxxZ72dNdi+rl61ps3
Zy7VkgNmDtWyL2bmKuSWmbEKe2jWU/fIVMW6R7V7490vChd+rt2N7Pbj+T1m
90DU3WN3obK1CpXt1XLZo1oq+1Tzslc1/av7XOVdp06dOjfiTt/rf88uTvdz
6uzq2Jtn2effmal9llRPI1lp23n1NDGbplyq5p6XlsvVkudl5XK17Hl+F6pC
nueW42pT6DaFsqzK9TxdPlO5kO6eKr3ZV/dIXaW6RypjUX7DP71auntKFX4x
VGG74d09RjcuN4VuU6hyunJvchQDly3VVZfvzT22uaCyrdp2aW/KulDZWoXK
9mq57FEt/QZ1vy3671n298p3/WfXXp06depQcxKOL46vY5ef4i0eLDfP1p9T
Z+b2WVI9zdRmcSzmbr1jaXdrHMtzt8ybEnfzvSl198xQxdzN8abO3TN19RTV
MV4+M7ib6mrdPVNqnnL3FKzOTT6eguWhybG7FwfqHhgcC3cDYkLasXtKbX4h
qnRX51hOV+5YygYHSsfyPC91LN/zMsdKPM93rNTzPMfq3E05Vu9u2LFWd5cc
6+PuZfmzSzNu71+cTxfH393Lbp06derEn11Prs7x1fF17Krr69jc3R6Ohdwt
LZ8Vq2V3ax1Lu1vjWJ67Zd6UuJvvTam7Z+oq7m6ON3XunimrlLvh8pnR3VPQ
mxZ3T5HuXO3uKdHV+niK+nioduwu6uOh2rG7hLv1joW7B0bH0l2dY/fEcuM4
FvsUf2BwLM/zUsfyPS9zrMTzfMdKPc9zrM7dlGP17sYca3N32bEe7k4d6+Pu
/XX3k6O796Pusl2nTp1NmpP1OV4fH8emXT/H5u72cmzJ3XbHwu7We5Nyt3xv
ynW3xrE8d8u8KXE335tSd8+UVcrdHG/q3D1Dtal39xTRpt7dkAznnbLc3VOi
O1e5e8roanyMdYfXR+PY3fWBuxrH0l2tY/GuxbFw1+rYcveA0CbtWJ675Y7l
dyWO5Xte5liJ5/mOlXqe51iduynHavbotGMtnocdK5VnXs0da3V36lgfd+8X
feyxm867derUyR1r3/GeFH187ODYsrs9HAu52+5Y2N3Su1j57tZ7k3a3vku5
e6au4u6WeVPibr43pe6eqaq0u2eAs6zuhv1mcXfZb/PIsXJ3T4nuXOXuKSjO
eVSWuXvK7Ep9jHWHnSN17G504K7UsbyuxrF0V+tYvGtxLNfdcsdy3S13LL8r
cSy0oT8wOlbieb5jpZ7nOVbnbtqxWnfjjtW6G3Os7s5xyrH6fTfsWIu794td
6/Xb+2DXR8lxt06dPjXred8t5FjL/yHWcdrVCTnXce5u2/2xuLst1xXj7rbs
eXF3WxxLuVvnWMjdjcmxPHdLHct390xV5bib61iZu2EXWtyN+03rbtqFGndz
HStzN9exc5G7p0h3nhyJj7HuMDllx/7K0HFsrbQrceyuwN0yx0rcLXOsxN0y
x0rcLXMs3LU6tiz6AwfHStwtcSzt7obl2Mbobo5jde6mHKtzN+1Yjbspx+r2
0pRjddeZU47VuRtzrF7I+4SPLaKFu35TxV2nnz0v5lhtPdVx3pULuaTjkrv1
jqXdrXUs7W6tY2l3ax1Lu1vrWNrdPMc2hfaMPNJ/7crzlLsljo09j+uY79jc
85iOuY4tex7TMcexsOdhHU9RbebVPy7O71cH13FcngPlbnXV/R3VMd6dF6pt
93dEx3T3lNE9IrpDVLL/uj6/rg+m412ie8Do7gm7sYOgbknHWDcXVtzFdAx3
y3Zru7iOU3EOQSEfsBwrdXfuTVzHfHfH3sR1LHN3601KnFJ3Lw/tWNm+m+tY
ubs5jpW7m+NYubs5jpW7m+NYubs5jpW7m3KsTsj7DB9rBdrvXrpeD173vH3u
eSnHatq5jktd3fXKHHfrHMtzt8axPHdrHMtzt8axPHdr9rE8d+sce0KqW+NY
jrvljqWvX9c4lrNHp71ZrrbOwquY38rV1m94lePYbrXrQqxKOzaudru/I1VO
t1uNu0eM7rx4ziIbp93fQXW35WHxHETWjL25dFxZsa1dhoCPD9AupNiuiYag
kKHuHtKl3R2X2+oTRMc8d3fLpare3W25XMXcjVdXv8HuzxUr893N2Zvq3H15
aMVq3L1PKlbubq5jZe7mOlbmbq5jZe7mOlbmbq5jZe7mOlbmbo5j5ULeZ/pY
Y8/N3kvX54Pf7z0vx7HSdknH5a58z8t1t9zHfHdLfcx3t9THfHdLfcx3t9Sx
fHfLHcvZS+sce8Koyh1LuVvn2LPw55WH3l4cP8f+eVVdOuttoa1z7Kq68lta
lrkwr7Yu7JYxF+LdP0Kz7jadsq47X1fLjl2Wp4ruZfkPxMdvwSru42GizdSx
T0Ad7xLuPgjPr3rNutt0qk8M7n5+Xc4d++Tah7puXM6r0u5B1H2eOLbb3RN8
TxBboC2XqhZ3r8rlqs3dl+Vy0+rufdKaGndz9rxSd/MdK3G3xLF8d0scy/ex
xLF8H0scy/exxLF8H3MdK/PxvsDHUivWvXQd3J3HTkLuY8/LdaykXdYx1JU5
VuJumWMl7pY5VuJumWMl7pY5VuJumWP57pY7lrOX1jmWcrfese/Dmx4ce3ne
ro/dsX+uzx9racZtvWNzd1sd263G7l6VtY6F3a13bFz9I9Hx27Cl7L5D3b1F
diEfP4u0+a9Ex48ujsbHw8iEJcc+Urr7eVL+NRHnE5O7Icda3P08KsfVJw7u
Th1rd/fzzilV7e5+Gh734O6nV93Hzu7m7Hml7uY7VuJumWO57pY5lruXljmW
626ZY7nuljmW626JY/lC3u/Rx5u6lw5A9z5r9tjxSmj/66D72PNKHHtsrMJd
Xjm2VVPoNgXJaa/ZptzN97HU3XwfS93Ne++O3N0Sx/LdLXcsx906x55cKPbS
sZfH17Grrr9j36+rUsc2oDdTd5cc24i9WXa33rFxNXX3W2RzynEs7G7cm7Bi
36Huxhw7JbrvQHdvXR+4C+v4WSLkVMe4kLEu5lh99znh2EfExptyN+RYrrub
bIv+HHFsuklvVO5OHWtzd7fadazfvrt1rKe7n667jx3dvfxUvexCIpS6m+9Y
ibtlji27e+jgWM5eWu5Yjo/ljuX4uG01hW6juhb6QOzYvnz8SS3YTdlL93/d
dtut10Hf3uug+/DxicLHx0Id87p8x0r33XzHyt3Ndazc3Zz3x8rdzX3vjszd
8uc8cdwtf85Tq+OVj9843R+70vGq63ddce5u+/W/sLutjm0SdzdMx84Zji27
W+9NzN2UNynHlt29Zey+K7p7y+zjZ0XHPjL6+BnoWA93lx1rdXcDOlbXTRXb
OrYx7LvzbupY7Ap2vrtTx/rsu1PH+rj7adR97OTupY273Vxu0ueq8R0rea6a
zLG7TB/LHct5P5nGsXsqHeP7WI67NY6l3b2vcOwnlpCrj2/2uu16HfTtvA76
ZKN8rOnyfKxzN8fHOndzHCt3N9exMndz3x8rc7fcsatm6028ynfsSsetj98w
n/NEOTbt+jk2d7fXPjZ3t5djc3d7ODbfd3s4Nne31rHvOo7N3b1FSpbuvsvc
vcXq4jruCjnXMSxDultyrL0L7WO13dTd+T7WY99ddqyHu0uOtbu75Fi7u0uO
tbv7adZ97ODuVsfdbuwrqbu7n9XbbkluEnfLHLuL+Hhocizn/d06x+4Se2mt
Y/cU10Dj3qR9vK/08Se1jvdN1b59fLeu264+vgs+Pr5BH58ou7SPte6Gy3OT
u6eIj+dqd3MdK3O35P2xfHfz3/Na0nHrTazKfV5xq+Ouj9+wnlc8R++QfR+a
dbfpWNbu47K7rffHwu62XldcdreXY98XqjrHNkk5rjYOjo27W04+frf2fK5j
i4+fRY595OTj1oexjhsXd8eO9XR37Fgvd+eO9XB32bHUneOUjyHHPjE8r+2y
2qy7TVS2PFftadHHj1nPVYOfZ97VcdxtFSR9nnmq43gv/QkpB+SKcJljue/v
ljuW426dY3cJH+sdu6va8lJ73rvn4/720vW+5p+v49v9vqTqY133WL2Vptw9
RXw8V7t7Svh4rnL3lOHjudjdU6aP5yJ3TwU+nhd03HUsXKV8PM90HPv42OTj
P8Gu3bGlro9jy+623h9bdrfXPjZ2t9c+dnneuDu26fh4y7H7TtHl+PhZx5t+
Pn4WOdbf3U+KZZu7Y8d6uTt3rIe7y47VunuYVNN9rO3+btixFnc/BbuPGe6G
NtP7hI8/Kd4jluv4aVaFygHcTMscu8vw8VDl2F3Cx0O1Y3cRHw9Njt1FfLxv
cGz18X3wcf/vo7rtPr7vz9Hqw8cnBh8fo47Vd6egkOdEmariPp4rujwfz4Vd
iWP5XZmPu2XYx8cqx54gPn4Dqpvz3p33SJd+7w72vGLY3VsGH78D3e1xf2zu
7i0HH7/L3O27j31frP58x8q6Wz35+JGrj/t092rP6+nu2LFe7s4d+8jo42eg
Y633d8OOfaTcSw+Tau5Y7fPM99HuY9V7xIaZjtPu8lOwzMdDto8/iboyt/B8
PFR4iPbxUOk33MdDgzdhHw9NPv6k1HH1sa+P96uPO/NP5/yIjkex1NXU/yme
H8CxVeHuD1MV6/5QN6ku1j6/OPru4cWBu+fK7iHYPV8fefdwfeAqXKarafk8
O6XufxjVuHyOlv97ff6zPlj1EK2ehyZqxt1le1KstuVzsPxfpPsarFLdv8JH
sPs6/HZxsC5c/Sspp1W8jHe75bwq7/7VOR+jbrcKlzndy/LH625atXWX5ddX
p5/ub+zu18L5/+y8vDgPL87/Zefv4il3v4Ldh67dy+q/wy/O3cvmv6+6v1y1
fbqr6qqblmXdr1m17XbLf6u63Wq325bhLlyOq3F3WcaqUHcUvqHdX8JA1f12
deDuztXBugGsxu20CZUD2P1WPDvAgapp+Zuwu4N0A1nFujtgdVX+puzugNVA
VKnuDtgNxi4+ui5n5F3uSLrS4XW1A3erj6uPb8LHE8THjbo7IXzcqLoTho8b
cXfC9HEj6k4EPm7Y3Qmi41C0ZsPw8UTl4wb18eTqyB172V3KrVl3m44NX6vd
/fHabSXHLm2k9XFcTqsWH3fLedXi47acV3XebKLyx6TaOLm7Xx+/Nvm4X8c2
UTXtNg6O7Xb9HPvyWnK/XMv7oUO3rbbujss6x74suvshw7FwN67G7l6V5T4e
ravNutskZZ2PR4S7B6CQ4e7oyt2UjweojkPR8jwfDwTdkcgXA6aPR2IPDRg+
Hqn8NiB8PFJ7c4D4eGRy7EBlWLob7qCPww37OFQfOzXLDvBQ9z9GHW+Sj4PB
sdg0asdOCHc3KsdOEHe3upI6tus42Mdwma7m5XNGmVOl3N1tQz6GJEu5u0k2
vbmOte7GHat190fUsa+RzTS1lf4IOhZ39yHL3blj9e7+KzHscs+bVi3ebMul
6m+mfXfc9d13fwivLo6vj1+GFxfnwcXx3ccuz4MeHNv1sZ9ju3tpm2Pzatfd
Ho4tu5t27FfUsbC7McfSPsbc/VDp2BG676Z9HIBqKuRcxwOhY0eRudJu11al
MuTYESC5stoGqGPpKuzuuFzyMVbF3N2Wy44dqd29LAeVkHeIclAKufrY08eh
+hiQl4+Oq4/78LHesZSPtY6dEFWdY5c2grfSjcqxE3AznXpQ4tgJspk+Z5Q5
VczHTdaOXYhVcR93y2XHThAhYz5eVWHH2vbSmGOt7i471urupujY1+QV4Tx3
x471dPeHK216u/vD2rGe7v6w7r5iu5vj2BdrHz9wdmzrbm/HvlhXPR0bu/sh
ecUyz7G5u/WOTaupux+SVyxTPobcbXEs5m75nne0PrC7B6Bj/0Ydu1IX5OMB
WC77eBSpuyvk1MdQGXZs2YeQBzHH0lXM3QNk00tVcXcPkE3vyORuTLI2d1cf
330fB6Abqo833sfhRn0c+6phO5b2sdaxtI81joXKsdqkjoU207kHJY6VuDsv
01XMx02x3boQr2I+Tsu5Y7HqIWMr3SCOpTfTsLtxx3J93CA+Ljk2viK8Yfo4
7baObdz23bljvdwdO9bL3bFjvdz9Ieq+YrqbduyLyMcPHB0bu9vTsbG7vfax
ubsljm0Kjm0K7m6Kjm3Ee17I3VrH0u7WOhZ3N+XYr4hjYXcPECHjjk2FXNYx
5lioGgu5tDseEJtevFp2QLmMOVbubtixX4kq5W5402t1N+7jbrUpdhugjM1I
vZe+OR8HYTfcCx+HQvd2T/553fOq7X8cdLxJ9zX/08teWu9Yjo91juX4WONY
no+ljoX30g1Rxqt8d6dlugrvpbEyp8p3d9O5T7ikY627y471cXfJsT7uzvex
PnvpkmN1Pm6SaupYD3fnjvVwd+5Yj/u7P2TdV6z7u6nnPL3IfPzA4TlPL4vu
9nJs7m6vfWzubmofy3Vs7m7NfbejrPsyq9odW3a31bFld1sdW3a3zbHxNdaQ
jqWOTSUHexB2LF39hkoTvmL5K1Gl3E3vebXuHqCKtbg7EGWdu/19PGD4+LY8
R2vHqFjP52jhXfvE3U2Y9nP1bb2v+e4+92vCquocy6tqHMurahzLq8odO2H7
WOJY2McNUcarE8THeJlTPSSvBk/b/43uO8aEzHV37li7uyHH2tyNOdbH3SXH
2t1dduxr1fPPmqSaOlbr7vOkGjvWen/3h2L3FcPduGNfFH38wMGxZXd73B9b
drf1/ljY3R6OLbvbw7EvClW7Y3N3ezg2d7fdsaOCu7mOxaqj9aY3vu8YLtOO
jc2FGRZyLNTluxvy8cjs7gHLx3J3047VuRt3rNbd1OiuBw/Vx7fyPuG2e1/n
/l63Ld/z8n0sdSzfx1LH8n0sdSzfxzLHTthVmWPLm+lzskxXJe5uy3hV7u5V
G2tq3d061tvdXcf67btTx/rsu0uOtbsbcqzt/u4PF/9ddZuoPDG4G3as1vPn
STXuviKfZ45tTl+APn5geO/OyoPNutskltV3MXdrHTsi3D0wO7bsbg/H5u72
cuwLoGpzbOxuH8eu7kP+BWjqHNvqCDOs1LFdc+0QZb5jZe4uO3Zkdjdnz6tz
d2CVpe7m+FjubtrHmr10Hz6+H9dBb9p9wpsr5Pt33bZsz8uvSh0rqcocK6nK
HCupyhwrqUocK3M337FSd6/KPxiSlbl7eSbE0bl7EcY9uLt1rKe7U8f6uLvk
WLu7oX2sxd0N4ljLc9Vwx2rdvUC7r8gu5M3vqI8fKN8fe/n5D3f3wOBYeN9t
fc4T5O6B2bFld3s4Nne3l2Njd3s69kXyc/Vw7PIMiCN17EoyuI6ljuW7W+JY
ibshb9ndzXOs1N08x0rdzXGs3N2cke+l+9jzDoQW2NzroDftPuFNVbLfVdub
8z4q/p5X0pQ6VupjvmOlPuY7VupjvmOlPuY7VtqFHNsY3c3Z8+rcvXTs2N3d
i+vu2NXdi0537ObuZXXpLKgsd/di7biV2/Ky3N2Ljg5fAWX588wXkTlfFcvy
94gtiO5Y9R6xtJr6+LJ7iHbLjv1+dWDHbl8cjWM5Xfn7Y5cnLudVzXt3VmWo
q39ecVouV/WO/Z50t90cu/w5xz9XH8delreRqtaxo+uuzbFNUXK5rRqTY7nu
ljlW4u4g6vLdHQRlvrv5Ppa4m+9jibu5Ppbtpf33vAOFBTb9fUnVxXUv7b+X
5u15pU2JY+VVrmPlVa5j5VWuY+VV7j5WXuU6Vt5dMBw7UVVpx0rdvWA5Vuru
RdYdO7h7UeyOjc9VW4DdseG5at1m68JSWeLutPohMSwsZMzdefVDpmNIyJi7
ud1DtAvpOLZsrM1tUMiYY7lduWPhbreqcWxaTrt6x8bl0r9V+5yn7s95G6xK
n/MUl7GqxrFp128f+53lbo1jvzPcLXcs5G6bY/nuDsIyz90Sx/LdLXEs3918
x0rczR3ZXtp/zztQWqDueevUvTQlZKuOISHbdAwL2aJjTMh6HeNC1uqYErJO
x3iV41hdleNYWZfr2ImqSjtW4m6+YyXu5jtW4u4F2h0r3b0gu2PF+7sXrO6Y
eH93QHSMd8eI5gOqY6p7iHQxHZedBQs5II6VdLG3vAZEx3gX12ZAdQx35e+P
LZXhqtSxWNfmWL67pY7lu1vqWK675Y7lulvuWJ67g6L8Ta1jSsh6HeNCtugY
E7JNx7CQrTqGhOyhY86ed2CwwM/Y89ap8zM20z/cnuSN73m1TY5j9VXKsfoq
5Vhtk+NYbZdyrL5KOVZbpR2rq3Icy+9KHDtRVWnHcp9nLnMs1/Myx0KeD6SO
Mcdy398tcyzX3QtRd8x2t7R7iHRpHUOO3WY7VtrlO1bmboljZe6WvD9W5m7u
+2Pl7oa6I7O7JY6VuFvmTYm7ZSbkuzuoytoqVdZXcSFbdBxU7tY4lna33LEc
d0sHc7dFxz/DsZv3XqM6dfqdpofrwXHHWt2NOdZWxRxraVKOtVQXYrlRXY5j
9dWFwoSc6kKlzXJX5lhdleNYTlfuWI675Y7ldOWO5bhb7ljY3YHUMdwdg1v0
rpA13UOkS+kYduw2qM2uODXdAdHFdIy5G95uBlLHuLu5jpW7m/t+HLm7uS6U
upvvTam7g6qsrQaju4OyrK/iZUs1qNytUyzlbq1jcXdrHYu7Wzdld+8YbZwa
ue5469TZXHeXHOvj7rJjPdwNOdZeXQisIqkuRAqSeGtsKuscq68uFCYsd2WO
1VYXKm2mXY1jdVXasZTndY6lujrHQlv0legXqu4Y1PxKyNruIdLFdYw5dhvU
5kqG2u4A6eI6xt0NazMQOqbczXGhzt0cb+rcHVRlbTUY3R2UZX01GNwd1GVL
FSvbqnDZWoXK9mpZyB46Ttsld9smdfeOi43r1Klzl2bpWG93p471cXfZsVZ3
Y461VxdCBfFlNDaW5Y61VBcqE3IUJ5cbz4ZjQzmtlv4emmJZUpU5Fu/qHYt1
9Y7Fugt1d4x0z03dQ7CL6xh37DbqWEsXd5be3ZTf9O6mPke3pabYbQDJ0Z/P
de4OyrK+GgzuDuqypRqU7g6Gsq0Kl61VqGyvlsse1dLfhvxvgNOO3e05db9b
p06dnzvLz5Oe7i451u5u2LHW7wcwx9qrC7GCuN4aG8tyx2p+WxzHWqoLpQlp
G+pMSItzbCjrHdtPd3wj3UVPXYtjt3vqBvW/+Ca6tAu17qY/nev23UFdtlSD
0t3BULZVg8LdwVS2VqGyvVoue1RLv0Hdb4v+e5b9vfJnO9SpU6dOnZ8r+fTz
r1ex/Lnap7oQm4JrgrFDme8La3WhFBatop/dHd9oV+fC2uV2dS6s3ZvuBkU3
bFSXPzLPB2PZXi2XPaqlsk81b2t/W1Tbs1mnTp06depIPeel7vTTu4+6q+c3
zfOb1t2s7wn66951Z910N9wKF96GbhB0+/CmTlx010Ob392qfTs2JN06derU
qVOnDj1j557/Hr16vi/Pb9b3BLUr91Awl2t3E1xYvfmzvFn3pnXq1KlTp06d
2zXe96P34/kAeKh+T2Avb1Z30VP3Jp0VXP7F97W7mS4sdz2mb29Wv9apU6dO
nTp16tyHbwkWjpYvf0/gW73P3z/01+3LQ5vW3Uy/9Xfda9utU6dOnToe8z9Q
SwECFAAUAAIACACXbBwv3nQgW1UDAADuCAAAGgAAAAAAAAABACAAtoEAAAAA
RGVidWdNb21lbnRzQ2FsY3VsYXRvci5jcHBQSwECFAAUAAIACACWaxwvKgOJ
Ny0AAABcAQAAEAAAAAAAAAAAACAAtoGNAwAAZGVidWdNb21lbnRzLmhkclBL
AQIUABQAAgAIAJhrHC+N+rr7Ih0AAICZAgAQAAAAAAAAAAEAIAC2gegDAABk
ZWJ1Z01vbWVudHMuaW1nUEsFBgAAAAADAAMAxAAAADghAAAAAA==
------------6rg1VCxrIjycakBZV5WC1I--