[Insight-users] using itkVoronoiSegmentationImageFilter ?

Jay Udupa jay@mipg.upenn.edu
Mon, 21 Oct 2002 17:29:56 -0400


--------------B7522F926DBE60A08EAB1A20
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 8bit


Hmmm... Without spending too much time on this issue, I wanted to make
one thing clear. SimpleFuzzyConnectedness implemented by Columbia is
what the name says. It does not have the full bells and whistles of the
fuzzy connectedness (FC) method that has been published by us at Penn.
There are over 40 journal publications by us alone on the FC method and
its over 10 clinical applications wherein 1000s of images have been
routinely processed and evaluation has been carried out carefully in
each application.

Jay Udupa
____

Yinpeng Jin wrote:

> VoronoiSegmenationImageFilter is a region-based classification,
> split-and-merge like algorithm.you are perfectly right, it picks up
> all the similar color regions in whole image. It works well if you
> have multiple objects in the image to segment, it was used because
> SimpleFuzzyConnectedness can only pick up one connected
> component.there is another version of FuzzyConnectedness, which is
> able to claim multiple objects (VectoriorFuzzyConnectedness)And to use
> Deformable Models is definitedly a good idea,  actually, all those
> three methods had been tested for combining together to build a hybrid
> segmentation framework.I bet Celina, Jay and Dimitris can explain the
> idea better, for your reference, please look at following paper in
> MICCAI 2001:C. Imielinska, D. Metaxas, J. Udupa, Y.Jin and T. Chen,
> "Hybrid Segmentation Methods of Anatomical Data." Proceedings of The
> Fourth International Conference on Medical Image Computing and
> Computer Assisted Interventions (MICCAI 2001), pp. 1058-1066, October
> 2001, Utrecht Netherlands.
>
>      ----- Original Message -----
>      From: Seungbum Koo
>      To: Yinpeng Jin
>      Cc: insight-users@public.kitware.com
>      Sent: Monday, October 21, 2002 4:51 PM
>      Subject: Re: Re: [Insight-users] using
>      itkVoronoiSegmentationImageFilter ?
>       Hi,
>      Thanks for the help. It worked and segmented but not as I
>      expected. I don't understand well about
>      VoronoiSegmentationImageFilter but it seems to segment all
>      similar color regions in whole image as the seed region. I
>      just wanted to find more exact boundary of that found using
>      FuzzyConnectednessScalarFilter.
>      Anyway I think the VoronoiSegmentationImageFilter worked
>      fine. What do you think about using DeformableMeshFilter
>      instead of VoronoiSegmentationImageFilter?
>
>      regards
>      Seungbum Koo
>
>      > Title : Re: [Insight-users] using
>      itkVoronoiSegmentationImageFilter ?
>      > Date : Sun, 20 Oct 2002 13:34:32 -0400
>      > From : "Yinpeng Jin"
>      > To : Seungbum Koo,
>      >
>      > if you use takeaprior, then you don't want to setMean and
>      setVar, those two parameters will be calculated from the
>      binary mask.
>      > and
>      > try to use
>      > m_voronoiFilter->SetMeanPercentError(PERCENT);
>      > m_voronoiFilter->SetVarPercentError(VARPERCENT);
>      > in stead of
>      > m_voronoiFilter->SetMeanTolerance(10);
>      > m_voronoiFilter->SetVarTolerance(20);
>      >
>      > they are trying to manipulate the same parameter, but
>      usually are more intuitive to figure.
>      > the MeanPercentError could usually be set between 0.1 to
>      0.3
>      > and the VarPercentError could be between 1 to 3. they
>      don't depends on your pixel intensity range, while the
>      MeanTolerance and VarTolerance usually do.
>      > Also, you can first output your m_binaryImage to see if it
>      is something reasonable. the VoronoisegmentationImagefilter
>      will need something at least represents
>      > parts of your target object as the a prior.
>      > Try the above, and let me know what happens.
>      > Yinpeng.
>      >
>      >
>      >
>      > ----- Original Message -----
>      > From: Seungbum Koo
>      > To: insight-users@public.kitware.com
>      > Sent: Sunday, October 20, 2002 12:45 AM
>      > Subject: [Insight-users] using
>      itkVoronoiSegmentationImageFilter ?
>      >
>      >
>      > Hi,
>      >
>      > I'm trying to use itkVoronoiSegmentationImageFilter
>      combined with itkSimpleFuzzyConnectednessScalarImageFilter.
>      >
>      > I made a binary image from
>      itkSimpleFuzzyConnectednessScalarImageFilter but I couldn't
>      figure out how to set itkVoronoiSegmentationImageFilter
>      variables. Here is my source code.
>      >
>      >
>      =============================================================
>
>      > m_voronoiFilter->SetInput(m_rawImageSource->GetOutput());
>      > m_voronoiFilter->TakeAPrior(m_binaryImage);
>      > m_voronoiFilter->SetMean(520);
>      > m_voronoiFilter->SetVar(20);
>      > m_voronoiFilter->SetMeanTolerance(10);
>      > m_voronoiFilter->SetVarTolerance(20);
>      > // m_voronoiFilter->SetNumberOfSeeds(400); // ??
>      > m_voronoiFilter->SetSteps(5);
>      > m_voronoiFilter->Update();
>      >
>      =============================================================
>
>      >
>      > m_binaryImage is calculated from m_rawImageSource and as I
>      expected.
>      > But this code just makes a black image... all zeros.
>      >
>

                       [Image]            [Image]
                       [Image]Seungbum Koo
                       [Image]            [Image]
>
>
>

       "¿ì¸® ÀÎÅͳÝ, Daum" http://www.daum.net ¡º Æò»ý¾²´Â ¹«·á ÇѸÞÀÏ³Ý ¡»
>

               ºü¸£´Ù! ÆíÇÏ´Ù!
                                                   Daum¿£ÅÍÄ«µå        [Image]
       [Image] Daum¸Þ½ÅÀú          [Image] [Image] Daumȸ¿øÀÇ ÇʼöÇ°!
               ¸ÅÀϸÅÀÏ ¾²°í
               °è½ÃÁÒ?                             ¿Â¿ÀÇÁ ÃÖ°íÀÇ ÇýÅÃ~
>      [Image]
>

--------------B7522F926DBE60A08EAB1A20
Content-Type: multipart/related;
 boundary="------------EA73F47CCD917D0597777F74"


--------------EA73F47CCD917D0597777F74
Content-Type: text/html; charset=iso-8859-1
Content-Transfer-Encoding: 8bit

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<body bgcolor="#FFFFFF">
&nbsp;
<br>Hmmm... Without spending too much time on this issue, I wanted to make
one thing clear. SimpleFuzzyConnectedness implemented by Columbia is what
the name says. It does not have the full bells and whistles of the fuzzy
connectedness (FC) method that has been published by us at Penn. There
are over 40 journal publications by us alone on the FC method and its over
10 clinical applications wherein 1000s of images have been routinely processed
and evaluation has been carried out carefully in each application.
<p>Jay Udupa
<br>____
<p>Yinpeng Jin wrote:
<blockquote TYPE=CITE><style></style>
<font face="Arial"><font size=-1>VoronoiSegmenationImageFilter
is a region-based classification, split-and-merge like algorithm.</font></font><font face="Arial"><font size=-1>you
are perfectly right, it picks up all the similar color regions in whole
image. It works well if you have multiple objects in the image to segment,
it was used because SimpleFuzzyConnectedness can only pick up one connected
component.</font></font><font face="Arial"><font size=-1>there is another
version of FuzzyConnectedness, which is able to claim multiple objects
(VectoriorFuzzyConnectedness)</font></font><font face="Arial"><font size=-1>And
to use Deformable Models is definitedly a good idea,&nbsp; actually, all
those three methods had been tested for combining together to build a hybrid
segmentation framework.</font></font><font face="Arial"><font size=-1>I
bet Celina, Jay and Dimitris can explain the idea better, for your reference,
please look at following paper in MICCAI 2001:</font></font><font face="Arial"><font size=-1>C.
Imielinska, D. Metaxas, J. Udupa, Y.Jin and T. Chen, "Hybrid Segmentation
Methods of Anatomical Data." <i>Proceedings of The Fourth International
Conference on Medical Image Computing and Computer Assisted Interventions
(MICCAI 2001)</i>, pp. 1058-1066, October 2001, Utrecht Netherlands.</font></font>&nbsp;&nbsp;
<blockquote 
style="BORDER-LEFT: #000000 2px solid; MARGIN-LEFT: 5px; MARGIN-RIGHT: 0px; PADDING-LEFT: 5px; PADDING-RIGHT: 0px">
<div style="FONT: 10pt arial">----- Original Message -----</div>

<div 
  style="BACKGROUND: #e4e4e4; FONT: 10pt arial; font-color: black"><b>From:</b>
<a href="mailto:koosb2@hanmail.net" title="koosb2@hanmail.net">Seungbum
Koo</a></div>

<div style="FONT: 10pt arial"><b>To:</b> <a href="mailto:yj76@columbia.edu" title="yj76@columbia.edu">Yinpeng
Jin</a></div>

<div style="FONT: 10pt arial"><b>Cc:</b> <a href="mailto:insight-users@public.kitware.com" title="insight-users@public.kitware.com">insight-users@public.kitware.com</a></div>

<div style="FONT: 10pt arial"><b>Sent:</b> Monday, October 21, 2002 4:51
PM</div>

<div style="FONT: 10pt arial"><b>Subject:</b> Re: Re: [Insight-users] using
itkVoronoiSegmentationImageFilter ?</div>
&nbsp;Hi,
<br>Thanks for the help. It worked and segmented but not as I expected.
I don't understand well about VoronoiSegmentationImageFilter but it seems
to segment all similar color regions in whole image as the seed region.
I just wanted to find more exact boundary of that found using FuzzyConnectednessScalarFilter.
<br>Anyway I think the VoronoiSegmentationImageFilter worked fine. What
do you think about using DeformableMeshFilter instead of VoronoiSegmentationImageFilter?
<p>regards
<br>Seungbum Koo
<p>> Title : Re: [Insight-users] using itkVoronoiSegmentationImageFilter
?
<br>> Date : Sun, 20 Oct 2002 13:34:32 -0400
<br>> From : "Yinpeng Jin"&nbsp;<YJ76@COLUMBIA.EDU>
<br>> To : Seungbum Koo<KOOSB2@HANMAIL.NET>,<INSIGHT-USERS@PUBLIC.KITWARE.COM>
<br>>
<br>> if you use takeaprior, then you don't want to setMean and setVar,
those two parameters will be calculated from the binary mask.
<br>> and
<br>> try to use
<br>> m_voronoiFilter->SetMeanPercentError(PERCENT);
<br>> m_voronoiFilter->SetVarPercentError(VARPERCENT);
<br>> in stead of
<br>> m_voronoiFilter->SetMeanTolerance(10);
<br>> m_voronoiFilter->SetVarTolerance(20);
<br>>
<br>> they are trying to manipulate the same parameter, but usually are
more intuitive to figure.
<br>> the MeanPercentError could usually be set between 0.1 to 0.3
<br>> and the VarPercentError could be between 1 to 3. they don't depends
on your pixel intensity range, while the MeanTolerance and VarTolerance
usually do.
<br>> Also, you can first output your m_binaryImage to see if it is something
reasonable. the VoronoisegmentationImagefilter will need something at least
represents
<br>> parts of your target object as the a prior.
<br>> Try the above, and let me know what happens.
<br>> Yinpeng.
<br>>
<br>>
<br>>
<br>> ----- Original Message -----
<br>> From: Seungbum Koo
<br>> To: insight-users@public.kitware.com
<br>> Sent: Sunday, October 20, 2002 12:45 AM
<br>> Subject: [Insight-users] using itkVoronoiSegmentationImageFilter
?
<br>>
<br>>
<br>> Hi,
<br>>
<br>> I'm trying to use itkVoronoiSegmentationImageFilter combined with
itkSimpleFuzzyConnectednessScalarImageFilter.
<br>>
<br>> I made a binary image from itkSimpleFuzzyConnectednessScalarImageFilter
but I couldn't figure out how to set itkVoronoiSegmentationImageFilter
variables. Here is my source code.
<br>>
<br>> =============================================================
<br>> m_voronoiFilter->SetInput(m_rawImageSource->GetOutput());
<br>> m_voronoiFilter->TakeAPrior(m_binaryImage);
<br>> m_voronoiFilter->SetMean(520);
<br>> m_voronoiFilter->SetVar(20);
<br>> m_voronoiFilter->SetMeanTolerance(10);
<br>> m_voronoiFilter->SetVarTolerance(20);
<br>> // m_voronoiFilter->SetNumberOfSeeds(400); // ??
<br>> m_voronoiFilter->SetSteps(5);
<br>> m_voronoiFilter->Update();
<br>> =============================================================
<br>>
<br>> m_binaryImage is calculated from m_rawImageSource and as I expected.
<br>> But this code just makes a black image... all zeros.
<br>>
<table BORDER=0 CELLPADDING=0 >
<caption><TBODY>
<br></TBODY></caption>

<tr>
<td ALIGN=CENTER WIDTH="130" BGCOLOR="#FFFFFF"><IFRAME border=0 
        frameBorder=0 height=150 scrolling=no 
        src="http://avatarfile.hanmail.net/bin/getavatar?EUSERID=ERhXTWfI29g0&amp;LOOK=1" 
        width=130></IFRAME></td>

<td ALIGN=LEFT VALIGN=CENTER>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0 >
<caption><TBODY>
<br></TBODY></caption>

<tr>
<td><img SRC="cid:part1.3DB471D3.D209D318@mipg.upenn.edu" ></td>

<td BACKGROUND="cid:part11.3DB471D3.D209D318@mipg.upenn.edu"></td>

<td><img SRC="cid:part2.3DB471D3.D209D318@mipg.upenn.edu" ></td>
</tr>

<tr>
<td VALIGN=TOP BACKGROUND="cid:part12.3DB471D3.D209D318@mipg.upenn.edu"><img SRC="cid:part3.3DB471D3.D209D318@mipg.upenn.edu" ></td>

<td BACKGROUND="cid:part13.3DB471D3.D209D318@mipg.upenn.edu" style="LINE-HEIGHT: 120%; PADDING-BOTTOM: 10px; PADDING-LEFT: 10px; PADDING-RIGHT: 10px; PADDING-TOP: 10px"><font color="#775100">Seungbum
Koo</font></td>

<td BACKGROUND="cid:part14.3DB471D3.D209D318@mipg.upenn.edu"></td>
</tr>

<tr>
<td><img SRC="cid:part4.3DB471D3.D209D318@mipg.upenn.edu" ></td>

<td BACKGROUND="cid:part15.3DB471D3.D209D318@mipg.upenn.edu"></td>

<td><img SRC="cid:part5.3DB471D3.D209D318@mipg.upenn.edu" ></td>
</tr>
</table>
</td>

<td>&nbsp;</td>
</tr>
</table>

<br>&nbsp;
<table BORDER=0 CELLSPACING=0 CELLPADDING=5 WIDTH="100%" >
<caption><TBODY>
<br></TBODY></caption>

<tr>
<td HEIGHT="1" BACKGROUND="cid:part16.3DB471D3.D209D318@mipg.upenn.edu"></td>
</tr>

<tr>
<td><font color="#312400">"&iquest;&igrave;&cedil;&reg; &Agrave;&Icirc;&Aring;&Iacute;&sup3;&Yacute;,
Daum" <a href="http://www.daum.net" target="_top">http://www.daum.net</a>
&iexcl;&ordm; &AElig;&ograve;&raquo;&yacute;&frac34;&sup2;&acute;&Acirc;
&sup1;&laquo;&middot;&aacute; &Ccedil;&Ntilde;&cedil;&THORN;&Agrave;&Iuml;&sup3;&Yacute;
&iexcl;&raquo;</font></td>
</tr>
</table>

<table BORDER=0 CELLPADDING=0 WIDTH="100%" BGCOLOR="#ECECEC" >
<caption><TBODY>
<br></TBODY></caption>

<tr BGCOLOR="#F8F8F8">
<td>
<table BORDER=0 CELLSPACING=0 CELLPADDING=3 WIDTH="100%" >
<caption><TBODY>
<br></TBODY></caption>

<tr>
<td ALIGN=RIGHT NOWRAP WIDTH="50"><a href="http://hmm.daum.net/footer_msg" target="_blank"><img SRC="cid:part6.3DB471D3.D209D318@mipg.upenn.edu" BORDER=0 height=40 width=40></a></td>

<td WIDTH="50%" class="base" style="FONT-SIZE: 9pt"><font color="#BD8000"><a href="http://hmm.daum.net/footer_msg" target="_blank">&ordm;&uuml;&cedil;&pound;&acute;&Ugrave;!
&AElig;&iacute;&Ccedil;&Iuml;&acute;&Ugrave;! Daum&cedil;&THORN;&frac12;&Aring;&Agrave;&uacute;</a></font>
<br>&cedil;&Aring;&Agrave;&Iuml;&cedil;&Aring;&Agrave;&Iuml; &frac34;&sup2;&deg;&iacute;
&deg;&egrave;&frac12;&Atilde;&Aacute;&Ograve;?</td>

<td NOWRAP WIDTH="3"><img SRC="cid:part7.3DB471D3.D209D318@mipg.upenn.edu" height=40 width=3></td>

<td WIDTH="40"><a href="http://hmm.daum.net/card_0401" target="_blank"><img SRC="cid:part8.3DB471D3.D209D318@mipg.upenn.edu" BORDER=0 height=40 width=40></a></td>

<td WIDTH="50%" class="base" style="FONT-SIZE: 9pt"><font color="#BD8000"><a href="http://hmm.daum.net/card_0401" target="_blank">Daum&iquest;&pound;&Aring;&Iacute;&Auml;&laquo;&micro;&aring;</a></font>
<br>Daum&Egrave;&cedil;&iquest;&oslash;&Agrave;&Ccedil; &Ccedil;&Ecirc;&frac14;&ouml;&Ccedil;&deg;!
&iquest;&Acirc;&iquest;&Agrave;&Ccedil;&Aacute; &Atilde;&Ouml;&deg;&iacute;&Agrave;&Ccedil;
&Ccedil;&yacute;&Aring;&Atilde;~</td>
</tr>
</table>
</td>

<td ALIGN=CENTER WIDTH="135"><a href="http://hmm.daum.net/footer_ad_1007" target="new"><img SRC="cid:part9.3DB471D3.D209D318@mipg.upenn.edu" BORDER=0 height40 ></a></td>
</tr>
</table>
<img SRC="cid:part10.3DB471D3.D209D318@mipg.upenn.edu" ></blockquote>
</blockquote>

</body>
</html>

--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part1.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailBL.gif"

R0lGODlhFAAKALMPAOHh4f39+c3Nzerq6v7+/f7+/vr68vv79f7+/K+vr8TExObm5vz897a2
tvj4+P///yH5BAEAAA8ALAAAAAAUAAoAAAQ38MlJq3RA2D1HEwC3AcpSFGI1KENBEOnkNMuL
BLGU2QGeg4Qbg5F7JAq3AONQTASVB0OT0IsaIgA7
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part2.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmail79.gif"

R0lGODlhCAAKALMAAPX17Orq3/Hx5K2trc3NzP////r69eHh3/j4+PX19fj48fz8+urq6bW1
tcPDwpSUlCH5BAAAAAAALAAAAAAIAAoAAAQukBxUaj2kMVvWOs5heQvjbIWhGkdDqUpMEEWs
AMAxJHgfDAScYCgYDADE4eARAQA7
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part3.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailU4.gif"

R0lGODlhFAAQALMPANLS0vj47OLi4sfHx/////Ly8rCwsPr68f39+f7+/J2dnfz89vr6+sDA
wPz79f///yH5BAEAAA8ALAAAAAAUABAAAARo8MlJp0lpuRNEM2AoggmyHFxTJETrviuyBd3X
AALzuuVJSwyFcCDYEXqcAKXgMQAKr9JMWXkgBk+eLFmdAADaaVeCMBRb29/4UWjokOo18Wji
rh8CA91HvV/gfWsqgHcSeYSFDxd1NBEAOw==
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part4.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmail3J.gif"

R0lGODlhFAALALMAAP///+7u3vn587W1s/r6+NfXyvLy5vX17MLCvMvLyq+vr/b28/39+uDg
2OHh4enp6SH5BAAAAAAALAAAAAAUAAsAAAQ4EMhJp2KY6Mrl1YQgdJwSiiJZJY24HIdKOQkM
G/JEDI3h4znJA9EIGIMTB6JwRAoHS6cuoZBSFhEAOw==
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part5.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailP7.gif"

R0lGODlhCAALALMAAPX148fHuOrq1Lq6s+TkxfDw0oSEhKysrJOTk9rawfLy2v////X19Z+f
n8/Pz9/f3yH5BAAAAAAALAAAAAAIAAsAAAQwEEglxDESUIt1KcQ1fUmDKcoXIAhKDsaRggNi
OK99MElQG43HomGLCReGmIOxaEYAADs=
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part6.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmail46.gif"

R0lGODlhKAAoAMQAAOPOPNjY2GmYOumnXee3f5fOUIvB4d7e3vPNCebcw+fhy/Pv5MX0iOnp
6ezs7NnZ2e7u7vz8/OXl5fT09OHh4dzc3Nra2vP06vrzgvbyr1Om2PXw0CgpKN7g3wAAAP//
/yH5BAAAAAAALAAAAAAoACgAAAX/4NeNZGmeaDqKX+u+cCzP7UrfuGznPL73wNgvSBR1ih+P
cskb8jwMhkdD9eScOGh0StVYb1iap0AucLvfWVg2Lpu7aNoa1naf4WnY3FW3GwxwVTpHWQKG
h4Yef4CBeTWEYoiSiouBXnqQMx6SiJSVeJgvS6OkpaajoXwXG6ysGa8YsRgItB6usrS1qS0e
C62usLIAw7YbGcLDAI4/HL6/r8EYyRy3sdNCmc2/xtHSw9TGyByDL9rP3dPV0uPkLuat0MfW
3+rs7e7b8dDp3Bn29/ic6XvF79U/gO44KFzIsOHCK5lmcBhAsSLFgz4iyphosSJGMBpjcOw4
4KOckDA4bxBYyXKlSTUoy7Vs+RLhxpksa2KbEWEChAYSOCQYSjQBBwsVDlCQ0ADChAg2Pzg4
EKBqVQ4KsmrlYLVrgAMOdsaY6jWAQ65lv4bdBaPnTwkUDlSw8OBBgLpIlTJ1ClUsEiJ7/kYV
DMaIisOIT3wIAQA7
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part7.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailMD.gif"

R0lGODlhAwAoAIAAAP///5KSkiH5BAAAAAAALAAAAAADACgAAAIShB+nkGvt4JKKIvcw0zbj
vikFADs=
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part8.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailE3.gif"

R0lGODlhKAAoAOZAAE1NTm9vb7KxsY6Pk5K0znGoy1WjYz9wj9bX1vjXlqu/0SkoKPr6+fK5
QkeFrv7CSDs6O+vr6tuhQZSZn/bVKnRXMqFxOc7Ozs2CQmKWuKnXXYiwldXn87qRNjdbVMnb
6P7syXh/hdutTGBqc1uuoldXWOOKQU49KjQzMrvP3SYyOg8UIGNiYyo7LkNEQ+Ps85yirS0s
K3PF9hoZGvDx8jAwMB4hKuXv6dm1bNa4gd7g3yAfIBkeIyQkI8fHx////////wAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAACH5BAEAAEAALAAAAAAoACgAAAf/gEA6g4SFhoeIiYOCP42O
j5CRkpONg5SXmJOWmZyZm52gkp+hkwwvHwoFBTSPo6SNph8pCgQFGQ4ZHK06rww3HBy0tg7E
BwfEKbucvjoIMBsbMjIZxsfEKh7EBMqSDBE+As8bBgYtLQYkMrYh1g4uHgUOBdw/DAwg+Ak5
LBUVFuMGPHhApy6FjxAZMhQIMYJAQlaVeP0AkSABjgYYKXTAYEKEBg3kyKWT8UFAwwIOS9gq
8MLRJhENOpyo0OABBQoYLHT4CDKgAVUEQqhUdcAFrhDJIjaC2WHFCgk2G5w4YcEjyBYLWhBz
cKDE0REAWABYAMOlxAcPRKBYYeEBRgsW/zhKEFFhxg4exw54AFACQIwaMWb06DHAbKMEGE+s
6ICWggQTcU2YqMBjsAoVOxb00LwD8AIUC0IwUPoD8YN+NW9iqNCj34kag2PEWAAAQg8UED7b
BswiAmnTaBtI6FDhRIzKCypDcFEiAAwYoGPkjgF6AW0Ev4dbKL6jhw0eNVCgABAgwAQfPgII
YGH9bw/3syFg/7HpAmgeNlS4AEB+wgQB/oUwQAAQgLYDCrPBJh0EstXgA2kIuGBdDwHoMAA4
MIQgFoKb7SBbD4ChUAILLJTnwmYTkKZDCSjAVgIMGy4QQ3cLZPZXDcyVwCALGgbAAoMxFEaf
RDQE8NcCgGXWXf8MILqwXw3N+ShUDzmWOIJQAZDGQAgfcobbAsyRGEIANYTFQl8QQFBiCCHA
oMAEI5RA2g8TtNgDAGH+OGIJey5X22Y9lDCAfxMMQMCAAMwpAII1jBnAiAW68CUEfQFQXQwA
tFkADFf6J+eQjkRYwwKPpukCYDXsAAFfJbJA3WwuGErAmwMooMCnn6yIYHvvyRgYpSU4CUEN
qNbgJgEcyKIADImC2ggNroLZ12wy7lfbXyiACBpsEywLwwQMBSDkJwyQiamPKJxJKQuSWlfd
qNaVwKaAAvhwgW/ONlInCi6cWYO/aR7Z6wKriguDABfoABE9PywaQ7/sdjnDDA/LOwBjwhGM
hskoPjBIqaUzgFneAAL+Z6/CEaSsMr4M6zDduiXXi8DMM1+AwAXo5ZzzwnPWM6DBCNNsr85E
F+0DDRrn+6zCNCDQDM1QRy01zTok7coroFyNNSdab72xIIqELTYiQAQCADsNCg==
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part9.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailAK.gif"

R0lGODlheAAoAOYAAFFRUdPCsraYeaOJbZSTk7m5uObo99K+qqDU2CpS/4RpTVRCNXtjSqKi
o4iP14ie/8PDwiovr2hRPN7i+8zW/+np6Jms/0o8MopuUHJaQjIwLvT086uYg+je1ZF8Y8il
hevk3ZyEaXeR/+Tk5G51y9zd3+3w/YxyVt3c3EdOuu7o4drd88PJ7dnLv9WykLuhhv7+/bS6
5wAAl5R0VKDa8tDQ0NnY2aCghvn5+Z18XKDa5d/TydWxj6CskKyOb7CSdb2un9i1lN26mfH0
/Jp4VvXy7rvA6nyD0pd2VV9nx9rW0/Ls5pV6Xfr8/9bW1fj5/u7n4K205Zmg3czr/zg+tdu4
lhE+/1hew9vc3qWq4sqtks+sjJVxT9va3Pj49wQHnfv7++7u7d/f4dzb2+S/ncGzpI13XQAw
//8AFX9/f7vI/0Rn/2aD/6q6/1V1/2dnZ3Nzc3+T8KSDYcnO7s7U8ci0oLfj//80Rff39qC0
q55/X2F++rS+862traDa/////yH5BAAAAAAALAAAAAB4ACgAAAf/gH6Cg4SFhoeIiYqLjI2H
NAh5IQwZGQyUl5USDAiDCDd+f6KjpKWmp6ipqqusraMbHQccZgoMChgKubWXlBkNMH8qWqCu
rjEkLMXKy61FOy9ySBgYXNPTurqUEh5FMEIfxMynJkkRVxEr4urMYB0B0FzxSEjV1ti7mEA7
W+ChTwYGhox6soKOQIITDKyYYGIFwAkrVqT4YiSKjCzrMrLC0eKFDyJciIgkMu+EtRP3bGnL
8GPLFmJDUkSIIWqOzAhUjLCgQgVniiQ3qciUQYJEhAhzNCpFVeQFEz16cuQQOU+ktWu3dlVa
IEGOgC09Qv2JICPZighf5hhAG8XAERlH/wzMMUFFRgy6FE0MGQLsD4wRYf6AGbHhD54NFcAg
7rtUFZrHkCM/njGDyNWsDCQs2LwggxwfAsJR+ZJMiowrohzISPJHtYNRKWQkrUvnT4xkf7wU
2B2mAIQ+FX4X6AOhAQTGjUs9XjVZmskZCjJo5rw5Q44BPgaIHZ3sLes/plO0lvFaVOxkqiOk
IGFCVI0+MMD8bgLBdwEwBEaMaIAjuanlo7QghxxT6SHSH49ZVYsEF1DHWQZIfBbCdjLUZoQM
ETTxRxJwjVfeH+f90UQWJEQBhlx//CZKfX84QRwEf/QRRgV9eOGfcqU0xYRURExFBIJoRMdg
gw4ucEEGXOjhw/+EIpKVBAkOHPHFelO299YRo9RlhClXlBUGARDUgEIDLtrg2x8EVLCfjTeO
ggaQkslhoI8zAElkkZsdiUGETA4hRZQkbHlMElII9IcRDtD0xxN/1laKFCmkM0IBNvwxAgSV
iiEGDE5ssIETYLTpJoBuzpODHEREtwCCeDoowZ5EMCGWqLQuQyopaFBFiZENPmYkZxc0GCxX
DJxAxAmz1qosc5D9N4B0wUZ7AavSVstVLkggu+y2qQCIxg7gtiAuGhloUG20j50bLbEKzKAt
t/Di+kcYZTz2wr0C/BDkBRr0y6+5GiCILhrVSpBBVsnGy+2bMOwAZ2Q+KNDvxI/1i4b/xW+u
29nBGDCQsMLKvilKEQec8oMP5U78sAYim9ugwZWo9DHItIosijD33hvAATzXQcDEAcP5x8Qv
S1eJJWbMTHObd/wxgQWiuBPA1FDEAUXVHfyr8psTP2iwwQr4EFYxFRRQQxqmoFDD2myPgkJh
u/XRxylym8KQKBQ8oMYoD7QhChsT4K3G4HurscYfajwQx+IqqHDG1WeowATQ/Q7tcrBfb0LE
B0GMHSMAoIdeQylnn21KGqGHLkofALyxgdx1/1EAAHAUFjspbOxtghVnWBH4A2ecQYEJCYyy
RvDBI3448Mg3HjkUj7+AAeVAryuBBDMI4EIVLnj+Huysry56/xqml6I2232g/QcAfcAB/txh
vAHHGwTEODcpu+9tQQJqJCDCH2togwj6xoZRUEANZ9Cb8kYBgyJEznEqgB4UBCAACVCva5jT
wxaEEAQXdE9pAFjdG1BXOvWlwnQ1gIPsCNAHArBQdmirQAhv9wcK8G5vbnjAH9pQvDMgzg0i
gBopzrC3B7DhcKMAw+MgKMEf5MuC1BuWAl4QhA568IOoCKH91lfCVUCgfihMA+vYt8U/kI+G
FFiDFfbGvz8MwYdWMEEb2JCAwBnwDFAL3vKQ9zgJQk8FThRACC6oAQn4YHtW9GDnZlYBFW4R
AF1URd3CmD4xlvGM9yPFGvZ2Bjt20v8NbvBf8UgBvAImbnlreIAql+DHx+XLiRKjHAO0wMEr
8sAFVQwH6dRXN0jSz4SiOB/bXDiGMABgAywEX4zqtz4aZdJ4nBwFERFoBSOWIgFsEN4CVTmK
FYihj4/7gTgpyICJSeAHQhCCC27JAx4EgXsC8NgpCsDMXtYAdMA0Y+pCh7Y0vAEAY1AmCgDw
xTeUUZPRFAURazgBNljgbn9gQxwlesDlJWANCQgeH8AJhZOdbEmbCYELOHhLD/KgCmT4gB4U
IIFQjHGfM5wbJN2XT2GyTUx/QEEaCmC/2BEAdDCioSg2+QcfKnRvokhAG3onxzP4bQgJqOgf
LLCGNeTwASb/OAMIQKBVH3h1nCEYABnIsM4rjjQIAjADJbT1vT7QD3aPjOQydrObUeD0oNAs
anuKSgFRTCABoEyADoXoxhr+7xR4uJoVVFCHOvCsih8I6wfSuc4gCGELA6gFBjjQiVKQjxT2
JF8+YZiG0qahAXa9aQ0qQLdnDpWNSDXqVEWQgCG0wQ2CI5wa+voHbkrTCxvYwwa6IAYQtKAK
QdiCBzDgAQFYNp1prcUJgKAEHSTss6NwKwlFawrtlhYOJoTp3NDXhwa8sBRETSXiRhnRNlhh
gQDk4xmQaETd+hAMD6hACbAghuOucwAeMIMHBuASH6hVAQOAgKY6Swrsig90cs1u/ybL9wfV
vhCmlkRvEQ/HhgKKIo6pHKAoLKBKVR5RFMzjo19WEAYU2KAESqjCLX3ggRoLOAQoYQJ1xYCF
LjB4FA7eJYUlbNfRrm68bLOdawG4twmcIaNIpUDxmIfUUhgOxbkjnFFhgIMR2KALWAjALQVQ
4zLTIgQKLkEXbGAD63p2dKeI8JGLjAqhzrkUIuDt/g67Qx3+IYiouHJv/azQGq6BAhtwMRaU
IAQeCDIEIQiwGThQAzGMgc1jGAENrgtnU8j5c6kzMl6JfCNBpxh5iCMiDirg4hLsIAgfGEAI
5MCEARRAU2wWQwXC4AVBlKIBKFDFmDz9Pp7O09ilqOuNKHRw2MSVmJtppIBivNwFFLQg1lDh
QAtGsGYxAAYHMICBr5dG7lSAocU2wMIYtICdMjhBDDZAAWDwEG5RjLvc+CYFDBBTAhuIoQZl
gEAJ1IyCChQB3KRwhMIZMQUN1aoJJpiCHRZOCBroQAcIQADGN06DTR8iEAA7
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part10.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailP4.gif"

R0lGODlhAQABAIAAAP///wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part11.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailMN.gif"

R0lGODlhAQAKALMAAP///6+vr/j47Pv78/3++vj36v389/r67/7+/QAAAAAAAAAAAAAAAAAA
AAAAAAAAACH5BAAAAAAALAAAAAABAAoAAAQIMACAiBlHlAgAOw==
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part12.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailPB.gif"

R0lGODlhFAABAKIAAP////n57fj36v39+f7//fv68vz89q+vryH5BAAAAAAALAAAAAAUAAEA
AAMICLq8R8OUIBIAOw==
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part13.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailTD.gif"

R0lGODlhAQABAIAAAPj48QAAACH5BAAAAAAALAAAAAABAAEAAAICRAEAOw==
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part14.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmail2I.gif"

R0lGODlhCAABAKIAAOvr1ujo0vX15ff36K+vr+7v3PLy4YODgyH5BAAAAAAALAAAAAAIAAEA
AAMGOGIFQScBADs=
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part15.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmailAL.gif"

R0lGODlhAQALALMAAOnp1ujo0+fn0vHx4+3t3a+vr/T06vPz54ODg+/v4ezs2gAAAAAAAAAA
AAAAAAAAACH5BAAAAAAALAAAAAABAAsAAAQJ0JyRiAJBFBQBADs=
--------------EA73F47CCD917D0597777F74
Content-Type: image/gif
Content-ID: <part16.3DB471D3.D209D318@mipg.upenn.edu>
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="C:\WINDOWS\TEMP\nsmail3I.gif"

R0lGODlhAwABAIABAEJCQv///yH5BAEAAAEALAAAAAADAAEAAAICRFIAOw==
--------------EA73F47CCD917D0597777F74--

--------------B7522F926DBE60A08EAB1A20--