[Insight-developers] Demons voodoo

Miller, James V (Research) millerjv at crd.ge.com
Thu, 8 Apr 2004 11:11:33 -0400


This message is in MIME format. Since your mail reader does not understand
this format, some or all of this message may not be legible.

------_=_NextPart_000_01C41D7B.9215E0C8
Content-Type: multipart/alternative;
	boundary="----_=_NextPart_001_01C41D7B.9215E0C8"


------_=_NextPart_001_01C41D7B.9215E0C8
Content-Type: text/plain;
	charset="iso-8859-1"

(Original was bounced by the message size filter on the list.)
 
Lydia, 
 
We were having some problems reconciling the output of the demons
registration filter with our understanding of the demons paper. I think I
have things worked out but it would require changing the code/behavior.  I
have made the modfications locally and the effect of the results are in the
attached image.  All of this is very complicated, having to keep track of
what the warps fields actually do, so I'll break my discussion up into
stages and use the "brain index".
 
(1 brain needed to read this section):  Demon's paper
 
According to the demon's paper (page 15 and equation 4 on page 17), the goal
of the demons algorithm is to "make an image g appear more like an image f".
Equation 4 is essentially
 
    v = (g -f) grad(f) / (gradmag(f)^2 + (g - f))
 
I interpret this to mean the vector v is the displacement that is needed to
move a position in image g such that it will lie on a pixel in image f that
has the same intensity as the pixel at the original position in g (this last
bit is just the basic premise of the demons algorithm).
 
In other words, the displacement field calculated will tell you for each
pixel in g, where the corresponding pixel in f is.
 
(2 brains needed to read this section): ITK implementation 
 
The demons algorithm is implemented using the finite difference engine,
where the output is the vector field of displacements. The finite difference
engine iterates over the output vector image, passing the index of vector
pixel to the DemonsRegistrationFunction.  In pseudo-code, this function
computes the following:
 
   Calculate:
   f(pi)
   grad(f(pi))
   g(pi + vi)
 
   dvi =  (f - g) grad(f) / (gradmag(f)^2 + (f - g))
 
Mapping the code to the equations above, f is the fixed image and g is the
moving image. Note that this is calculating a vector at a point pi that is
associated with image f.  This seems to be calculating a vector field that
is keeping track of "where a pixel in f goes" as f is warped to g.
 
(2 brains needed to read this section): Proposed ITK implementation 
 
Given the equation in the demons paper, I interpret the vector field to map
a position in image g to where in image f the corresponding pixel lies.
Therefore the output of the filter should be a vector field where the pixel
indices correspond to pixel indices in the moving image g and the vector
values at these indices say where in f to sample the values. I propose,
therefore, the code should be
 
   Calculate:
   g(pi)
   f(pi + v)
   grad(f(pi+v))
 
   dvi = (g - f) grad(f) / (gradmag(f)^2 + (g-f))
 
Again, the fixed image is f and the moving image is g.  The output vector
field is index aligned with g and each vector gives a displacement to a
corresponding pixel in f. In essence, the vector field is keeping track of
"where a pixel in g came from" as g is warped to f.
 
(3 brains needed to read this section): Warping using the demons
displacement field
 
ITK's WarpImageFilter takes a displacement field that is index aligned with
the output of the WarpImageFilter and using the vector at each pixel to
determine where in the input image to probe to produce the output.
 
In the current implementation, we pass the moving image (g) and the demons
displacement filed (d) to the WarpImageFilter to produce an "estimate" of
the fixed image.
 
In my proposal, the deformation field is in the other direction, so we would
need to pass the fixed image (f) and the demons displacement field (g) to
the WarpImageFilter to produce an "estimate" of the moving image.
 
Summary/Impact
 
My main concern with the current implementation is that the vector field
computed does not match the mapping (g->f) of the original demons paper.  So
people familar using the paper as a reference to how the filter should
behave can be confused (we have already proven that). The filter is
currently calculating vectors of where a pixel in f should go and opposed to
where a pixel in g came from. I don't think these are quite equivalent.  As
an example, see the attached png image.  I took a circle and warped it to a
square using the current ITK implementation and my proposed modifications.
Because the sense of the vector fields is different in the two
implementations, which image is considered the fixed or moving is different.
However, you can accomplish the end task with both implementations.  The
first row of the figure shows the current implementation.  As the circle
deforms into a square it actually changes topology twice (4 small hole
appear in the corners of the square and are then filled in).  The second row
of the figure shows my alterations which seems more "regularized".  However,
the new implementation requires more iterations to reach the destination.
 
So the new implementation needs more iterations. It also requires that the
grad(f(pi+vi)) be calculated.  Currently, I am using the same central
difference image function as before but now I pass in a physical coordinate
instead of an index.  This image function will simply evaluate the gradient
at the nearest pixel. So overall, the proposed implementation requires more
computations.  However, it looks to me like the deformation path is more
stable and the computed deformation field seems to agree (with me anyway)
with the original Demons paper. 
 
But perhaps more disruptively, the "sense" of the deformation field (moving
to fixed as opposed to fixed to moving) is different.
 
 
 

Jim Miller 
_____________________________________
Visualization & Computer Vision
GE Research
Bldg. KW, Room C218B
P.O. Box 8, Schenectady NY 12301

millerjv at research.ge.com <mailto:millerjv at research.ge.com> 

james.miller at research.ge.com
(518) 387-4005, Dial Comm: 8*833-4005, 
Cell: (518) 505-7065, Fax: (518) 387-6981 

 

------_=_NextPart_001_01C41D7B.9215E0C8
Content-Type: text/html;
	charset="iso-8859-1"

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">


<META content="MSHTML 6.00.2800.1276" name=GENERATOR></HEAD>
<BODY>
<DIV><SPAN class=325063613-08042004><FONT size=2>(Original was bounced by the 
message size filter on the list.)</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>Lydia, </FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>We were having some problems 
reconciling the output of the demons registration filter with our understanding 
of the demons paper. I think I have things worked out but it would require 
changing the code/behavior.&nbsp; I have made the modfications locally and the 
effect of the results are in the attached image.&nbsp; All of this is very 
complicated, having to keep track of what the warps fields actually do, so I'll 
break my discussion up into stages and use the "brain 
index".</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2><STRONG>(1 brain needed to read 
this section):&nbsp; Demon's paper</STRONG></FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>According to the demon's paper 
(page 15 and equation 4 on page 17), the goal of the demons algorithm is to 
"make an image g appear more like an image f".&nbsp; Equation 4 is 
essentially</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>&nbsp;&nbsp;&nbsp; <FONT size=2>v = (g -f) 
grad(f) / (gradmag(f)^2 + (g - f))</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>I interpret this to mean the 
vector v is the displacement&nbsp;that is needed to move a&nbsp;position in 
image g such that it will lie on a pixel in image f that has&nbsp;the same 
intensity as&nbsp;the&nbsp;pixel at the original position in g (this last bit is 
just the basic premise of the demons algorithm).</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>In other words, the 
displacement field calculated will tell you for each pixel in g, where the 
corresponding pixel in f is.</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><STRONG><FONT size=2>(2 brains needed to 
read this section): ITK implementation</FONT>&nbsp;</STRONG></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>The demons algorithm is 
implemented using the finite difference engine, where the output is the vector 
field of displacements. The finite difference engine iterates over the output 
vector image, passing the index of vector pixel to the 
DemonsRegistrationFunction.&nbsp; In pseudo-code, this function computes the 
following:</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>&nbsp;&nbsp; 
Calculate:</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>&nbsp;&nbsp; 
f(pi)</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>&nbsp;&nbsp; 
grad(f(pi))</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004>&nbsp;&nbsp;&nbsp;<FONT size=2>g(pi + 
vi)</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>&nbsp;&nbsp;&nbsp;<FONT size=2>dvi =</FONT> 
<FONT size=2>&nbsp;(f - g) grad(f) / (gradmag(f)^2 + (f - 
g))</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>Mapping the code to the 
equations above, f is the fixed image and g is the moving image. Note that this 
is calculating a vector at a point pi that is associated with image f.&nbsp; 
This seems to be calculating a vector field that is keeping track of "where a 
pixel in f goes" as f is warped to g.</FONT></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2>
<DIV><SPAN class=325063613-08042004><STRONG><FONT size=2>(2 brains needed to 
read this section): Proposed ITK 
implementation</FONT>&nbsp;</STRONG></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><STRONG></STRONG></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>Given the equation in the demons paper, I 
interpret the vector field to map a position in image g to where in image f the 
corresponding pixel lies.&nbsp; Therefore the output of the filter should be a 
vector field where the pixel indices correspond to pixel indices in the moving 
image g and the vector values at these indices say where in f to sample the 
values. I propose, therefore, the code should be</SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>&nbsp;&nbsp; Calculate:</SPAN></DIV>
<DIV><SPAN class=325063613-08042004>&nbsp;&nbsp; </SPAN><SPAN 
class=325063613-08042004>g(pi)</SPAN></DIV>
<DIV><SPAN class=325063613-08042004>&nbsp;&nbsp;&nbsp;f(pi + v)</SPAN></DIV>
<DIV><SPAN class=325063613-08042004>&nbsp;&nbsp; grad(f(pi+v))</SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>&nbsp;&nbsp; dvi = (g - f) grad(f) / 
(gradmag(f)^2 + (g-f))</SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>Again, the fixed image is f and the moving 
image is g.&nbsp; The output vector field is index aligned with g and each 
vector gives a displacement to a corresponding pixel in f. In essence, the 
vector field is keeping track of "where a pixel in g came from" as g is warped 
to f.</SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>
<DIV><SPAN class=325063613-08042004><STRONG><FONT size=2>(3 brains needed to 
read this section): Warping using the demons displacement 
field</FONT></STRONG></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><STRONG></STRONG></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>ITK's WarpImageFilter takes a displacement 
field that is index aligned with the output of the WarpImageFilter and using the 
vector at each pixel to determine where in the input image to probe to produce 
the output.</SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>In the current implementation, we pass the 
moving image (g) and the demons displacement filed (d) to the WarpImageFilter to 
produce an "estimate" of the fixed image.</SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>In my proposal, the deformation field is in 
the other direction, so we would need to pass the fixed image (f) and the demons 
displacement field (g) to the WarpImageFilter to produce an "estimate" of the 
moving image.</SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><STRONG>Summary/Impact</STRONG></SPAN></DIV>
<DIV><SPAN class=325063613-08042004><STRONG></STRONG></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>My main concern with the&nbsp;current 
implementation is that&nbsp;the vector field computed does not match the mapping 
(g-&gt;f) of the original demons paper.&nbsp; So people familar using the paper 
as a reference to how the filter should behave can be confused (we have already 
proven that). The filter is currently calculating vectors of where a pixel in f 
should go and opposed to where a pixel in g came from. I don't think these are 
quite equivalent.&nbsp; As an example, see the attached png image.&nbsp; I took 
a circle and warped it to a square using the current ITK implementation and my 
proposed modifications. Because the sense of the vector fields is different in 
the two implementations, which image is considered the fixed or moving is 
different.&nbsp; However, you can accomplish the end task with both 
implementations.&nbsp; The first row of the figure shows the current 
implementation.&nbsp; As the circle deforms into a square it actually changes 
topology twice (4 small hole appear in the corners of the square and are then 
filled in).&nbsp; The second row of the figure shows my alterations which seems 
more "regularized".&nbsp; However, the new implementation requires more 
iterations to reach the destination.</SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>So the new implementation needs more 
iterations. It also requires that the grad(f(pi+vi)) be calculated.&nbsp; 
Currently, I am using the same central difference image function as before but 
now I pass in a physical coordinate instead of an index.&nbsp; This image 
function will simply evaluate the gradient at the nearest pixel. So overall, the 
proposed implementation requires more computations.&nbsp; However, it looks to 
me like the deformation path is more stable and the computed deformation field 
seems to agree (with me anyway) with the original Demons paper. </SPAN></DIV>
<DIV><SPAN class=325063613-08042004></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004>But perhaps more disruptively, the "sense" 
of the deformation field (moving to fixed as opposed to fixed to moving) is 
different.</SPAN></DIV>
<DIV></SPAN></FONT></SPAN><SPAN class=325063613-08042004><FONT 
size=2></FONT></SPAN>&nbsp;</DIV></DIV></DIV>
<DIV><SPAN class=325063613-08042004><FONT size=2></FONT></SPAN>&nbsp;</DIV>
<DIV><SPAN class=325063613-08042004><STRONG><FONT 
size=2></FONT></STRONG></SPAN>&nbsp;</DIV>
<DIV>
<P style="MARGIN: 0in 0in 0pt"><B><SPAN 
style="COLOR: navy; FONT-FAMILY: 'Comic Sans MS'">Jim Miller</SPAN></B> 
<BR><B><I><SPAN 
style="FONT-SIZE: 10pt; COLOR: red; FONT-FAMILY: Arial">_____________________________________</SPAN></I></B><BR><EM><SPAN 
style="FONT-SIZE: 7.5pt; COLOR: black; FONT-FAMILY: Arial">Visualization &amp; 
Computer Vision</SPAN></EM><I><SPAN 
style="FONT-SIZE: 7.5pt; COLOR: black; FONT-FAMILY: Arial"><BR><EM>GE 
Research</EM><BR><EM>Bldg. KW, Room C218B</EM><BR><EM>P.O. Box 8, Schenectady NY 
12301</EM><BR><BR></SPAN></I><EM><U><SPAN 
style="FONT-SIZE: 7.5pt; COLOR: blue"><A 
href="mailto:millerjv at research.ge.com">millerjv at research.ge.com</A></SPAN></U></EM></P>
<P style="MARGIN: 0in 0in 0pt"><EM><U><SPAN 
style="FONT-SIZE: 7.5pt; COLOR: blue">james.miller at research.ge.com</SPAN></U></EM><BR><I><SPAN 
style="FONT-SIZE: 7.5pt; COLOR: black; FONT-FAMILY: Arial">(518) 387-4005, Dial 
Comm: 8*833-4005, </SPAN></I><BR><I><SPAN 
style="FONT-SIZE: 7.5pt; COLOR: black; FONT-FAMILY: Arial">Cell: (518) 505-7065, 
Fax: (518) 387-6981</SPAN></I> </P></DIV>
<DIV>&nbsp;</DIV></BODY></HTML>

------_=_NextPart_001_01C41D7B.9215E0C8--

------_=_NextPart_000_01C41D7B.9215E0C8
Content-Type: application/octet-stream;
	name="Demons voodoo.png"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
	filename="Demons voodoo.png"

iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAMAAAB2PiqAAAADAFBMVEUAAAABAQECAgIDAwMEBAQF
BQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcY
GBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKior
KyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+
Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBR
UVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2Nk
ZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3
d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmK
ioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJyd
nZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+w
sLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLD
w8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW
1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp
6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8
/Pz9/f3+/v7////isF19AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgAElEQVR42u2dCXQUVbrHb+9J
Z4GQsAUCsgSCYQkgyOFIDoyyuQAuKIKDzht1YISBHIlHno8jPFCWpwMKDoPgOIoKjMgojqCICARl
VQSBgJE1hwQJnOxJp7tP1+s0SbqWu1VX9ZZ8/3OMTbrqX3f51XfvrfqqggQQSIMQNAEIAAIBQCAA
CBQpnRoMAUAQFYLhCQABQACQP3QDPACQtqEf6AGAACAACAACgKJzBgQEyTpVt5MKAGqJADGu4ahZ
jwBALRCgBnQCIagFAtTYWMCPCCAJSAAQSBVAfm58H/xnmPc/5PuvYZOmYe7Wb5DoNwBQiwaIEKIb
JkaN8yP/RKlpzgQAAUB0gMQRyh+fUNNHrUMYefqO+Gf24hCKKOMsQtgas3bXULIWD5D4e9H/FJto
BghpBAjRLkawAUJqrmUAQIEChPyDmX4AkU59Ff3DCdCt6ZweAMHgFWkACUEFSBBN/bEVBoCCtgpT
DmFYxjQDJD50AAA17c4NkLQ29N0BIFXXgaIBIBQQQI07qgUIAUAsgJDkf42fZeTIsdEfIL71mcKO
DyDZDxW7C0hFyVoiQNImkU91xAEKKYOUtutAAQOEQgoQAoAYnSpukIZLhMqxS3wlWnpJKCgAcU9E
mq6aCzQCiNeu2LsreAVROzsYnnoDJJ+SMQFSrOXVABTo9B4AiiCAyE8QBQMgyvNKAFAEAqT+OhBE
IABI0HAlWtGjCDc/5gaIvjvMgSIYIOkCkLeblD0qXx8qjiO/ZqGOPwAosgFSO1AgIaQACQBQhAIU
pJKjiG8nACisAEGXRwZAzfXtHMAPRDsQCAACAUAgAAgEAIEAIGgCEAAEihSADEFX04WpaLcwaHfQ
w6LBRHuvsDeKDIBallBzqgwABNKENgAE8o1WEIGiffxB4dy/EaCGmRMCgKLk/I2QmRGSzZsBoLA0
v5YFYOA7I+lnpAe8AFBI6UF6BBAUpaszAEjb3KGh4xtDP9JaEj0u3iAEAIV25qB24kjoOAPSDJAO
na/LJUR+kJtBBNLe7rqcs0gnlyhbF4QXID1a3IBCHbWDDWJEePBahDkCIaQqXpJdVFqg8LZ6kCFE
LQYgpA9AjSRqnsJGyqAcAUGI96QM9xxIr8FHM0AI6TSg6jImR8TiIjQAGU0WW0xsjM1iMgZQRqMJ
J6NWAxUmZANeEyPdgseD4cBXDFNYiqENIKPZnpTaIzNrUFZmj9Qku1ktQ7aUDjil2Dj3t7Rq34Gk
9gkm5v6m+BSygc+kbaKZbmFOSOlAV7vWVu0WrBaxJLTV6mEJqBhaADJaEtOyxkybPX/RkkXzZ00d
PaBzokUVQsa4PhMmK/VA7zgjX/CwtR2MM/CZZLVhFyap/5j7Jz0ymaSH7xuVPbQjlUNjUv/xD0+m
6ZEH7uxoCbKFwdSGx8MaBAsNAJnj04ZNW/D2Z/uOnjh14ujeT9e99PiwtHiTKoAyZr63Ra5/PtvL
zgWQyWSO6zl1zaYtSm1687FusUwTc7dHf3/f4wve2bwFp83rc8cPGnrfgFjqadttyuvvb/wI7+D1
2Lh+/d+eGxBHs7B6LT7cQtOmtQwLn8cH2jx8FptVWwQOkDUla8qSrUculFTU1DpqqyuuXzj88eJH
+ydb+QEytRow65urRfUqbvivqKjw65n9EnkwNJuNRmu7Ua+dKCqSWRRdPb58REr9OUtnyNZn2sjb
75j29smrSguvx5oHM1Jvyx6WQLW4PefLL7fsOlNYhLEoKvzp49dWbVs+IpFmEXN7zu6LhYWNZZBZ
FBVe+PXisRV0C5/HpSKRpB71NiwPv0WxwqKYbBEwQLbU7JwPfiiqcrobtnI7K68e3ThnREcbdwCy
d5uw4kiVyyt3g7wfKw8tu/+2WA76EuwWc0zHkUuOeR3cPoeGH16PI4tGtLMZDeYYKokxfX+fnd5n
7KLvSuuL4CuFq7Eczpv7Xsru2u62u+9qRbd4cef6Zeu/L6kT1aKxKo7ib1b8ec7bK0eyLA7fKCos
dbgwFq7a307/cP7carqFz6PCWed0+T1cIpO62tqaX1azi1HhcrkUpbhlUV8UnEWgANnSxi368mKl
yyPazuOquLDj5dGdOAkyxna979U9Vx0eycE8jsLdi8elxTDHH1vXLq3iU/o9+W5+tVtWfnfV6Q3T
+rS22Vp1jKO32awnhg2bvOL7Gy6PzMLjKtm/5L7MnkOnM5v9q3eXr/v2qsOtaEZ37eUdS2flvvvG
KJbFkevnf7lWrShEfTEqLx3ed+rs6lEsgOYfqXI66jAW3nK4asorawtWs4tR5aXFg7Pw1ENU9+ua
UXoBZE0dt2x/sUPR7I6iva+M6cgxipktlrgu9y7bf61O6VG895WxnWJMRjpDMZnjB/Qc+PjqI9je
P/TXh/q079hvMKPNclc998cFnxRUY3q/6tymnAnj/vQyq9nnH9j7r89PlDgxvV/326H3X397N7Pn
5h+5efVKSa0b0xWu6qs/H7/4yxomQC+SAfL4APqVoxg+gLBI1APk1A8gc8rIxXklTsyuzuv7FmYn
M6cw5jYpbbuPfYXoseh3nRLsdjO9wnNzps5YcwhvUXLgtSnZY59mhY/5u//9/hf55S5c15We2LR0
6aY32M1eeObsNWzvu6sLj+w5dmoN26Kisqya0PnlxUVlBWt4IpC3jwm976x1OH5dwwWQB2/hDUFu
/QAyJgx8ftc1J3ZfZ/HOuQPiWQNQTO/suyYs2E30+DJ3ZO+ePRIYJ93nmz4+WkKwuLb/rZff+D+O
3i+4guXHS9DN/ANHTnCctxUVFQ433qL6etHNAp6eczqJnV9Tw+z8pt4XSL3vHX94IpCHwI/Xw6Mj
QNYuUz+6VEc4kuPCxsfSLCyA+s55deWOy3WE4joufjzv8akjWBU+XHj5hpNUjOIfvz/G0WaVNbUu
goWroqSMq/dJZ763++t4T31yzxEmH7jeJz4q6vE4uYrhoTxu6tENIGOr4Ut/JB7LU3lsybBEIwug
F/edulJN9jj92Qcc4aOyjth1Hkd5eQHXsE9sNA//eUtude95u1pbz9V3PtckmtH7Govhjep6AWTp
Mv3fxS7icVxFW6d1NhuYFa6oc5M9yorOaOw6N2/vB7fZOS0Ees9xAaTNI0CLQACyD1r4QzWlyaqO
LsiKNWg6YzwuvsgvqA65atssKizCWIwAADK2Gf+Pyy7agS6uH5NkNARhwG2Wvd/iADJ3fnLHDTfl
QO6Sz59INUVoyG2WFtE1hFl75RykH6nywJyeVgAIAMIDFNN/4Yla6pFqjy/oazPA+ANDGBYg+x3L
8+uoR6o7/cqgWAAIAMIDFDf0tV+cdIDyl99hB4AAIEIEGrLiLAOgM0sHQwQCgAgAxQ5cfMpBnwOd
WNg/BgACgPAA2fq8cLSaeqSqQ/N6wyoMVmGk60Bdn91dRr0IePOrP3YxQwSCCES4Et120kdXaVei
XYUbJ6QYASAAiHAvLH7YilO0C0E1J5feGaftXpjgrtPj7jEMYRF5M9XaY+auEjflTsbOZ7pbOQBy
UW6lV5f+ojULwh0Rd+MBIEw+UPKYNfm1xEScmtNv3N2GmQ80/+CVEgfRo/Zi3leruFK5yPfza6p/
DX9GiCckGSG6cewJCUCGmF4z/kNMCHIVffZMOuvBjJi+ue98+N1vRI/ir16dMzubWeGSkkqixc2C
/FOruZJJScHUVVNRxZmKTk0n1Iaxx+3mnAMxOI6cjESDKemuJYdKCWnAN79bOLw1Myf69kmTnlp1
mOjx/dKJgwf2S2RU+Ntv9pwtJ1iUHt/0t00cQayk6HoN3sJdefnkuXyurNhqJyGh2VFaUsGXFesk
QOhx1dZqzYkW3BxpsSyO9cyJNlg7TXzrRAX2QYTy42/en8pKiTZYO3ZJ6/fYWqLH6gd7tmlFfxtA
TN95S+e+9OEpgsWJDTMnTnue+VTG/m+377tQhbWoOPf52nVfvMlu9uKCX6/jn8qouXr8u5/PcPRc
eflN/JTQ4yy7evUm31MZTgchmLpqK6tq+VKzXUSOnbo+Fxbbc+qGk2UuzIn/07rHusew+DEYrbaY
1hnTiB5T0uMtJlZK0aPZA0b86Z8/Yy1OvPPU4K7dhw9jtNkLf8+dteTf5yowFuVnNr8w+aGcJcxm
3//1h1sPFmLCmLv68p63l6/9koPBwtMnL5bhHi1z3sjfv+enMzwAVZSVlGGfDnHVXL9cWMoXCOvw
kdA7o6zCPxwSIEDG+N5T1x65LpsFux2/HXprSi++d2sYzAkZZA/2Sxps3Xsmt2o/8L82/Ch/qM9T
V3Js3fR+bWJjk7vE09ts5mNDBo3P3XpOMZVyVeRvnjMyvdsdU1kzsRc/eHlm7rrviutwT1mufGbS
1CXspwO+P/jJx/suVOIwPrfj7ys/PLCa48HCkssFhVgI60rOHTl28RzPVMxRVY0jyDuOeums0REg
L0HpDy376nyZKDHeXVda8OWrE3vG8b7ixRjf6+EVuy9WiGK3x1V+YdeyB9M5PMyJdrPJmjzgqbeP
SQnyOEuOrv19vyTvOGqOoT+bmDm2d9u2Pce9vKtQduq6HYU7X7q7a6u45P5DGM0+b8GkkRNy/3Wu
UjYEeVyV+R/O+l3/QY++yHym+NtPVr7xyc83Fb3vrcoP7y3IefXTNzkAunbu5PkSZQjydv61k99+
e/rsGvajzZW1VdV12Cesa0tLSqsLVusHkMFo7zJqzjv7C0qqfC8FcDkqrxfsXT87u3Ms/yuCjHHd
731pW35l00NRHlfFma3/Pa4bF4O+F2ZZ2975l08uO9z1T8T5XLyTPcelj58bkmJhO9jSM5Ji7W0H
z/j4loPXwufg89j89IA2NnNM2+6Mxxvnzrhr0N2zNxXUuBoNGjxc1Wffe3pYjx7Zf2Y+Xr/nk5Vr
PvcOpOKnw3zFcJX9/NHCuYu3vcl8ucL8wyVXzhdVOv1teetH/eS39PyRw+fPcTwbX+msq3O5G58u
bPxZXxdnTWV1ra4AGYy2lL4T5v1t+8HT568UXjl/+uD2t3IeyEy2qnnFlCm+x31LDpSUVzSqvGT/
ovHdVbxkyJSY+fS2Qr+Bz6Rw6x/68HhYUjvG2+zth7/wzTWpg9ejeNfzQ1JsJkt8Mn0qn5mTe++o
x5fvK5I7VFSUXd298P6sfuPnZNOXk5m5+w5t33m8uExpUV5W+N3G1R/u/Ws24/UumbkHfiu5fqOs
AqPysuuXL107tZIxGNdblJeXV2BVXl5WfgNnEThA3s6zt88cPT132ZoN725YszR3+j2Z7e1q3i9V
H0DaD/+fnXl5B/IO1Kv+wxfzh7VT8YohS8qIhV/k5Uks8vL+s2B4spkjAiZ1SEpsN+AP67/JU1jk
7V47rU/rmJiEBOoZYU1/euV/5yzfsicPY5H3zQf/88SjOblD4hgW7+3++pt9t/Y5ILPI27vz0x3b
5g+NN7A8vvXtfUDp4fuxb9v8IfEMi/e/vbUvphgHblkoi6EFIC9CsUlptw/JHj12dPaQPp2TYlTi
Uw9Q9swcqWbc1c7CPwjGZzzylxylZj/ENZWP7dip68AJM3LwenZcRttWifQlpan9iD/Mmj03h6S/
zHjmmXu7WVkWc3Jomvune7vZDEH2MAdmoQ2g+tds2uyJrVu3TrDbzAG8ptWSnJ4hV3oyP0CmVt0z
8OrG9Zaz2JS09Ayievdon8CKhrZ23XtnUJXeiXVnmW2RynpdBYdHJ4ZHbEAWWgFqwMgQqMxWm1xW
s4r9Tcr9G1z4oqHRTDLgLYrRQnPweliYJTExLGwWdjlMFroFR10CstAHoMCl/Q3zPhdDZLybW5c/
2BRdCjdABoNOfyNLj2LoUJDIec18iDzCClBDW+sRgXThUHPvI6TDX46JnOiCoiQCaY8cBt3ij/Y/
t6H9r5xE1SDYDACKGAyRHn8zSI+/fqbLSMrpAABFGMV6/dHLUAVCAKg5YhjCSTgABII5EAgAAgFA
IAAIAAIBQCAAqJkvswEgEACkAiAQSJ0AIBAABAKAQAAQCAACgQAgEAAEAoBAABAIBACBACAQAAQC
gEAgAAgEAIEAIBAABAIBQKCgAnTruX3Zr7gMEdFR/BXSwDBSdyIgarkQtZjKDZGep2dQaxKCuIFY
XyGVh0XcXyE9K4P0azKkX7Oj8NYk3BFIFFJ8oUj80/tr34la/+NWXBJ9699FaPoa95XvYxOocitB
/O+mMjV91Xg++s1ku4h2RbRy3Tqr5cWU+YtK2rg97lCiI8iaTRAE6cfg1wTXPY2/l7UuCi5ASB48
UcNohho+KLeRbiYZ3URbIv+wiLNCipgt+pXysNLvZaWhlwtfTLmRdHuE3wIJCitJNA9lTRSlFAOE
lDULKUDiBkKKEVqxGREgUeNirERNKgjyfTHNjt+VWS58Menb00qLB0gxkQpNTcgcyncIGkDIHwDJ
AEm2oQHkdyMBJIq3SDaEyU4bcdGwpZOFMTXNrvAnACTdQrz2UAAk/SpkNQk7QIKyPRQAIVURSKAB
hPD7YpudeF7LKhAoQDJyMQAhYrxUAITCVBNJd1H2DydASNANINK+xMAflGbH+GMBQgI3QCg8NQkv
QHJoaAChQOZACAsQCvYkOoA5ECIChPgn0Sj0NZH+Ggd8kCbR/sFcvMKUfJZE/IbJvWKtrhwbsMt4
pZWOy3hGuZTFZC3jFaXFLOMFzDJeXtLg10SQlgo7uQoKQJF4jQpFeHX0u0iNIrTcAFBQSxuFACEA
KEKqo7hzGCURSF25owkgUBQIAAIBQKCIBAip90HMHRsX6NiNkEaykf7nSGC5HSh4Jy5SXU/ZhTZ8
jwRcRKQniIg5pVde3dYToIiJ3UEGSNU3iE6e1uwnemfzpb2Iyqe4VtiQNCRLCULSDCNBkVEkYC/k
NR5JXZaLinrgDia+5Ce60izP+vFvJjqlRa3QtJkytUpQlAAJpEKJWxCTiaWsDRJvpGgEjuwnbQDx
pb0oAFIkDWFvE/j7Qn6SINIttsaQrCbLRV36jvxgIkvZhWPZdRTR10iefqAM0Yh4uKYWwRcK0Wuk
rI2kcZW3qZk3bjRGIK60F2UEUmxEBUhRGIS/9SbFjDdJQV09lAeTbYm7aYr5GsMl7m4sbjRHRKoF
OUeYTCwqQAI/QILuAJHTXkTVbgoHsiwaPEAISWKldNemgyJlTpAWgGj1wB2MCZDEkAgQko5h+LqJ
En8F0QiJJAlBlBrJk5FIACHJrTFq9pNuAFHSXpQAIf4IJMgA8sdohJ9Xq01SUFEPhOt8FkCIPwIp
AcBPdTEmAnYkw2RiYdc1Ajuek7Kf9AKIlvaiAAgJAQOEmwPpCRArfUc1QEhQAxBm3iMQhh1egKiW
vACRs5/0BAhRJtGKpCn/RkjNHIiSVxRglovK9B3lJBo/S5ZPTkWVQfgEKPnepLohGnKIXiP95kC6
T6JJaS8Iey2x6YKh4rmTxrKKl/HiVa90V/zKWlWWC3/6juQ7TASSrNPFy3hZgRXLeNn0CskyhRQl
wOZRS/cXsJlYmIsSilwk2aNHghCsZbxee4XvkiBqJvVoVvfCUHQ0PLOYCAAKD0Dq00fC0/DMYkZJ
PZofQCAQAAQCgEAAEKhZAwRsgSACgcIagVQklIEAIAxA/AllIAAIF4H4E7FAABAdIEZCGQgAogLE
SigDAUA0gJgJZSAAiAUQgkk0KPAhjJVQBgKAgrsXCACCoQukNZbA6h0EgxEIAAIBQCAACAQAgUAA
EAgAAgFAIAAIBAKAQAAQCAACtRiAEAikShCBQDCEgQAgEAAEAoBAIAAIBACBAurCEC/cASCIAToe
BTWnMxEAAoC0RXIACAACgAAgAAgAis4ZUMskCAACgHTpWsZ6W+OiBABqMQAhACjg2rZIgpC0w3Uj
qIVFoJYrGUACAATSDBAS/X3OpuCMxH+lU/wR/0sAqEUDhJD//0g2xVb8VsB+1AIQeT4m+nu0XLES
0axkRrKN+GeFagvV7OdATX+L2P8n4f0fJb+l/FsPgBD2G1nsiwiAVBWq2a/CxPxIVqj4j8RNNQBE
Op/VA8T6yj/cKgDin+8BQLJBihcgyQyocdzTDSAhqAAJoukdblMAKKA5kBqABMUcSWeAxCOjIIkX
imm6PgBhWoHvIKoKBQBJZxDShg8zQEg1QELTX3PhBwgBQHoBpGh4/QFS11eIcz2nmP0rhzDKHBoB
QGyAVK/CFDuEBSAUEoAQAMQDEP06kBC860AUgBr7CbF2Zk5kmlywdnQW5O3FKFTLBChsV6I1AcQ/
E5as4FUCJB+1WzxAgS9mtBxFH4Bob2/QDyDyUQCgSAUIdx0IIhAAxAsQwgMkmdJrnAMFDJCCUnqh
AKAQAyQeJNT1lXwVRquE4i6omuAFAKkAKFhH4bobrxIgISQACQBQBAMUpPqgKGs1ACgMAEG3A0DA
T1QBBG/nAEH8AwFAIBAABAKAQAAQCAACgQIAyBBs+a8r6GCB1O9KsAigONorQrNAaj0YNaYasivi
+zIiAAJFrwAgEAAE0nVCAQCBIAKB9AwTKk0RAAQAhcoUAALBEAYCgCIypIMgAoEAIBAAxBp/WtYA
hJpTeZpVBEIRgTJqNoih6AIoEloNAAp5BDKaLLaY2BibxWQMrARGk0RGzQ6BmJiUUtm3JhO/B281
VFcFb6HKw0RSUAAymu1JqT0yswZlZfZITbKb1fe+sXUHmVqrtYjvoFScKgd7B5zsKgCytsNatLPw
N0RSB7ySuBuVUAiv2lo5LWLbkyw6tIvRHSCjJTEta8y02fMXLVk0f9bU0QM6J1pUImRKe3CyTJM6
qzvpUidMVuqB9iosOjwwGaf723E7tLpnMl6/S+Dt/MGPECweyeKkMGnsZKLGJHFZdHyAbDH5/g46
A2SOTxs2bcHbn+07euLUiaN7P1330uPD0uJVhW1zr8WbFVrU06yCwPRXN+O0uDsvhsZeSzfjtYTX
o+MLmwgWm57nI9k+5f3NJL33cCxXIRZsIlps3rQglcOi5/9tpmlFT10BsqZkTVmy9ciFkoqaWkdt
dcX1C4c/Xvxo/2Qrf+/bst6+VKTQpbX9uT1MWZsLi3Aq3NiXD2Vj1id4B6/H5r5cBN22/nIRSZff
SuNwiPtLfhFZZ56zsy3avnaBYlF0aRWb5LR1VIuiy//oqiNAttTsnA9+KKpyuhu2cjsrrx7dOGdE
Rxtv78cM31Luqpe7Sb5/ln90J6eHafCOWsn+fpfaT/vzEGQc8HWdC2Ph83B8kclBUMf3ajD7ex18
LtUb2D1nffLKrTK4lBb1X1x9inlG2WecqnW5XMqqNPzSdWkea14Y/+zhCqxFo0ftuRcSdAPIljZu
0ZcXK10e0XYeV8WFHS+P7sTZ+7bhn1V7cIf3VG27kysGGft+UUd8MsCxLYOj93tsd1KeLqjb2pXp
kPC/Nz20JxTKF8azqjF8TxXVou7QcCMrjr5+ro5m4S7ePJx+QpkyXjxCL4azYPVQk04AWVPHLdtf
7JAfz+Mo2vvKmI5cvW/u/69qQnk91R9xDUBdNzvI1fXU/oM97ievKqO2WdVrrRgOlkkHGc3+84OM
OV2HecyeW9aBEYDu+isLoC2P0CfStr4cAI1K0Acgc8rIxXkluHPXeX3fwuxkjt43dl1TQSyup+z1
Tuzw0WZZKa3CnrIFrDVQ7BOHGW125gn6GsjY/QVms69MpyNY33MCo+ey6SdlwggOgNpTmzSGpxij
WukCkDFh4PO7ruFjv7N459wB8Ry9n1tMaXdP4QzmAjh26kFGhU88RO99Uy92m62iT4NsPM0+0q69
5xLpAPFEoPamSAHI2mXqR5dI5XVc2PhYGvPShf2xY9QKuw7dzfAw9WaH3JV92CcdM2rHBaHZdbYI
IUBGHQAythq+9Ediw3sqjy0ZlsgIQeas1xgVLlqbTvfgqvDIKOh9XQAaEU0AWbpM/3exixw8irZO
68yYN8ZzVHhSoqHZ9L4xuBYhBEiPIcw+aOEP1ZT5S9XRBVmMi6d8IdfYIsJHixvCjG3G/+Oyi3ag
i+vHMG4B8pwxk4NS4fBYNB+AdIhA5s5P7rjhphW25PMnUk0AUOgYDGF76gCQtVcOY/1ceWBOT2uE
njEwhIUdoJj+C0/UUo9Ue3xBX1uEnjEtdxUWMRHIfsfyfGphhbrTrwyKBYAAIDxAcUNf+8VJByh/
+R12AAgAIkSgISvOMgA6s3QwRCAAiABQ7MDFpxz0OdCJhf1jACAACA+Qrc8LR6upR6o6NK83rMJg
FUa6DtT12d3ULBrPza/+2MUM14HgOhDhSnTbSR9dpV2JdhVunJBijNBL73AlOvz3wuKHrThFuxBU
c3LpnYwE3PAlQLXcIWxyxNyNt/aYuavETbmTsfOZ7lYdAGoDd+O578ZHVz5Q8pg1+bXEfKCa02/c
3YaRD2QbxqzwxqEmHQBKaBEMRlk6hyGm14z/EBOCXEWfPZPOfDAjec5pekbi2ScZD0NZMtkVfnOI
WXtGYiKswnSOQAZT0l1LDpXiBzHXze8WDm/NzIk23ra2nJYTXbqc+ThVm+dYFT47mz4Vs9zOweCd
5siPg9GWE22wdpr41okKHEHu8uNv3p/K8TS3eTDlmS7BsY3juZ6emyqp4aPmn51YDM5mRaBfcunJ
/aY+7CD25qBg5+VzTqIj5qkMgyG259QNJ8uUo5ir9Kd1j3WPMXAoZvwR4rUA18HRHE8nGocdoV5N
2J/FDITp2+gMOj5hPVkY/wyr2c/NZqRncjwZtKo3oxQ814FSDEEYzwMEyBjfe+raI9dlTxa6Hb8d
emtKrzi+dxIkTPmJ0P+uHyfH8zhY7jtFXgy6jt/DfkmDccRP1NS4Y8OYdUn9ZwX9vs77HVjVeJD1
fNKpRxlVMbMXJVvG01fG5syAHk8LECAvQekPLfvqfFmdv/3ddaUFX746sWcc73sxWj1+uA6DvMdx
8NFEPgfbQz8T5/LHH+B5xNoyMZ9yQeLkOI4XhRFlkkAAAAhtSURBVPTfR42De/qyTyXG09EVS5gP
ySUvYD3lsor1tpp2OUyAliuf9Q0UIIPR3mXUnHf2F5RUOXxP3jsqrxfsXT87u3Ms/+t9Eu/9vNzt
EUSN5/2Hu+zTcbxv1THE3H/Q6fF49/J7+P7lqTswlu8RfevEky6PpAyNBfG4fhzP82oe4/DvvQ4e
mYmvFF6PfUM52qPDuzUKA79J9foObIt+XzlkDSFuDo8rbyCzHnd+XXmrHrhVTX2bHhxh1A8gg9GW
0nfCvL9tP3j6/JXCK+dPH9z+Vs4DmclWNa+Hihn4+vlymX5dMSCG38E6bGtJ064VTZ9KNg/hfTmY
5e49peUYi/Kbu7L5PExDv7hZjrUov/HZQK72SPv7b+UEi/JrqzvxFGLU4bJyosqOjWYvSswP/yy1
qJCa5E/BtEfgAHnLbG+fOXp67rI1G97dsGZp7vR7Mtvb1b0W0GDuOH17nkSfPdHBrMbBdNuCPXly
7ZnfhZ9j0+1/3Zen1L4VvXgrY+yxdG8eTnsX38ZZjpS5u/Pw2jWrDV81hn+YR9QHw81c0Xg72SJv
+0RcTNcCkLfQsUlptw/JHj12dPaQPp2TYlTi41vPDX4uR6Q/D4pV65AwZk6OVHPuiVfl0GbS3By5
5k5IUuHQ6j6lg7cc4xP5g/GI2Tk4zRrOG4+Ntz2VQ9CTnOeTuf9MkkXOjH5YBrUBVP+aTZs9sXXr
1gl2mzmw17QaU3pnNKl3SgAmptQMqTqqBdnSJUOuNLO6UNopQ6lUNR7Gtr0xFqoaxN4jA6sedv4z
oRfeIqMX4UqmVoAaKm/QIpPV1iCrKTAHi00ss2YHm82i2sEsc7BZ1ZbDZFNK5ZuCLRgLdXUxWnEW
NuLUVh+AQM1SUfWm+hb09zJQtLRnlP2pAwAoGgUAgQAgUPimBAAQAAQAgWAIAwFAIAAIAIJLAQAQ
CAACAUAgAAgAAgFAoPADBAKpEwAEAoBAABAIAAIBQCAQAAQCgEAAEAgAAoEAIBAABAKAQAAQCAQA
gQAgEAAEAoBAIAAIFFSAkE+yX3EZIqKj+CukgWGk7kRA1HIhjY2FdDxbg1oxafvrE0YQ6yuk8jiI
+yukvfQqioYi+2wNRcVQMBqH3d+oIRhJf3p/7eO5/setuCT61r+L0PQ17ivfxyZQ5VaC+N9NZWr6
qvEE9JvJdhHtimjlunUaS48hq1Tj72VlQpL9cYcWHVHWfoJ405BUrGFLmb+4IkEDCMmjJWoYzVDD
B+U20s0ko5toS+QfFnFWSBGkRb9SHlb6vaw09HIh2TGkJREDJC6TdH9cQ4j+LUjbT5B+DknFBII/
CgtA4hZBiiFZsRkRIFnjyqxEbSgI8n0x7YzflVkuTDHJ3UXYn1Z6PEDymUJoKkauSPAAQv5QTgZI
sg0NIL8bCSDRyIFkQ5jsvBEXDVs6WRgLBUDS0ovWIkqAJF+FrGIK/5BEIIEBEFIVgQQaQAi/L7ad
BeL30gpoAqhhGOMDCFHjJ5KvH1DoK6bwjwSAkKAbQKR9iZE+ogBCAjdAiDWEBaViGP9gL+N55kDi
OaOqORDCAoSCPYlWBxAWC0QECPFPohEKdcVCN4lGsgWogBSfJYGxYZmiWKsrQyh2Ga+00nEZzygX
ASD8HEVWcsUQ5j+S1EPALeNFVzFCU7HQLeMj8bobiqjqIP2aF0VrPwFAGsqGtG0BALXkCKS4TxjA
FgAQqMULAAIBQKCIBAip90HMHRsX6NiN+FJHWFktKAztgYJ2ppLTfRClgaQXkYIZTJCeICLm0kN5
dVs1QCjodYk4gNR9I7/SH84IxJXmIj5TFNcKG5KGZClBSJphJCgyigTs9S6RBeVymIpyI8yVSvE1
PXFJlFdVMVfiRPVBmDwpxeGwWTzircQthsm8wtRGfFxFIwgBpDtpAogrzUUJkCJpCHs13d818nCN
SLfYBI4L8vzlVppLUn7wd0Wx2UrSa724Wz6IdDh52g6mARAt8wp/uwxfhcYBTlW6k7YIxJPmgolA
io2oACkKg/C33ugAqU7PwUV60t1QhN8Je8tXUWv87S2cmYDlFdEyr6gAEcqoKltFN4CIaS6Cn2A/
z7JkEzxACElCpXRXfyCW5AQxs1rUlFtuzgWQzJAAEELycUJZF0xDybdC1BqJa0MDSLZZWAAip7lg
AEL8EUiQAeSP2Ugg5e5Rs1pUlFtZCA6AEH8EUlYZM9PFRSBFF5Azr+TrGEZOp/psFZ0AogV0BUBI
CBgg3BwIBxA5q4W/3PiEIwZASFAFkHwOhLnkoBIgzFQqWgBClEm0ovX8GyE1cyBKXpGKSTRfuWXH
EgRyTj/C7kSYRCvmwtRJNCLPgYgAIV3nQPR0J92GMEKaC8JeS2y6YKh40ERomhBIl5Gihat8+BaU
cyDWMp4nPUf6HabVpd6iZTwpM0gQL4uVe+OX8cplkiTjx78BJvMKd1FCcTlAvoxXme4UjOtbKGgb
R9CNmxZ/lyc4AKEo7QgEAAWltdS3kqo0lwjqiGgtd4S3FtyNB4VuVgACAUAgAAgUFQABWyCIQKCw
RiAVCWUgAAgDEH9CGQgAwkUg/sQsEABEB4iRUAYCgKgAsRLKQAAQDSBmQhkIAGIBhGASDQp8CGMl
lIEAoODuBQKAYOgCaY0lsHoHwWAEAoBAABAIAAIBQCAQAAQCgEAAEAgAAoEAIBAABAKAQAAQCAQA
gQAgEAAEAoBAIAAIBACBACAQAAQCAUAgAAgEAIEAIBAABAIBQCAACAQAgQAgEAgAAgFAIAAIBACB
QAAQCAACAUAgAAgEAoBAABAIAAIBQCAACAQCgEAAEAgAAgFAIBAABAKAQAAQCAACgQAgEAAEAoBA
ABAIBACBACAQAAQCgEAAEAgEAIEAIFBU6v8B5IsI88rn/usAAAAASUVORK5CYII=

------_=_NextPart_000_01C41D7B.9215E0C8--