[ITK Community] [Insight-users] itkSYN itkBsplineSYN Image Registration- Optimizer Documentation??
Emma Saunders
emmasaunders123 at gmail.com
Thu Jan 23 08:41:28 EST 2014
Hi Brain,
Thanks for your help,
Below is the code I am using. The images have size [217, 45, 336] and
Dimensions [1.48 5.5 1.48 (mm)]. I am using a 3 step multi-resolution
framework. Initialized with an affine followed by BsplineSYN. The metric
is mattes mutual information, with 40 bins. No pre-processing of the
images is performed, I do intend to perform some pre filtering. The metric
value appears to take a big jump in the first stage of Bspline at around
100 iterations, using the code below and the result is a mess.
If you can see anything obvious from my code that would be great.
Thanks for your time I really appreciate it, Kind regards
Emma
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageRegistrationMethodv4.h"
#include "itkAffineTransform.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkBSplineSyNImageRegistrationMethod.h"
#include "itkShrinkImageFilter.h"
#include "itkBSplineSmoothingOnUpdateDisplacementFieldTransform.h"
#include
"itkBSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor.h"
#include "itkCompositeTransform.h"
#include "itkVector.h"
#include <itkRegion.h>
template<class TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute( (const itk::Object *) caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event )
{
TFilter const * const filter = dynamic_cast<const TFilter *>( object );
if( typeid( event ) == typeid( itk::InitializeEvent ) )
{
// const unsigned int currentLevel = filter->GetCurrentLevel();
}
else if( typeid( event ) == typeid( itk::IterationEvent ) )
{
std::cout << filter->GetCurrentMetricValue() << " " <<std::endl;
}
}
};
template <unsigned int VImageDimension>
int PerformSimpleImageRegistration( int argc, char *argv[] )
{
if( argc < 3 )
{
std::cout << argv[0] << " fixedImage movingImage outputImage" <<
std::endl;
exit( 1 );
}
typedef float PixelType;
typedef itk::Image<PixelType, VImageDimension> FixedImageType;
typedef itk::Image<PixelType, VImageDimension> MovingImageType;
typedef itk::ImageFileReader<FixedImageType> ImageReaderType;
typename ImageReaderType::Pointer fixedImageReader =
ImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
fixedImageReader->Update();
typename FixedImageType::Pointer fixedImage =
fixedImageReader->GetOutput();
fixedImage->Update();
fixedImage->DisconnectPipeline();
typename ImageReaderType::Pointer movingImageReader =
ImageReaderType::New();
movingImageReader->SetFileName( argv[2] );
movingImageReader->Update();
typename MovingImageType::Pointer movingImage =
movingImageReader->GetOutput();
movingImage->Update();
movingImage->DisconnectPipeline();
typedef itk::AffineTransform<double, VImageDimension> AffineTransformType;
typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType,
AffineTransformType> AffineRegistrationType;
typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
typename AffineRegistrationType::Pointer affineSimple =
AffineRegistrationType::New();
affineSimple->SetFixedImage( fixedImage );
affineSimple->SetMovingImage( movingImage );
// Shrink the virtual domain by specified factors for each level
//ORIGINAL Image size [217, 45, 336]
//ORIGINAL Image Dimensions 1.48 5.5 1.48 (mm)
typename AffineRegistrationType::ShrinkFactorsPerDimensionContainerType
ShrinkFactorsa;
typename AffineRegistrationType::ShrinkFactorsPerDimensionContainerType
ShrinkFactorsb;
typename AffineRegistrationType::ShrinkFactorsPerDimensionContainerType
ShrinkFactorsc;
//First level
ShrinkFactorsa[0] = 3;
ShrinkFactorsa[1] = 1;
ShrinkFactorsa[2] = 3;
//Second Level
ShrinkFactorsb[0] = 2;
ShrinkFactorsb[1] = 1;
ShrinkFactorsb[2] = 2;
//Third Level
ShrinkFactorsc[0] = 1;
ShrinkFactorsc[1] = 1;
ShrinkFactorsc[2] = 1;
unsigned int la=0;
unsigned int lb=1;
unsigned int lc=2;
affineSimple->SetNumberOfLevels(3);
affineSimple->SetShrinkFactorsPerDimension( la, ShrinkFactorsa );
affineSimple->SetShrinkFactorsPerDimension( lb, ShrinkFactorsa );
affineSimple->SetShrinkFactorsPerDimension( lc, ShrinkFactorsb );
//Define the Metric, must use V4 metric with V4 registration
typedef itk::MattesMutualInformationImageToImageMetricv4<FixedImageType,
FixedImageType> MutualInformationMetricType;
typename MutualInformationMetricType::Pointer mutualInformationMetric =
MutualInformationMetricType::New();
mutualInformationMetric->SetNumberOfHistogramBins( 40 );
mutualInformationMetric->SetFixedImage( fixedImage );
mutualInformationMetric->SetMovingImage( movingImage );
mutualInformationMetric->SetUseMovingImageGradientFilter( false );
mutualInformationMetric->SetUseFixedImageGradientFilter( false );
affineSimple->SetMetric( mutualInformationMetric );
typedef
itk::RegistrationParameterScalesFromPhysicalShift<MutualInformationMetricType>
AffineScalesEstimatorType;
typename AffineScalesEstimatorType::Pointer scalesEstimator1 =
AffineScalesEstimatorType::New();
scalesEstimator1->SetMetric( mutualInformationMetric );
scalesEstimator1->SetTransformForward( true );
affineSimple->SmoothingSigmasAreSpecifiedInPhysicalUnitsOn();
affineSimple->SetSmoothingSigmasAreSpecifiedInPhysicalUnits( true );
//image spacing is used to smooth in physical units
if( affineSimple->GetSmoothingSigmasAreSpecifiedInPhysicalUnits() != true
)
{
std::cerr << "Returned unexpected value of FALSE." << std::endl;
return EXIT_FAILURE;
}
// Smooth by specified gaussian sigmas for each level. These values are
specified in
// physical units. Sigmas of zero cause inconsistency between some
platforms.
{
typename AffineRegistrationType::SmoothingSigmasArrayType
smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 1 );
smoothingSigmasPerLevel[0] = 2;
smoothingSigmasPerLevel[1] = 1;
smoothingSigmasPerLevel[2] = 0.3; //0;
affineSimple->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
}
typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
typename GradientDescentOptimizerv4Type::Pointer affineOptimizer =
dynamic_cast<GradientDescentOptimizerv4Type * >(
affineSimple->GetOptimizer() );
if( !affineOptimizer )
{
itkGenericExceptionMacro( "Error dynamic_cast failed" );
}
affineOptimizer->SetNumberOfIterations( 75); //need 75
//When a ScalesEstimator is assigned, the optimizer is enabled by default
to estimate learning rate only once, during the first iteration
affineOptimizer->SetDoEstimateLearningRateOnce( false ); //true by default
affineOptimizer->SetDoEstimateLearningRateAtEachIteration( true );
affineOptimizer->SetScalesEstimator( scalesEstimator1 );
{
typedef itk::ImageToImageMetricv4<FixedImageType, MovingImageType>
ImageMetricType;
typename ImageMetricType::Pointer imageMetric =
dynamic_cast<ImageMetricType*>( affineSimple->GetMetric() );
//imageMetric->SetUseFloatingPointCorrection(true);
imageMetric->SetFloatingPointCorrectionResolution(1e4);
}
typedef CommandIterationUpdate< GradientDescentOptimizerv4Type >
AffineCommandType;
AffineCommandType::Pointer affineobserver = AffineCommandType::New();
affineOptimizer->AddObserver( itk::IterationEvent(), affineobserver );
try
{
std::cout << "Performing Affine:" << std::endl;
affineSimple->Update();
std::cout << "Last affine iteration is " <<
affineOptimizer->GetCurrentIteration();
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
{
typedef itk::ImageToImageMetricv4<FixedImageType, MovingImageType>
ImageMetricType;
typename ImageMetricType::Pointer imageMetric =
dynamic_cast<ImageMetricType*>( affineOptimizer->GetMetric() );
std::cout << "Affine parameters after registration: " << std::endl
<< affineOptimizer->GetCurrentPosition() << std::endl
<< "Last LearningRate: " << affineOptimizer->GetLearningRate()
<< std::endl
<< "Use FltPtCorrex: " <<
imageMetric->GetUseFloatingPointCorrection() << std::endl
<< "FltPtCorrexRes: " <<
imageMetric->GetFloatingPointCorrectionResolution() << std::endl
<< "Number of threads used: metric: " <<
imageMetric->GetNumberOfThreadsUsed()
<< std::endl << " optimizer: " <<
affineOptimizer->GetNumberOfThreads() << std::endl;
}
//Now create A composite transform of the input
typedef typename AffineRegistrationType::RealType RealType;
typedef itk::CompositeTransform<RealType, VImageDimension>
CompositeTransformType;
typename CompositeTransformType::Pointer compositeTransform =
CompositeTransformType::New();
compositeTransform->AddTransform( const_cast<typename
AffineRegistrationType::OutputTransformType *>(
affineSimple->GetOutput()->Get() ) );
////////////////
//Now for the BsplineSYN method
//DEFINE THE DISPLACEMENT FIELD
typedef itk::Vector<RealType, VImageDimension> VectorType;
VectorType zeroVector( 0.0 );
typedef itk::Image<VectorType, VImageDimension> DisplacementFieldType;
typename DisplacementFieldType::Pointer displacementField =
DisplacementFieldType::New();
displacementField->CopyInformation( fixedImage );
displacementField->SetRegions( fixedImage->GetBufferedRegion() );
displacementField->Allocate();
displacementField->FillBuffer( zeroVector );
//DEFINE THE INVERSE DISPLACEMENT FIELD
typename DisplacementFieldType::Pointer inverseDisplacementField =
DisplacementFieldType::New();
inverseDisplacementField->CopyInformation( fixedImage );
inverseDisplacementField->SetRegions( fixedImage->GetBufferedRegion() );
inverseDisplacementField->Allocate();
inverseDisplacementField->FillBuffer( zeroVector );
//DEFINE THE SMOOTHING ON UPDATE FIELD WHICH PARAMETERIZEDS THE
DISPLACEMENT FIELD
typedef
itk::BSplineSmoothingOnUpdateDisplacementFieldTransform<RealType,
VImageDimension>
BSplineDisplacementFieldTransformType;
//DEFINE THE SYN IMAGE REGISTRATION METHOD
typedef itk::BSplineSyNImageRegistrationMethod<FixedImageType,
MovingImageType, BSplineDisplacementFieldTransformType>
DisplacementFieldRegistrationType;
typename DisplacementFieldRegistrationType::Pointer
displacementFieldRegistration = DisplacementFieldRegistrationType::New();
//OPTIMIZER VALUES
//DEFINE THE OUTPUT TRANSFORM - parameterized by a Bspline///
typename BSplineDisplacementFieldTransformType::Pointer
outputDisplacementFieldTransform =
const_cast<BSplineDisplacementFieldTransformType *>(
displacementFieldRegistration->GetOutput()->Get() );
//CREATE THE TRANSFORM ADAPTOR
typedef
itk::BSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor<
BSplineDisplacementFieldTransformType >
DisplacementFieldTransformAdaptorType;
typename
DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType
adaptors;
//SET THE NUMBER OF LEVELS AND SHRINK FACTORS AND SMOOTHING VALUES FOR THE
VIRTUAL DOMAIN
unsigned int numberOfLevels = 3;
typename DisplacementFieldRegistrationType::NumberOfIterationsArrayType
numberOfIterationsPerLevel;
numberOfIterationsPerLevel.SetSize( 3 );
numberOfIterationsPerLevel[0] = 500;
numberOfIterationsPerLevel[1] = 300;
numberOfIterationsPerLevel[2] = 300;
typename
DisplacementFieldRegistrationType::ShrinkFactorsPerDimensionContainerType
ShrinkFactorsaa;
typename
DisplacementFieldRegistrationType::ShrinkFactorsPerDimensionContainerType
ShrinkFactorsbb;
typename
DisplacementFieldRegistrationType::ShrinkFactorsPerDimensionContainerType
ShrinkFactorscc;
typename
DisplacementFieldRegistrationType::ShrinkFactorsPerDimensionContainerType
ShrinkFactorstemp;
//First level
ShrinkFactorsaa[0] = 3;
ShrinkFactorsaa[1] = 1;
ShrinkFactorsaa[2] = 3;
//Second Level
ShrinkFactorsbb[0] = 2;
ShrinkFactorsbb[1] = 1;
ShrinkFactorsbb[2] = 2;
//Third Level
ShrinkFactorscc[0] = 1;
ShrinkFactorscc[1] = 1;
ShrinkFactorscc[2] = 1;
displacementFieldRegistration->SetNumberOfLevels(3);
displacementFieldRegistration->SetShrinkFactorsPerDimension( la,
ShrinkFactorsaa );
displacementFieldRegistration->SetShrinkFactorsPerDimension( lb,
ShrinkFactorsbb );
displacementFieldRegistration->SetShrinkFactorsPerDimension( lc,
ShrinkFactorscc );
typename DisplacementFieldRegistrationType::SmoothingSigmasArrayType
smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 3 );
smoothingSigmasPerLevel[0] = 2;
smoothingSigmasPerLevel[1] = 1;
smoothingSigmasPerLevel[2] = 0.3;
for( unsigned int level = 0; level < numberOfLevels; level++ )
{
// We use the shrink image filter to calculate the fixed parameters of
the virtual
// domain at each level.
if (level==0)
{
ShrinkFactorstemp=ShrinkFactorsaa;
}
if (level==1)
{
ShrinkFactorstemp=ShrinkFactorsbb;
}
if (level==2)
{
ShrinkFactorstemp=ShrinkFactorscc;
}
typedef itk::ShrinkImageFilter<DisplacementFieldType,
DisplacementFieldType> ShrinkFilterType;
typename ShrinkFilterType::Pointer shrinkFilter =
ShrinkFilterType::New();
std::cout << "using shrink Factor" << ShrinkFactorstemp <<std::endl;
shrinkFilter->SetShrinkFactors( ShrinkFactorstemp);
shrinkFilter->SetInput( displacementField );
shrinkFilter->Update();
std::cout << "New size " <<
shrinkFilter->GetOutput()->GetBufferedRegion().GetSize() <<std::endl;
//int VirtSize[3];
typename FixedImageType::SizeType VirtSize
=shrinkFilter->GetOutput()->GetBufferedRegion().GetSize();
typename DisplacementFieldTransformAdaptorType::Pointer
fieldTransformAdaptor = DisplacementFieldTransformAdaptorType::New();
fieldTransformAdaptor->SetRequiredSpacing(
shrinkFilter->GetOutput()->GetSpacing() );
fieldTransformAdaptor->SetRequiredSize(
shrinkFilter->GetOutput()->GetBufferedRegion().GetSize() );
fieldTransformAdaptor->SetRequiredDirection(
shrinkFilter->GetOutput()->GetDirection() );
fieldTransformAdaptor->SetRequiredOrigin(
shrinkFilter->GetOutput()->GetOrigin() );
fieldTransformAdaptor->SetTransform( outputDisplacementFieldTransform );
typename BSplineDisplacementFieldTransformType::ArrayType
newUpdateMeshSize = newUpdateMeshSize;
typename BSplineDisplacementFieldTransformType::ArrayType
newTotalMeshSize = newTotalMeshSize;
if (level==0)
{
//First dimension
newUpdateMeshSize[0] = 0; //Lat
newTotalMeshSize[0] = VirtSize[0]/12;
//Second dimension
newUpdateMeshSize[1] = 0; //Ant-post
newTotalMeshSize[1] = VirtSize[0]/12; //works better
//Third dimension
newUpdateMeshSize[2] = 0; //Sup-Inf
newTotalMeshSize[2] = VirtSize[2]/12;
}
//DEFINE THE MESH SIZE FOR THE UPDATE FIELD AND TOTAL FIELD
if (level==1)
{
//First dimension
newUpdateMeshSize[0] = 0; //Lat
newTotalMeshSize[0] = VirtSize[0]/12;
//Second dimension
newUpdateMeshSize[1] = 0; //Ant-post
newTotalMeshSize[1] = VirtSize[0]/12;
//Third dimension
newUpdateMeshSize[2] = 0; //Sup-Inf
newTotalMeshSize[2] = VirtSize[2]/12;
}
if (level==2)
{
//First dimension
newUpdateMeshSize[0] = 0; //Lat
newTotalMeshSize[0] = VirtSize[0]/12;
//Second dimension
newUpdateMeshSize[1] = 0; //Ant-post
newTotalMeshSize[1] = VirtSize[0]/12;
//Third dimension
newUpdateMeshSize[2] = 0; //Sup-Inf
newTotalMeshSize[2] = VirtSize[2]/12;
}
std::cout << "level is " << level <<std::endl;
std::cout << "newUpdateMeshSize" << newUpdateMeshSize << std::endl;
std::cout << "newTotalMeshSize" << newTotalMeshSize << std::endl;
fieldTransformAdaptor->SetMeshSizeForTheUpdateField( newUpdateMeshSize
);
fieldTransformAdaptor->SetMeshSizeForTheTotalField( newTotalMeshSize );
adaptors.push_back( fieldTransformAdaptor.GetPointer() );
}
typename MutualInformationMetricType::Pointer
mutualInformationMetricBspline = MutualInformationMetricType::New();
mutualInformationMetricBspline->SetNumberOfHistogramBins( 40 );
mutualInformationMetricBspline->SetFixedImage( fixedImage );
mutualInformationMetricBspline->SetMovingImage( movingImage );
mutualInformationMetricBspline->SetUseMovingImageGradientFilter( false );
mutualInformationMetricBspline->SetUseFixedImageGradientFilter( false );
displacementFieldRegistration->SetFixedImage( fixedImage );
displacementFieldRegistration->SetMovingImage( movingImage );
displacementFieldRegistration->SetNumberOfLevels( 3 );
displacementFieldRegistration->SetMovingInitialTransform(
compositeTransform );
displacementFieldRegistration->SmoothingSigmasAreSpecifiedInPhysicalUnitsOn();
displacementFieldRegistration->SetSmoothingSigmasPerLevel(
smoothingSigmasPerLevel );
displacementFieldRegistration->SetMetric( mutualInformationMetricBspline
);
displacementFieldRegistration->SetLearningRate( 0.25 );
//in SYN methods learning rate is set initially and modified at each
iteration
//no need for scale as displacement in x,y,z has equal scale
displacementFieldRegistration->SetTransformParametersAdaptorsPerLevel(
adaptors );
displacementFieldRegistration->SetNumberOfIterationsPerLevel(
numberOfIterationsPerLevel );
displacementFieldRegistration->SetTransformParametersAdaptorsPerLevel(
adaptors );
outputDisplacementFieldTransform->SetDisplacementField( displacementField
);
outputDisplacementFieldTransform->SetInverseDisplacementField(
inverseDisplacementField );
outputDisplacementFieldTransform->SetSplineOrder( 3 );
typedef CommandIterationUpdate <DisplacementFieldRegistrationType>
DisplacementFieldCommandType;
typename DisplacementFieldCommandType::Pointer DisplacementFieldObserver
= DisplacementFieldCommandType::New();
displacementFieldRegistration->AddObserver( itk::IterationEvent(),
DisplacementFieldObserver );
try
{
std::cout << " " << std::endl;
std::cout << "BSpline SyN registration" << std::endl;
displacementFieldRegistration->Update();
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform( outputDisplacementFieldTransform );
typedef itk::ResampleImageFilter<MovingImageType, FixedImageType>
ResampleFilterType;
typename ResampleFilterType::Pointer resampler =
ResampleFilterType::New();
resampler->SetTransform( compositeTransform );
resampler->SetInput( movingImage );
resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 0 );
resampler->Update();
typedef itk::ImageFileWriter<FixedImageType> WriterType;
typename WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[3] );
writer->SetInput( resampler->GetOutput() );
writer->Update();
return EXIT_SUCCESS;
}
int main( int argc, char *argv[] )
{
if( argc < 3 )
{
std::cout << argv[0] << " fixedImage movingImage outputImage
numberOfAffineIterations numberOfDeformableIterations" << std::endl;
exit( 1 );
}
const int imgDim=3;
PerformSimpleImageRegistration<imgDim>( argc, argv );
return EXIT_SUCCESS;
}
On Wed, Jan 22, 2014 at 5:01 PM, brian avants <stnava at gmail.com> wrote:
> multi-resolution set up is usually the key to such issues.
>
> but greater detail in your question / code is needed.
>
> syn & variants are applicable for a broad range of images
>
> as you can see in the literature & documentation.
>
>
> brian
>
>
>
>
> On Wed, Jan 22, 2014 at 11:57 AM, Emma Saunders <emmasaunders123 at gmail.com
> > wrote:
>
>> Thanks Nick and Brian for your input.
>>
>> I was attempting to change the learning rate as I am having poor results
>> using both syn and itkBsplinesyn when registering two MR images of the
>> entire thorax during respiration. Are these methods specifically designed
>> for certain types of images (e.g brain). I initialize my framework with an
>> Affine transform, using mattes MI, the metric value first falls off and
>> then increases. The result is thus only a small amount of movement, around
>> 1/3 of what I would hope for.
>>
>> I can successfully register the images with a regular Bspline method
>> using ITK, but was hoping to get a SYN method working in order to have a
>> valid inverse.
>>
>> I suppose the question is, if I can get regular Bspline to give a descent
>> result should the same hold for the SYN methods or am I missing something?
>>
>> Thanks for your help
>>
>>
>>
>>
>> On Wed, Jan 22, 2014 at 3:30 PM, Emma Saunders <emmasaunders123 at gmail.com
>> > wrote:
>>
>>> Hi all
>>>
>>> I am trying to use the Syn methods mentioned above.
>>>
>>> I would simply like to set my framework up to estimate the learning rate
>>> at each iteration. So far this has proved problematic as the optimization
>>> process is contained within the methods itself and whenever I try to find a
>>> solution need to look through ANTS header files and I still have no luck.
>>>
>>> Is there a simple way to set the learning rate given a scaleEstimator
>>> for these methods (without using the ans registration helper ) or must one
>>> simply choose one at the beginning and hope for the best??
>>>
>>> I am also finding it difficult to determine which optimizer these
>>> methods use as in the ANTS headers there are two options a GradientDescent
>>> and a conjugate gradient descent, any ideas??
>>>
>>> I initially used the ITK libraries as they provided a method that I
>>> could begin using state of the art image processing algorithms without the
>>> steep learning curve, is there any pending documentation or software guide
>>> for the new ITKV4 framework.
>>>
>>> Thanks
>>>
>>> Emma
>>>
>>
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://public.kitware.com/pipermail/community/attachments/20140123/efd05a07/attachment-0002.html>
-------------- next part --------------
_____________________________________
Powered by www.kitware.com
Visit other Kitware open-source projects at
http://www.kitware.com/opensource/opensource.html
Kitware offers ITK Training Courses, for more information visit:
http://www.kitware.com/products/protraining.php
Please keep messages on-topic and check the ITK FAQ at:
http://www.itk.org/Wiki/ITK_FAQ
Follow this link to subscribe/unsubscribe:
http://www.itk.org/mailman/listinfo/insight-users
More information about the Community
mailing list