[ITK Community] [Insight-developers] SimpleITK ImageRegistrationMethod straw man
Bradley Lowekamp
blowekamp at mail.nih.gov
Thu Jan 2 17:54:50 EST 2014
Happy New Year Folks!
I have continued my rapid prototype/straw man of much needed features in SimpleITK. Not I have a topic which adds callbacks/commands/progress reporting:
https://github.com/blowekamp/SimpleITK/tree/STRAW-SIMPLEITK-441_CallbackPrototype
Along with the other two existing straw topics which have been rebase and updated:
https://github.com/blowekamp/SimpleITK/tree/STRAW-PDERegistration
https://github.com/blowekamp/SimpleITK/tree/STRAW_ImageRegistrationMethod
I have merged them all together here:
https://github.com/blowekamp/SimpleITK/tree/STRAW
Needless to say, they are experimental and the topics will be rebased until the design is finalized, as important common features are extracted.
Here is an example of what things look like in registration now. This code is rather brief, and I think needs a little more verbosity perhaps just with keyword arguments:
def command_iteration(method) :
print("{0} = {1} : {2}".format(method.GetOptimizerIteration(),
method.GetMetricValue(),
method.GetOptimizerPosition()))
fixedInput = sitk.ReadImage(sys.argv[1])
movingInput = sitk.ReadImage(sys.argv[2])
R = sitk.ImageRegistrationMethod()
R.SetMetricAsMeanSquares()
R.SetOptimizerAsRegularStepGradientDescent(4.0, .01, 200 )
R.SetTransform(sitk.Transform(fixed.GetDimension(), sitk.sitkTranslation))
R.SetInterpolator(sitk.sitkLinear)
R.AddCommand( sitk.sitkIterationEvent, lambda: command_iteration(R) )
outTx = R.Execute(fixed, moving)
And this is the output:
$ "/scratch/blowekamp/build/SimpleITK/SimpleITK-build/Testing/Installation/PythonVirtualenv/bin/python" "/home/blowekamp/src/SimpleITK/Examples/ImageRegistration1.py" "/scratch/blowekamp/build/SimpleITK/SimpleITK-build/../ITK//Examples/Data/BrainProtonDensitySliceBorder20.png" "/scratch/blowekamp/build/SimpleITK/SimpleITK-build/../ITK//Examples/Data/BrainProtonDensitySliceShifted13x17y.png" "/scratch/blowekamp/build/SimpleITK/SimpleITK-build/Testing/Temporary/ImageRegistration1Test.png"
0 = 4499.45303449 : (2.9286959512455848, 2.7244705953923813)
1 = 3860.83625806 : (5.6275095401543647, 5.6768264703372218)
2 = 3450.67752259 : (8.8551550244041568, 8.0395165955973944)
3 = 3139.41514779 : (11.799687371851636, 10.746863868267717)
4 = 2189.97451865 : (13.362815140063773, 14.428796999143961)
5 = 1037.88308322 : (11.291967263350845, 17.851016903170226)
6 = 895.90226716 : (13.160248426976562, 17.137206358528768)
7 = 19.4543370274 : (12.326817932777699, 16.584582063605499)
8 = 236.181016487 : (12.782415987279469, 16.790568501834336)
9 = 38.1330680182 : (13.18325427730521, 17.089447516235214)
10 = 18.7507277013 : (12.949041300626419, 17.002015934096605)
11 = 1.14974579152 : (13.07397264379054, 16.997873531990507)
12 = 2.41322408701 : (13.011491691674189, 16.999416458636308)
13 = 0.058770974297 : (12.949046903335123, 17.002042940939543)
14 = 1.14969751226 : (12.980279306998362, 17.000994388882443)
15 = 0.173006721706 : (13.011502114607094, 16.99969101440513)
16 = 0.0583764039748 : (12.995881389157882, 17.00005647499167)
-------
TranslationTransform (0xa86f00)
RTTI typeinfo: itk::TranslationTransform<double, 2u>
Reference Count: 3
Modified Time: 1256
Debug: Off
Object Name:
Observers:
none
Offset: [12.9959, 17.0001]
Optimizer stop condition: ScaledRegularStepGradientDescentOptimizer: Step too small after 17 iterations. Current step (0.0078125) is less than minimum step (0.01).
Iteration: 16
Metric value: 0.0583764039748
================
I believe I am going to proceed by implementing some flash IPython-Notebook type demos, and then write of some of the design chooses made in a Wiki page to facilitate community feed back and design review.
Brad
On Dec 28, 2013, at 4:04 PM, Bradley Lowekamp <blowekamp at mail.nih.gov> wrote:
> Hello,
>
> I have hacked away to a working version of the ImageRegistationMethod in SimpleITK. This is the 4th SimpleITK registration interface attempted. This one seems about right to me. The branch/commit is available in my github account:
>
> https://github.com/blowekamp/SimpleITK/tree/STRAW_ImageRegistrationMethod
>
> Note: this topic will continued to be hacked and rebased/amended/squashed etc....
>
> Of particular interest is the interface to the method class which encapsulates the metric and optimizer while working with the existing sitk Transform facade:
>
> https://github.com/blowekamp/SimpleITK/blob/STRAW_ImageRegistrationMethod/Code/Registration/include/sitkImageRegistrationMethod.h
>
> I ported several ITK ImageRegistration examples to drive the implementation:
>
> https://github.com/blowekamp/SimpleITK/blob/STRAW_ImageRegistrationMethod/Examples/ImageRegistration1.py
> https://github.com/blowekamp/SimpleITK/blob/STRAW_ImageRegistrationMethod/Examples/ImageRegistration2.py
> https://github.com/blowekamp/SimpleITK/blob/STRAW_ImageRegistrationMethod/Examples/ImageRegistration15.py
>
> Also note I have found the scale dependent nature for ITK's RegularStepGradientDecent method un-usable and erratic. So I have use my version which possess sensible parameter scaling properties:
> https://github.com/blowekamp/SimpleITK/blob/STRAW_ImageRegistrationMethod/Code/Registration/include/itkScaledRegularStepGradientDescentOptimizer.h
>
>
> ---------------
> So what does this class support...
>
> --Transforms: sitkTranslation, sitkScale, sitkScaleLogarithmic, sitkEuler, sitkSimilarity, sitkQuaternionRigid, sitkVersor, sitkVersorRigid, sitkAffine, sitkComposite
> --Metrics: MeansSquares, NormalizedCorrelation, MeanReciprocalSquaredDifference MutualInformation, MatchCardinality, KullbackLeiblerCompareHistogram, MeanSquaresHistogram
> --Optimizers: RegularStepGradientDescent, GradientDescent, ConjugateGradient, OnePlusOneEvolutionary, Exhaustive, Amoeba, LBFS
> --Interpolators: sitkNearestNeighbor, sitkLinear, sitkBSpline, sitkGaussian, sitkLabelGaussian, sitkHammingWindowedSinc, sitkCosineWindowedSinc, sitkWelchWindowedSinc, sitkLanczosWindowedSinc, sitkBlackmanWindowedSinc
>
> So that is 4900 combinations.... Ever try a MatchCardinality metric with a LabelGaussian interpolator and a Amoeba optimizer?
>
> ---------------
> Things still todo and figure out:
>
> Callbacks and information/interface needed,
> BSpline transfroms.
> Sample masking from images.
>
> There is a lot that is going to need to be done for testing, and improved parameter checking, verifying defaults, and doing a different implementation of parameter management. But it is working, and enable easy exploration of registration in a way I have not been able to do before.
>
>
>
> ---------------
> I look forward to suggestions and comments. A long with information regarding the importance of features and things that are missing.
>
> Thanks,
> Brad
>
>
>
>
> _______________________________________________
> Powered by www.kitware.com
>
> Visit other Kitware open-source projects at
> http://www.kitware.com/opensource/opensource.html
>
> Kitware offers ITK Training Courses, for more information visit:
> http://kitware.com/products/protraining.php
>
> Please keep messages on-topic and check the ITK FAQ at:
> http://www.itk.org/Wiki/ITK_FAQ
>
> Follow this link to subscribe/unsubscribe:
> http://www.itk.org/mailman/listinfo/insight-developers
_______________________________________________
Powered by www.kitware.com
Visit other Kitware open-source projects at
http://www.kitware.com/opensource/opensource.html
Kitware offers ITK Training Courses, for more information visit:
http://kitware.com/products/protraining.php
Please keep messages on-topic and check the ITK FAQ at:
http://www.itk.org/Wiki/ITK_FAQ
Follow this link to subscribe/unsubscribe:
http://www.itk.org/mailman/listinfo/insight-developers
More information about the Community
mailing list