
Extending ParaView 

Utkarsh Ayachit, Dave DeMarle 



Introduction 

•  ParaView is an Open Source application and 
architecture for visualization and analysis of 
massive data sets. 

•  Open Source Architecture - it is supposed to be 
reusable 

•  ~1 Million lines of code 

•  Recent work makes it trivial to Revise it 



The Learning Curve 

•  Takes too long to learn enough to change it in 
meaningful ways 

•  Topics to master 
– VTK 
– ServerManager (Proxies) 
– paraQ client application 

VTK 

ServerManager 

ParaQ Qt 

Proxies 

vtkObjects VTK VTK 



Three approaches to revising ParaView 

•  Edit code directly (open source 
after all) 

•  Plugins and Modules 
–  CMake Macros that codify 

the way to bring code into, 
or make code that is 
loadable by ParaView 

•  Custom Applications 
–  Completely new 

executables that reuse the 
servermanager layer (ex 
tcl/tk app, c++ apps, python 
apps, PVEE webvis app) 

PARAVIEW SOURCE 

MODULE 

STATIC 

EXE 

PARAVIEW SOURCE 

PLUGIN 

DYNAMIC 

EXE 



Problems with the three Approaches 

•  Edit code directly 
 too invasive/not modular enough, too hard to keep 
current, too much code to keep track of 

•  Plugins and Macros 
 Good at Adding, difficult to Subtract 

•  Custom Applications 
 at ServerManager layer? 
  too time consuming 
 at Client layer? 
  client not modular enough 

VTK 

ServerManager 

ParaQ Qt 

Proxies 

vtkObjects VTK VTK 

yet 



Custom Applications 

•  To make a targeted vis application  
•  Application design is non trivial effort 
•  Ideally reuse effort that went into existing Client 
•  Top down design: 

–  Copy/Paste client’s source code then cut down 
–  Inelegant and not as easy as it sounds 

•  Bottom up design: 
–  Start with a minimal core, then add 
–  Existing app doesn’t have a minimal core! 
–  Paper is about changes that make bottom up possible 



Motivation 

•  ParaView is intended to be a general purpose 
visualization and analysis tool  

•  Existing plugins and macros make it possible to 
add even more (domain specific) features 

•  But how do you remove the stuff that a domain 
expert doesn’t care about? 
–  Reduced selection of file formats 
–  Reduced selection of filters 
–  Reduced set of view types 

•  How to make big changes to key GUI elements? 



Problem : Monolithic application 

•  Executable compilation and startup is arcane 
•  Qt components of the app are completely 

interdependent 
•  Behaviors are hard coded into the application 

logic 



pqPipelineBrowser 

  signal: newActiveFilter 

pqProxyTabWidget 

  slot: onNewActiveFilter 

Direct dependencies, can  

not have one without  

the other. 

Many many more… 

COMPONENT  

DEPENDENCIES 



HARD CODED 

ASSUMPTIONS 

Allow MultiView 

Default View Types 

  for server, 

  for particular filters 

Display Pipeline 
Creation for each filter 

etc 

Slice view 

3D View 



Simplified Application Construction 

CMakeLists.txt 
SET (SOURCE_FILES  DemoApp0.cxx) 
INCLUDE_DIRECTORIES( 
 ${CMAKE_CURRENT_SOURCE_DIR} 
 ${CMAKE_CURRENT_BINARY_DIR}) 
ADD_EXECUTABLE(DemoApp0 $

{SOURCE_FILES}  
      ${MOC_SRCS} $

{UI_BUILT_SOURCES}) 
TARGET_LINK_LIBRARIES(DemoApp0 

pqCore ${QT_LIBRARIES} ) 

DemoApp0.cxx 
#include <QApplication> 
#include "pqApplicationCore.h" 
#include <QMainWindow.h> 
int main(int argc, char** argv) { 
  QApplication app(argc, argv); 
  pqApplicationCore appCore(argc, 

argv); 
  QMainWindow window; 
  window.show(); 
  return app.exec(); 
} 

A minimal Qt application just above ServerManager layer is now: 



Branded Applications 
•  Instead of copying and 

editing a few thousand 
lines of code, ask the 
macro to put together the 
major components you 
need 

•  Supply arguments like 
–  Title 
–  Splash image 
–  Proxy defining xml files 
–  Source filenames 

•  Macro builds up the 
required glue 

build_paraview_client(paraview_revised_2 
  TITLE "ParaView (ReVisEd)" 
  ORGANIZATION  "Kitware Inc." 
  VERSION_MAJOR 1  
  VERSION_MINOR 1 
  VERSION_PATCH 1 
  SPLASH_IMAGE  
     "${CSD}/RSplash.png" 
  PVMAIN_WINDOW myMainWindow 
  PVMAIN_WINDOW_INCLUDE 

myMainWindow.h 
  GUI_CONFIGURATION_XMLS    ${CSD}/

ParaViewSources.xml   ${CSD}/
ParaViewFilters.xml    ${CSD}/
ParaViewReaders.xml    ${CSD}/
ParaViewWriters.xml 

  SOURCES $
{ParaView_SOURCE_FILES} 

) 



Reactions 

•  Think of a centralized notification service 
•  Allows application components to stand alone 

–  don’t need direct signal->slot connections 
•  Encapsulates logic for enable state of widgets 
•  Ex:  

new pqLoadDataReaction(ui.actionLoadData);  
pqHelpReaction::showHelp(   QString("qthelp://

paraview.org/paraview/%1.html").arg(proxyname)); 



Builders 
•  Functions that populate application GUI with reactions 

pqParaViewMenuBuilders::buildFileMenu(menu_File); 
•  Creates reactions for quit, open file, save data, etc 

pqParaViewMenuBuilders::buildFiltersMenu(menu_Filters);  
•  Makes reactions that populate filters menu from contents of 

GUI_CONFIGURATION_XMLS: ${CSD}/ParaViewFilters.xml  
pqParaViewMenuBuilders::buildToolbars(this); 

•  Build the standard set of toolbars 

•  Easily clone standard ones (as above does) 
•  Easily subset by copying individual reactions out of 

pqParaViewMenuBuilders 



Behaviors 
•  Encode the way the application acts 
•  Centralized notifications 

–  Helps breaks apart widget dependencies too 
–  Assumptions no longer hardcoded throughout 
–  Makes it easy to modify assumptions made 

•  Easily clone the standards ones 
new pqParaViewBehaviours(this); 

•  Or easily pick and choose 
new pqDefaultViewBehaviour(this);  
new pqAlwaysConnectedBehavior(this);  



Example 1 : Minimal Vis App 

•  DemoApp1  
 minimal 3D Visualization capability  
 like VTK RenderWindow 
 built on top of ServerManager 

 ~50 lines of code for app 



Example 2 : Special Purpose App 

•  SpreadSheet 
 Data centric app with none of ParaView’s 
workflow 



Example 3 : Exact Clone 

•  Exact clone of ParaView app in 218 lines 
   (most of which are comments) 



Example 4 : Subset Clone 

•  An clone application that gets rid of large 
portions of ParaView functionality 
–  Pipeline Browser 
–  Most ToolBars 
–  Most File Menu Reactions 
–  Most readers, sources and filters 



Try it! 

•  Not yet available in ParaView CVS 
•  Planned for 3.8 
•  Until then: 

– git::/github.com/utkarshayachit/ParaView.git 


