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Introduction 

•  ParaView is an Open Source application and 
architecture for visualization and analysis of 
massive data sets. 

•  Open Source Architecture - it is supposed to be 
reusable 

•  ~1 Million lines of code 

•  Recent work makes it trivial to Revise it 



The Learning Curve 

•  Takes too long to learn enough to change it in 
meaningful ways 

•  Topics to master 
– VTK 
– ServerManager (Proxies) 
– paraQ client application 
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Three approaches to revising ParaView 

•  Edit code directly (open source 
after all) 

•  Plugins and Modules 
–  CMake Macros that codify 

the way to bring code into, 
or make code that is 
loadable by ParaView 

•  Custom Applications 
–  Completely new 

executables that reuse the 
servermanager layer (ex 
tcl/tk app, c++ apps, python 
apps, PVEE webvis app) 
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Problems with the three Approaches 

•  Edit code directly 
 too invasive/not modular enough, too hard to keep 
current, too much code to keep track of 

•  Plugins and Macros 
 Good at Adding, difficult to Subtract 

•  Custom Applications 
 at ServerManager layer? 
  too time consuming 
 at Client layer? 
  client not modular enough 
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Custom Applications 

•  To make a targeted vis application  
•  Application design is non trivial effort 
•  Ideally reuse effort that went into existing Client 
•  Top down design: 

–  Copy/Paste client’s source code then cut down 
–  Inelegant and not as easy as it sounds 

•  Bottom up design: 
–  Start with a minimal core, then add 
–  Existing app doesn’t have a minimal core! 
–  Paper is about changes that make bottom up possible 



Motivation 

•  ParaView is intended to be a general purpose 
visualization and analysis tool  

•  Existing plugins and macros make it possible to 
add even more (domain specific) features 

•  But how do you remove the stuff that a domain 
expert doesn’t care about? 
–  Reduced selection of file formats 
–  Reduced selection of filters 
–  Reduced set of view types 

•  How to make big changes to key GUI elements? 



Problem : Monolithic application 

•  Executable compilation and startup is arcane 
•  Qt components of the app are completely 

interdependent 
•  Behaviors are hard coded into the application 

logic 



pqPipelineBrowser 

  signal: newActiveFilter 

pqProxyTabWidget 

  slot: onNewActiveFilter 

Direct dependencies, can  

not have one without  

the other. 

Many many more… 
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Simplified Application Construction 

CMakeLists.txt 
SET (SOURCE_FILES  DemoApp0.cxx) 
INCLUDE_DIRECTORIES( 
 ${CMAKE_CURRENT_SOURCE_DIR} 
 ${CMAKE_CURRENT_BINARY_DIR}) 
ADD_EXECUTABLE(DemoApp0 $

{SOURCE_FILES}  
      ${MOC_SRCS} $

{UI_BUILT_SOURCES}) 
TARGET_LINK_LIBRARIES(DemoApp0 

pqCore ${QT_LIBRARIES} ) 

DemoApp0.cxx 
#include <QApplication> 
#include "pqApplicationCore.h" 
#include <QMainWindow.h> 
int main(int argc, char** argv) { 
  QApplication app(argc, argv); 
  pqApplicationCore appCore(argc, 

argv); 
  QMainWindow window; 
  window.show(); 
  return app.exec(); 
} 

A minimal Qt application just above ServerManager layer is now: 



Branded Applications 
•  Instead of copying and 

editing a few thousand 
lines of code, ask the 
macro to put together the 
major components you 
need 

•  Supply arguments like 
–  Title 
–  Splash image 
–  Proxy defining xml files 
–  Source filenames 

•  Macro builds up the 
required glue 

build_paraview_client(paraview_revised_2 
  TITLE "ParaView (ReVisEd)" 
  ORGANIZATION  "Kitware Inc." 
  VERSION_MAJOR 1  
  VERSION_MINOR 1 
  VERSION_PATCH 1 
  SPLASH_IMAGE  
     "${CSD}/RSplash.png" 
  PVMAIN_WINDOW myMainWindow 
  PVMAIN_WINDOW_INCLUDE 

myMainWindow.h 
  GUI_CONFIGURATION_XMLS    ${CSD}/

ParaViewSources.xml   ${CSD}/
ParaViewFilters.xml    ${CSD}/
ParaViewReaders.xml    ${CSD}/
ParaViewWriters.xml 

  SOURCES $
{ParaView_SOURCE_FILES} 

) 



Reactions 

•  Think of a centralized notification service 
•  Allows application components to stand alone 

–  don’t need direct signal->slot connections 
•  Encapsulates logic for enable state of widgets 
•  Ex:  

new pqLoadDataReaction(ui.actionLoadData);  
pqHelpReaction::showHelp(   QString("qthelp://

paraview.org/paraview/%1.html").arg(proxyname)); 



Builders 
•  Functions that populate application GUI with reactions 

pqParaViewMenuBuilders::buildFileMenu(menu_File); 
•  Creates reactions for quit, open file, save data, etc 

pqParaViewMenuBuilders::buildFiltersMenu(menu_Filters);  
•  Makes reactions that populate filters menu from contents of 

GUI_CONFIGURATION_XMLS: ${CSD}/ParaViewFilters.xml  
pqParaViewMenuBuilders::buildToolbars(this); 

•  Build the standard set of toolbars 

•  Easily clone standard ones (as above does) 
•  Easily subset by copying individual reactions out of 

pqParaViewMenuBuilders 



Behaviors 
•  Encode the way the application acts 
•  Centralized notifications 

–  Helps breaks apart widget dependencies too 
–  Assumptions no longer hardcoded throughout 
–  Makes it easy to modify assumptions made 

•  Easily clone the standards ones 
new pqParaViewBehaviours(this); 

•  Or easily pick and choose 
new pqDefaultViewBehaviour(this);  
new pqAlwaysConnectedBehavior(this);  



Example 1 : Minimal Vis App 

•  DemoApp1  
 minimal 3D Visualization capability  
 like VTK RenderWindow 
 built on top of ServerManager 

 ~50 lines of code for app 



Example 2 : Special Purpose App 

•  SpreadSheet 
 Data centric app with none of ParaView’s 
workflow 



Example 3 : Exact Clone 

•  Exact clone of ParaView app in 218 lines 
   (most of which are comments) 



Example 4 : Subset Clone 

•  An clone application that gets rid of large 
portions of ParaView functionality 
–  Pipeline Browser 
–  Most ToolBars 
–  Most File Menu Reactions 
–  Most readers, sources and filters 



Try it! 

•  Not yet available in ParaView CVS 
•  Planned for 3.8 
•  Until then: 

– git::/github.com/utkarshayachit/ParaView.git 


