Extending ParaView

Utkarsh Ayachit, Dave DeMarle

Introduction

 ParaView is an application and
for visualization and analysis of
massive data sets.

* Open Source Architecture - it is supposed to be
reusable

« ~1 Million lines of code

« Recent work makes it trivial to Revise it

Y Kitware

The Learning Curve

» Takes too long to learn enough to change it in
meaningful ways

* Topics to master
— VTK

Qt
— ServerManager (Proxies) [PG |
— paraQ client application Prexes | ServerManager |

Y Kitware

Three approaches to revising ParaView

« Edit code directly (open source
after all)

* Plugins and Modules

— CMake Macros that codify
the way to bring code into,
or make code that is
loadable by ParaView

« Custom Applications

— Completely new
executables that reuse the
servermanager layer (ex
tcl/tk app, c++ apps, python
apps, PVEE webvis app)

V Kitware

Problems with the three Approaches

« Edit code directly

too invasive/not modular enough, too hard to keep
current, too much code to keep track of

* Plugins and Macros
Good at Adding, difficult to Subtract

- Custom Applications Qt | ParaQ |
at ServerManager layer?

too time consuming

at Client layer? vtkObjects - - -

client not modular enough yet

Y Kitware

Custom Applications

To make a targeted vis application
Application design is non trivial effort
|deally reuse effort that went into existing Client

Top down design:
— Copy/Paste client’s source code then cut down
— Inelegant and not as easy as it sounds

Bottom up design:
— Start with a minimal core, then add
— Existing app doesn’t have a minimal core!

— Paper is about changes that make bottom up possible
¥ Kitware

Motivation

» ParaView is intended to be a general purpose
visualization and analysis tool

» Existing plugins and macros make it possible to
add even more (domain specific) features

* But how do you remove the stuff that a domain
expert doesn’t care about?
— Reduced selection of file formats

— Reduced selection of filters
— Reduced set of view types

 How to make big changes to key GUI elements?

Y Kitware

Problem : Monolithic application

« Executable compilation and startup is arcane

» Qt components of the app are completely
Interdependent

* Behaviors are hard coded into the application
logic

Y Kitware

COMPONENT . ParaView 3.7.0

File Edit VYiew Sources Filters Tools Macros Help

DEPENDENCIES pe BE »a

Pipeline Browser
I
[builin:

signal: newActiveFilter @ @ Mandelorot1
> OEIE

pqPipelineBrowser

Object Inspector 7 X

pq P rOXyTa bWI d g et Properties l Display | Information }

slot: onNewActiveFilter AR 9 Reset ‘, A _\

|| Compute Scalars A

Direct dependenC|eS, can = Isosurfaces

Yalue Range: [1.86486, 100]

not have one without 50.9 Delete

the other
|

Many many more...

Vr Kitware

HARD CODED
ASSUMPTIONS

Allow MultiView

I ParaView 3.7.0
File Edit Macros Help

pEo BE »a ?)

View Sources Filters Tools

/

Default View Types

for server,

for particular filters

Display Pipeline
Creation for each filter

etc

. -'3 "; ‘ » §|Surface
Pipeline Browser & x (]
T
[l builtin: .)
|
@ @itondebrott —IICE VIEW
|
> OEE
3D View
Object Inspector 7 X
Properties | Display Information

Apply

5

Reset ‘ 9 Delete ’

|| Compute Scalars A

=) Isosurfaces

Yalue Range: [1.86486, 100]
50.9

Delete

Delete All

Y kitware

Simplified Application Construction

A minimal Qt application just above ServerManager layer is now:

CMakeL.ists.txt DemoApp0.cxx
SET (SOURCE_FILES DemoApp0.cxx) #include <QApplication>
INCLUDE_DIRECTORIES(#include "pgApplicationCore.h"

${CMAKE_CURRENT_SOURCE_DIR} #include <QMainWindow.h>
${CMAKE_CURRENT_BINARY_DIR}) int main(int argc, char** argv) {

ADD EXECUTABLE(DemoAppO $ QApplication app(argc, argv);
{SOURCE_FILES} pgApplicationCore appCore(argc,
${MOC_SRCS} $ argv);

{UI_BUILT_SOURCES}) QMainWindow window;

TARGET_LINK_LIBRARIES(DemoApp0 window.show();

pqCore ${QT _ LIBRARIES}) return app.exec()

Y Kitware

Branded Applications

 Instead of copying and
editing a few thousand
lines of code, ask the
macro to put together the
major components you
need

« Supply arguments like
— Title
— Splash image
— Proxy defining xml files
— Source filenames

* Macro builds up the
required glue

Y Kitware

build_paraview_client(paraview_revised 2
TITLE "ParaView (ReVisEd)"
ORGANIZATION "Kitware Inc."
VERSION_MAJOR 1
VERSION_MINOR 1
VERSION_PATCH 1
SPLASH_IMAGE

"${CSD}/RSplash.png"
PVMAIN_WINDOW myMainWindow

PVMAIN_WINDOW _INCLUDE
myMainWindow.h™

GUI_CONFIGURATION_XMLS ${CSD}/
ParaViewSources.xml_ $éCSD}/
ParaViewFilters.xml ${CSD}/
ParaViewReaders.xml ~${CSD}/
ParaViewWriters.xml

SOURCES $
{ParaView_SOURCE_FILES}

Reactions

Think of a centralized notification service
Allows application components to stand alone
— don’t need direct signal->slot connections
Encapsulates logic for enable state of widgets
¢ EX:

new pgLoadDataReaction(ui.actionLoadData);

pqHelpReaction::showHelp(QString("qthelp://
paraview.org/paraview/%1.html").arg(proxyname));

Y Kitware

Builders

* Functions that populate application GUI with reactions

pgParaViewMenuBuilders::buildFileMenu(menu_File);
» Creates reactions for quit, open file, save data, etc

pgParaViewMenuBuilders::buildFiltersMenu(menu_Filters);

» Makes reactions that populate filters menu from contents of
GUI_CONFIGURATION_XMLS: ${CSD}/ParaViewFilters.xml

pgParaViewMenuBuilders::buildToolbars(this);
* Build the standard set of toolbars

« Easily clone standard ones (as above does)

« Easily subset by copying individual reactions out of
pqParaViewMenuBuilders

Y Kitware

Behaviors

* Encode the way the application acts

» Centralized notifications
— Helps breaks apart widget dependencies too
— Assumptions no longer hardcoded throughout
— Makes it easy to modify assumptions made

» Easily clone the standards ones
new pgParaViewBehaviours(this);

* Or easily pick and choose
new pgDefaultViewBehaviour(this);
new pgAlwaysConnectedBehavior(this);

Y Kitware

Example 1 : Minimal Vis App

 DemoApp1
minimal 3D Visualization capability
like VTK RenderWindow
built on top of ServerManager

~50 lines of code for app

Y Kitware

Example 2 : Special Purpose App

« SpreadSheet

Data centric app with none of ParaView’s
workflow

Y Kitware

Example 3 : Exact Clone

« Exact clone of ParaView app in 218 lines
(most of which are comments)

Y Kitware

Example 4 : Subset Clone

* An clone application that gets rid of large
portions of ParaView functionality
— Pipeline Browser
— Most ToolBars
— Most File Menu Reactions
— Most readers, sources and filters

Y Kitware

Try it

* Not yet available in ParaView CVS
* Planned for 3.8
* Until then:

— git::/github.com/utkarshayachit/ParaView.git

Y Kitware

