
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energyʼs National Nuclear Security Administration 

 under contract DE-AC04-94AL85000.

ParaView
In situ Post-Processing and Visualization

Nathan Fabian David Thompson

Example, Part 2

Binding Fortran

•  Everything will be a subroutine
–  “write-only”

•  It is possible to bind entirely through
pointers
– From C: myFunc (int *num_particles)
– Used as *num_particles

•  More recent versions of Fortran let you
bind carefully
–  Integer(c_int), value :: num_part

InSituMacros.cmake
•  Creates linking files going from dot.f90

to vtkDotTask.cxx
•  In cmake set

– DOT_IN_SITU=ON
– DOT_IN_SITU_MODULES=“pvDotPython”
–  pvDotPython_DIR=“path_build_dir/insitutask”

•  Creates pvdotpython_m.f90 and
in_situ_m.f90 that points to it
– pvdotpython_m.f90 links against
vtkDotTask.cxx

– dot.f90 links against in_situ_m.f90

Coordinating with Simulation

•  Simulation may already have IO layer
– This will provide the mechanisms for output
– Can take advantage for in situ

•  When the simulation is setting up the
file headers is a good time to initialize

•  As each step is output to the file, update
the in situ

•  Call the finalization when the files are
closed

Hardcode a pipeline

•  May be necessary if python is
unavailable

•  Does simplify the linking process a
great deal
– However, remember to make C functions
– Wrap with extern “C” (see vtkDotTask.cxx)

•  Not nearly as interesting
•  Thus…

PVBatch Vs InSituPVBatch

•  Main ()
–  Initialize MPI
–  Initialize script
– Run script
– Stop MPI

•  Initialize ()
•  Initialize MPI
•  Initialize Script

•  Update ()
•  Run’s Script

•  Exit ()
•  Stop MPI

Initialize In Situ PVBatch
vtkDotTask.cxx
void pvdotpython_init(...

{

...
 pvDotBatch = vtkInsituPVBatch::New ();

 pvDotBatch->Initialize (initScript);

...

•  Doesn’t reinitialize MPI,
 but does setup internal VTK structures
 (for instance vtkMultiProcessController::GetGlobalController)
•  initScript is vtkStdString so it can be read either from
 within the simulation’s input or from some other source
 like a separate file

Initialize Source
vtkDotTask.cxx
void pvdotpython_init(…, num_particles,

double *pxyz, double *mass, double *pmom,
double *pfrc)

{

...
pvDotSource->Initialize(num_particles,

pxyz, mass, pmom, pfrc, …);
...

•  Note, here passed in as pointers to do shallow copy
•  May need to copy data later, during update

Plugin Wrapping

•  A paraview plugin is also a dynamic library
–  Link that to the simulation

•  This xml can also be used through external module
interface

DotSource.xml
<ServerManagerConfiguration>

 <ProxyGroup name="sources">

 <SourceProxy name="DotSource”
 class="vtkDotSource">

 </SourceProxy>

 </ProxyGroup>

</ServerManagerConfiguration>

Initialize Script Pipeline

•  Managed by cmake
Sets the paths for module loading

•  XML specifies servermanager.sources

insitu.py.in
import os

import sys

sys.path.append('@pvDotPython_SOURCE_DIR@')
sys.path.append('@PARAVIEW_LIBRARY_DIRS@')

sys.path.append('@ParaView_DIR@/Utilities/
VTKPythonWrapping')

from paraview.simple import *

servermanager.LoadPlugin
("@pvDotPython_BINARY_DIR@/libpvDotPython.dylib")

source = servermanager.sources.DotSource ()

Initialize Script Pipeline

•  Note, glyph is built during initialization
–  Could be instead built during each update
–  For more complicated pipelines trades update

speed for resident memory consumption
•  Source is just a wrapper, better just to build it once

insitu.py.in
source = servermanager.sources.DotSource ()

glyph = Glyph()glyph.Input = source

glyph.GlyphType = 'Sphere’

def update(process, cycle, time, dt):

In Situ PVBatch Update
vtkDotTask.cxx
void pvdotpython_step(...

{

...
 pvDotBatch->Update (pvDotCallCount++, time, dt);

...

Streaming-like update
Pseudo Code
pvdotpython_step(...

{

 foreach (DataChunk D)
 {

 pvDotSource->SetChunk (D);

 pvDotBatch->Update (-1, time, dt);

 }

 pvDotBatch->Update (pvDotCallCount++, time, dt);
}

•  Save image output, use vtkImageBlend
•  Or build a custom image combiner

Adding a Script Update
insitu.py.in
dprop = GetDisplayProperties (glyph)

dprop.ColorAttributeType = “POINT_DATA”

dprop.ColorArrayName = “Mass”
dprop.LookupTable = MakeBlueToRedLT (0, 1)

cam = GetActiveCamera()

cam.SetPosition(20,20,20)

cam.SetFocalPoint(3, 3, 0)

cam.SetViewUp(0, 0, 1)
SetViewProperties (UseLight = 1)

•  Can also set CELL_DATA
•  Array names may not match what shows in Paraview

•  Needs to match Source wrapper class

Output During Update
insitu.py.in
SetViewProperties (ViewTime = time)

wri = XMLPolyDataWriter()

wri.FileName = 'pord%02f.vtp' % (time*10)
wri.Input = source

wri.UpdatePipeline()

WriteImage ("image_%(p)03d_%(c)06d.png" %

 {'p':process, 'c':cycle})

if (process != 0):
 os.remove ("image_%(p)03d_%(c)06d.png" %

 {'p':process, 'c':cycle})

•  VERY IMPORTANT
•  ViewTime = time tells pipeline to update
•  Else writes the same image/output over and over

Simulation Update Freq.

•  If plugging into an existing IO layer
– Facilities probably exist for output

frequency
– All the user input can be managed through

a familiar interface
– The in situ update can be called as

infrequently as needed
•  If not…

Simple Frequency Update
insitu.py.in
def update (process, cycle, time, dt):

 if ((cycle % 10) != 0):

 return
...

 # rest of update script

More Complex Version
insitu.py.in
index 0 is the offset and index 1 is the delta
times = [[0, 1], [5, 2], [10, 5]]

lastIndex = 0
lastTime = 0.0

def isTime (time):
 global lastIndex, lastTime
 for i in range(lastIndex,len(times)):
 if (time >= times[i][0]):
 index = I
 delTime = time – lastTime

 if (index != lastIndex) or (delTime >= times[index][1]):
 lastIndex = index
 lastTime = time
 return True
 else:
 return False

def update (process, cycle, time, dt):
 if (not isTime(time)):
 return
 # rest of update script

Some discussion

•  Analyzing the data
– Are the particles moving much?
–  Ignore below a certain average velocity

•  Getting creative
–  Interacting with specialized filters
– Statistics filters finding outliers

Finalizing
vtkDotTask.cxx
void pvdotpython_fini(...

{

...
 pvDotSource->Delete ();

 pvDotBatch->Finalize ();

 pvDotBatch->Delete ();

 vtkDotSource::DestroySingleton ();

...

•  Delete the source and batch
•  All objects from the script will go
•  But anything else outside won’t

•  Reminder: “VTK_DEBUG_LEAKS” option

Linking

•  A singleton can then be linked both in the
library and the python plugin

•  Most dynamic loaders are capable of dealing
with this

vtkDotSource.cxx
vtkDotSource* vtkDotSource::Singleton = 0;

vtkDotSource* vtkDotSource::New()

{
 if (vtkDotSource::Singleton)

 {

 return vtkDotSource::Singleton;

 }

...

Necessary ParaView

•  Notice no QT
–  (paraview is built without GUI or client)

•  Can potentially exclude other libraries
– Depends on need
– Suggest doing this toward the end

when the calls are settled

CMakeLists.txt
 vtkPVServerCommon, vtkPVPythonInterpretor,

vtkPVPython, vtkParallel, vtkIO, vtkGraphics,
vtkFiltering, vtkCommon, vtkzlib, vtksys

HPC Platforms

•  Many HPC platforms do not provide
support for
– Sockets
– Threads
– Dynamic libraries
– X11 or hardware-accelerated OpenGL.

•  This often requires cross-compiling
– Beyond the scope of this tutorial, but see

http://www.paraview.org/Wiki/Cross_compiling_ParaView3_and_VTK

– ParaView mailing list

Cross Compile/Static Builds

•  Things to consider:
– External module

•  Create “MySourceParaViewImport.cmake”
PARAVIEW_INCLUDE_WRAPPED_SOURCES
 (“${SRCS}”)
PARAVIEW_INCLUDE_SERVERMANAGER_SOURCES
 (“path_to/Plugin.xml”)

– Static python with statically linked modules is
possible.

– Build image will be larger
•  Recent ParaView Cmake option:
PARAVIEW_MINIMAL_BUILD

Conclusion

Take Away

•  Outlined method for adding Python scripting of
ParaView pipelines to running simulations.

•  Provided example code (also posted on ParaView
wiki)

•  Demonstrated scalability to large systems, but also
•  Illustrated that the procedure is simple enough to be

useful on smaller scales as well.

