
Advanced ParaView:
Manta (CPU raytracing) and

Adaptive (Multi-resolution
Streaming)

Jon Woodring – Los Alamos National Laboratory

Jim Ahrens (LANL), Dave DeMarle (Kitware),
Li-Ta Lo (LANL), John Patchett (LANL)

Executive Summary

•  University of Utah’s Manta raytracer as a rendering plugin
•  Using CPU raytracing as an alternative to hardware

rendering (Manta is fast!)
•  Adaptive ParaView application

•  Multi-resolution streaming for large scale data distance
visualization

•  Available in CVS ParaView!
•  Download the head and try it out
•  Detailed instructions to follow

General Outline

•  Manta plugin
•  A live demo
•  Why we did it
•  How we did it
•  How you can do it, too
•  Questions

•  Adaptive ParaView application
•  Same outline as above

Manta ray tracing Demo

Current LANL Production Vis

Supercomputer Vis
Cluster

User
Display

simulation representation
(features, geometry, etc.)

rendering display

Parallel Rendering –
The Bottleneck is Compositing

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

a
v
g
 f
ra

m
e
s
 p

e
r

s
e
c
o
n
d

nodes

Parallel Rendering

dq

Target Frame Rate

•  Maximum parallel compositing frame rate
•  20-30 frames per second

•  To meet this target frame rate
•  GPU rendering

•  300-350 frames per second – overkill
•  CPU rendering?

•  Mesa 3D – pretty slow, doesn’t meet target rate –
about 4-5 fps with 16 cores on a node

•  Manta raytracer – much better than Mesa

Manta raytracer 1 million polygons –
Similar performance with 2, 4, & 8 mil

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16

a
v
g

 f
ra

m
e

s
 p

e
r

s
e

c
o

n
d

threads

Single Node Lobo Performance - 1 Million Polygons - 1024x1024 Window

NVidia FX 4800 = 350 Frames Per Second
manta

Manta (16 threads per node)
with Parallel Compositing

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16

a
v
g

 f
ra

m
e

s
 p

e
r

s
e

c
o

n
d

nodes

Parallel Rendering

manta lobo

Back to the CPU (supercomputer)

Supercomputer Vis
Cluster

User
Display

simulation representation
(features, geometry, etc.)

rendering display

Supercomputer User
Display

simulation representation rendering display

Benefits

•  Fewer specialized visualization requirements
•  Visualization is a supercomputing application
•  Fewer specialized hardware
•  One HPC resource to manage

•  Data is already there – no need to move it
•  Manta raytracer

•  High quality images – shadows, multi-sampling,
reflection, refraction, etc.

•  Gets faster the more cores you throw at it
•  Faster and cheaper rendering software development

(heterogeneous computing development is expensive)

Drawbacks

•  Interactive Queue?
•  Supercomputing queues are batch
•  May be an uphill battle to get good (large node counts

and short waiting) interactive queues for vis
•  No more specialized hardware cluster

•  Visualization (rendering) isn’t a special application
snowflake anymore

•  (GP)GPU is riding high
•  Up front cost of going back to CPU rendering

•  Frame rate is not high enough for stereo/RAVE/CAVE

Manta View Plugin Implementation

•  Manta View is a plugin that implements a 3D view
•  Wraps Manta, provides data, makes render requests

•  Override the vtkRenderWindow object factory mechanism
•  When VTK asks for a render window, a

vtkMantaRenderWindow is returned
•  This override can be seen in action with some of the

test VTK applications in the build bin directory, like
marching – a Manta View will be used

•  Disable IceT compositing
•  IceT uses OpenGL concrete classes, which bypasses

the object factory override

Manta View Plugin Implementation

•  Use standard VTK depth compositing classes
•  Similar to binary swap

•  Z (depth) channel added to Manta
•  Used for parallel depth composition
•  Code checked into Manta

•  vtkMantaPolyDataMapper
•  Copies triangles to Manta (like a OpenGL display list)
•  Generates tubes and spheres for lines and points

How to Run Manta ParaView

•  Download CVS ParaView (make sure you have Cmake,
Qt 4.5+)

•  Download Manta
•  Build Manta (it uses Cmake to build, too)

•  MANTA_USE_X11 OFF
•  Build ParaView

•  PARAVIEW_BUILD_PLUGIN_Manta ON
•  MANTA_BUILD <absolute Manta build path>
•  MANTA_SOURCE <absolute Manta source path>
•  ParaView_DIR <current absolute PV build path>

How to Run Manta ParaView

•  Start pvserver
•  Start ParaView

•  Close the current view
•  Connect to your pvserver
•  Load MantaView plugin (libMantaView.so/.dylib/.dll) on

client and server
•  Close the current view, again
•  Open a Manta view
•  Visualize some polygons!

Questions?

•  Try it out on your supercomputer platform
•  More users = more demand = more likely to get better

interactive queue support to support visualization on
the platform in the future

•  User feedback
•  Print/press quality visualizations out of the box
•  Future volume support? (raycasting)
•  Fast scan conversion – a better Mesa 3D
•  Work in progress

•  Next up: Adaptive ParaView

Adaptive ParaView Demo

Remote Data

•  Mat Maltrud works at LANL (Los Alamos, NM) on the
Climate team and runs climate simulations at ORNL (Oak
Ridge, TN)
•  Mat is responsible for generating and analyzing the

simulations

Remote LARGE Data

•  Using 100 TeraFLOPs of Jaguar (ORNL)
•  6 fields at 1.4GB each 20x a day
•  3600 x 2400 x 42 floats

•  Transfer to LANL would take > 74 hours (~3 days)
•  ~5 Mbps between LANL and ORNL

•  Transferring all the data from ORNL to LANL will not work!
•  250 TeraFLOPs

•  12 fields
•  1 PetaFLOP

•  24 fields and 40x a day = 740 hours (~1 month)

Remote Visualization Approaches
Available In ParaView

•  Server side rendering
•  Run data server and render server on the

supercomputer – send images

•  Client side rendering
•  Run data server on the supercomputer – send

geometry
•  Render client side

display representation rendering

display representation rendering

WAN

WAN

Client side rendering?

•  Image-based distance vis: it works, but…
•  Completely server side based (dumb client)
•  Frame rate is network bandwidth limited

•  Client side rendering?
•  Higher potential frame rate because of that nice client

side GPU if the data can fit on it
•  Can render without needing the server (caching)
•  Science for science sake – explore both approaches

•  Though… this is LARGE data – too big for the client,
network, and display... Is it even practical?

Subset the Data to Fit
Displays and Networks

Prefix
 Mega
 Giga
 Tera
 Peta
 Exa

10n
 106
 109
 1012
 1015
 1018

Technology
 Displays,
networks,

clients

Data sizes
and super-
computing

Downscaling
Sampling
Subsetting

Streaming in ParaView

standard streaming

prioritized streaming multi-resolution prioritized streaming

Image Quality over Time
for Whole Extent Client Rendering

standard

Culling and
Multi-Resolution Everything

culling isosurfacing

Multi-resolution Prioritized Streaming

1) Send and render
lowest resolution data

Multi-resolution Prioritized Streaming

1 2
3 4 1) Send and render

lowest resolution data
2) Virtually split
into spatial pieces and
prioritize pieces

Multi-resolution Prioritized Streaming

1
2 3 1) Send and render

lowest resolution data
2) Virtually split
into spatial pieces and
prioritize pieces
3) Send and render
highest priority piece
at higher resolution

Multi-resolution Prioritized Streaming

5
6 7

3 4
1 2

1) Send and render
lowest resolution data
2) Virtually split
into spatial pieces and
prioritize pieces
3) Send and render
highest priority piece
at higher resolution
4) Goto step 2 until
the data is at the
highest resolution

Multi-resolution Prioritized Streaming

4
5 6

2 3
1

1) Send and render
lowest resolution data
2) Virtually split
into spatial pieces and
prioritize pieces
3) Send and render
highest priority piece
at higher resolution
4) Goto step 2 until
the data is at the
highest resolution

Multi-resolution Prioritized Streaming

Lowest resolution

Highest resolution

Highest resolution

Adaptive ParaView Implementation

•  Progressive multi-resolution renderer (upstream sink)
•  Implements the high level algorithm on the previous

slides – also has a cache for re-rendering
•  Progressively updates and refines the rendering, by

requesting pieces in priority order
•  Multi-resolution preprocessor (generating source data)

•  Writes additional low resolution data to disk
•  Our implementation uses subsampling/striding – fast to

generate (takes about the same amount of time to read
the data once)

•  Doesn’t modify the original data – left as-is (highest
resolution) worst case uses x1 additional space

Adaptive ParaView Implementation

•  Multi-resolution reader (downstream source)
•  The reader provides data pieces based on resolution

request and piece request (spatial extent)
•  Uses the preprocessed multi-resolution data for fast

reads
•  Multi-resolution tree helper class determines the axis

splits, piece extents
•  Meta-information keys (meta-data moving in the pipeline)

•  RESOLUTION request (what resolution is needed)
•  UPDATE_EXTENT request (what is the spatial extent

of the piece needed)
•  Priority keys for prioritization sorting and culling

How to Run Adaptive ParaView

•  Download CVS ParaView (make sure you have Cmake,
Qt 4.5+)

•  Build ParaView
•  PARAVIEW_BUILD_AdaptiveParaView ON

•  Create the multi-resolution hierarchy (reader and
hierarchy only for .raw float bricks currently)
•  adaptivePreprocess command line tool in bin directory
•  ./adaptivePreprocess <height> <degree> <rate> <i>

<j> <k> <input file>

How to Run Adaptive ParaView

•  height = additional multi-resolution levels, degree = #
pieces during refinement (power of 2), rate = striding/
sampling spacing per axis on split, <i, j, k> = float brick
data dimensions

•  example: height 4, degree 4, rate 2 = 4 additional
multi-resolution levels, a piece is broken and refined
into 4 pieces (split on 2 largest axes), downsample by
2x2 in largest dimensions for each level

•  Start AdaptiveParaview (not the normal ParaView client)
•  Close the current view
•  Load the AdaptiveParaview plugin

(vtkAdaptivePlugin.so/.dylib/.dll)

How to Run Adaptive ParaView

•  Close the current view, again
•  Open an Adaptive view
•  Open the Preferences/Settings

•  Go to the Adaptive options
•  Enter your height, degree, rate of the multi-

resolution preprocessed data
•  Open your .raw float data

•  Enter your dimensions into extents (0, i – 1) (0, j –
1) (0, k – 1)

•  Visualize it! (multi-resolution volume rendering works
too, just tested it recently, turn off view prioritization)

Questions?

•  Make your own multi-resolution reader and preprocessor
•  Reader needs to respond to resolution (refinement

level) and update extent (pieces) information keys
•  See vtkRawStridedReader[1-2].*,

vtkGridSampler[1-2].* and downsample.cxx for
examples in Applications/AdaptiveParaView

•  Work in progress
•  Client/server is being completed – currently only built-

in works at the moment

Additional Contact Information

•  woodring@lanl.gov Jon Woodring
•  ahrens@lanl.gov Jim Ahrens
•  dave.demarle@kitware.com Dave DeMarle
•  ollie@lanl.gov Li-Ta Lo
•  patchett@lanl.gov John Patchett

•  These slides will be available online (soon)

