ParaView on Vis Clusters

David E DeMarle
Kitware Inc.




Visualization ——

10 GB

* Most often, a process of e———
reduction. Goal is to find the Interest

important information 2 GB

within the whole, or distill ——

out characteristics of the
whole
Since data is large, ParaView men er

uses functional AND data

4 MB
parallelism to scale (in terms “
ontro

of achievable size)

50 MB




Server runs
on a cluster
and does the
hard work.
Client
connects to
that and
makes it
convenient to|
use.

2 component
Functional ™
Parallelism

SERVER

CLIENT

N component Dzita Parallelism

10/N GB

10/NGB

Interest

Interest

Control




Configurations

Limited to working with data that fits into
aggregate memory

Functional decomposition lets you match data
size to machine resources

ParaView supports a number of configurations

Depending on configuration, different libraries
are needed, on each machine




0]
=
=3
-]
N ==
()
=
<
()
=

Interest

Control

Configurations

Interest

13AJ3S k1R

Note: 3 component
functional parallelism




Rendering

 Depending on renderable geometry size, ParaView
will dynamically render locally (sending geometry) or
remotely (sending images). Or, with tiled display,

_both. ot

!OI’\!OUF

L'
_ A




Libraries Required

VIPl.most always needed on server never on Client

TCP needed everywhere, except when batch
processing on server (Cray, etc)

Qtamest alWways needed on client, never on server
OpenGL

— always needed on client and renderserver, not
necessary on data server

— does not imply need graphics hardware (or even
display) Mesa and OSMesa are widely used




Machine Requirements

* Processors
— CPUs Minimal?

* netbook OK for client and processing of small data
— GPUs Minimal?

 Mesa OK, none required
* it will take full advantage of advanced GPU if available




Machine Requirements

* Memory
— Restricted to data that can fit in aggregate RAM
— Data parallelism replicates pipeline N times
— Each cluster node works on 1/Nth (+ a little)

— Need at least as much as file size, plus enough for
each filter’s output

— Information Tab shows each filter’s output size,
but much of each filter’s output is a copied by
reference of its input’s, so sum is <




Machine Requirements

* DISK

— Each reader needs to see files

— Files shown in file browser are on server’s file system

— Well written readers (Exodus, XDMF) read only local part
— “dumb” readers read all everywhere, then crop

— Replication — works and minimizes contention, but a waste
of disk space and prep time

— NFS — better, but potential bottleneck when all nodes read
simultaneously

— Parallel file systems — PVFS, LUSTRE, etc — more
bandwidth, better performance




Machine Requirements

* Interconnect hardware

— Intent of data parallel architecture is to minimize inter-process
communication

— Still, the faster the better. Works well on 100MB.
 MPI :on server(s)
— most implementations are fine

— openmpi, mpich, or vendor supplied MPI for Myrinet, Quadrics,
Infiniband, SCI, etc

e TCP: between server and client and data and render server

_ N Il in clientl h
ot needed at all in clientless batch mode ssh —L Iport:destIP:destPort

— About firewalls: ssh localhost:Iport \
* pvserver --reverse_connection --client-host clientIPaddr mpirun —np N pvserver

* pvserver --server-port #tell it what port to wait on
e consider vpn or ssh port forwarding through firewalls




Machine Requirements

Remote login and program execution
Without typed password

ssh authentication

— users copy ssh pub key to their login on each node
— exec ssh-agent SSHELL

— ssh-add <type your key once locally>

— thereafter, ssh remotemachine command, does not
prompt for password

PATH : ssh command that runs on server needs to
find pvserver executable (absolute path OK)




Display

* To take advantage of GPUs, server processes need
local windows to create graphics contexts

* No X Forwarding! (“ssh —X” BAD)
* Two approaches:

— Have users run X at log in
>srun X:0 &
— Always run X, disable X11 security
* Make gdm auto login a dedicated X account

e xsession for that account runs blank X window and disables
security (xhost +) so any user can map windows

* In either case
mpirun -np 4 /bin/env DISPLAY=localhost:0 ./pvserver
Or specify DISPLAY mapping in machines.pvx file (PV guide page p134)

AN




No GPU? No problem!

Without GPUs on cluster two options:

Make server do data processing only
> pvserver --disable-composite

tells server to always send geometry to client for rendering

equivalent to unchecked(=infinite) Remote Render
Threshold on preference dialog

OSMesa

Compile ParaView to know about OSMesa GL libs and
> pvserver --use-offscreen-rendering




Compiling ParaView

e Why?
— Kitware’s binary releases do not link to MPI
— Server beed MPI to do data parallelism
— for client, binary release is fine

* Requirements
— ParaView source code :

ParaView Data and VTKData useful for testing
CMake 2.6.4+ binary

A compiler : visual studio express, make and g++, etc
About an hour : 2 core 1.8GHz Intel CPU, 2GB RAM, virgin build




Compiling

. create a build directory and enter it

. ccmake (or cmake-gui) path to source

. populate required options, configure

. repeat step 3 until no new dependent options
. generate to create build environment

. make (or in VisStudio, build solution)

. install

Install is optional, wait till you get it working well then
install it somewhere that everyone can see




Configuration Options (Server)

PARAVIEW_BUILD QT _QUI=0OFF
VTK_DATA_ROOT=location of VTK regression test data
PARAVIEW_DATA ROOT=location of ParaView regression test data

If server will render (and defaults chosen are not acceptable)
— OPENGL_INCLUDE_DIR = directory where GL/GL.h resides
— OPENGL gl LIBRARY = location of libGL.so ex,
— OPENGL_glu_LIBRARY = location of libGLU.so ex,

To use pure software rendering, with no display at all,
— VTK_OPENGL_HAS OSMESA = ON
— OSMESA_LIBRARY = location of libOSMesa.so
— VTK_USE_OFFSCREEN = ON
— start server with --use-offscreen-rendering




Configuration Options (Server)

* PARAVIEW USE_MPI=ON

— MPI_INCLUDE_PATH= directory where mpi.h is
/ThirdParty/MPIs/openmpi-1.2.6-build/include

— MPI1_LIBRARY = location of libmpi.so
/ThirdParty/MPIs/openmpi-1.2.6-build/lib/libmpi.dylib

— MPI1_EXTRA_LIBRARY" = location of libmpi_cxx.so
/ThirdParty/MPls/openmpi-1.2.6-build/lib/libmpi_cxx.dylib

“;” separators in MPI_LIBRARY and MPI_INCLUDE_PATH allow any number
of additional dependencies needed for your MPI (see mpiCC —showme to
find out what they might be)




Validating Setup

 How to tell if it is configured right?
— ssh machine “uname -a”
Shouldn’t have to log in

— mpirun -np 2 —machinefile “machines.txt” /usr/bin/
uname —a

Same as above, and should get multiple machine names
back

— mpirun -np 2 helloworld _mpi
Should print out rank etc




Validating Setup

 How to tell if it is configured right?

— mpirun -np 2 /bin/env DISPLAY=localhost:0 /usr/
X11R6/bin/glxgears

Windows should appear on remote displays, not locally
and should spit out reasonable frame rates

— VTK parallel tests (assuming VTK_DATA_RO

 ctest -R Parallellso -V | grep command
e ‘command + -l, lets you interact

Should get a two tone face on first node and
a one tone, partial face on the second

When you drag mouse shouldn’t have bleeding lines
(turn antialiasing off) or backside triangles in front
(something is covering a window)




Validating Setup

 How to tell if it is configured right?

— PV tests
e ctest-l,,10 run every tenth test to get sense of correctness

Should have at least 95% success or something is
drastically wrong. If using cvs head, check day’s
dashboard, might be unlucky

— When running ParaView and connected to a cluster,
try “process id scalars” filter. It shows which processor
generated what data.




Running

Run server

— mpirun -np N pvserver

— Terminal should say “Listen on port: 11111 \n Waiting for client...”
Run client

— paraview
Connect to server

File->Connect, add server, supply a nickname and hostname,
configure, startup type to manual, save

Double click on nickname

Dialog box should say connected and disappear, pvserver terminal
should say connected.

Pipeline browser: “cs://hostname:11111” instead of “builtin:”
Now, optionally change to an automatic startup instead of manual
— type in command that will log in to cluster and mpirun pvserver




Running

Remote render threshold

Edit->Settings->Render View->Server

— Remote Render Threshold

e geometry size at which PV switches from server sending geometry
or images to client

unchecked means rendering always done on client

checked and set to 0 MB, then next render causes server to pop up
windows (which should be on remote machine’s display)

— Subsample Rate
to maintain interactivity when remote rendering
how grossly are images down sampled,
only active while interacting and while server is rendering
drag mouse, everything pixelated
release mouse, returns to full resolution




Additional Resources

ParaView Guide chapter 13 and 14
Wiki Page
General

Building

Cluster Setup

Mailing List
Sign up->
Search ->
* Bug Tracker (Project = ParaView3)

Source Code Documentation




