
Generalized VTK Data Processing Framework
September 2003
Kitware, Inc.

1 Introduction

This document was written as a part of a contract between Kitware, Inc. and Trilabs (LANL,
LLNL, and Sandia). It proposes a new generalized data processing framework for VTK that
is powerful enough to encompass all current VTK pipeline functionality while allowing more
advanced functionality to be added in a minimally-intrusive way.

2 Overview

The generalized VTK data processing framework consists of two classes of objects: processors
and executives. A processor object is a basic worker unit that loads, manipulates, or stores,
but does not own data. All processors are implemented as subclasses of vtkProcessor. An
executive owns a processor and manages its execution. One or more executive objects and
their corresponding processors may be used to implement a pipeline. The executives also
own the data objects with which they instruct the processors to execute. All executives are
implemented as subclasses of vtkExecutive.

Figure 1 shows the basic design for a vtkProcessor. Each processor defines zero or more
input ports and output ports with certain restrictions on the kind of data and operations
supported. The ports are read-only and do not hold references to data objects or information
associated with the actual execution of the processor. All data and information for execution
are passed to the processor by its executive when a request is made.

The processor’s executive reads information from the ports and uses it to construct
valid requests. Requests for information or data flowing from input to output are called
downstream requests. Requests for information or data flowing from output to input are
called upstream requests.

vtkProcessor

Downstream

Upstream

Input Port

Input Output

Output Port

vtkExecutive

Information Flow

Reference

Legend:

Figure 1: A vtkProcessor Object

1

3 The User’s Point of View

Very little will change from the point of view of an application developer from the introduc-
tion of the proposed framework. Pipelines may still be created in the usual way:

vtkXMLUnstructuredGridReader* reader = vtkXMLUnstructuredGridReader::New();

vtkElevation* elevation = vtkElevation::New();

elevation->SetInput(reader->GetOutput());

elevation->Update();

Most existing code should still work without modification (see section 6). In fact, new code
should be written using the same approach for creating pipelines. However, new capabilities
will be available to replace the executive controlling a set of processors:

vtkPrioritizedStreamingPipeline* e = vtkPrioritizedStreamingPipeline::New();

vtkXMLUnstructuredGridReader* reader = vtkXMLUnstructuredGridReader::New();

vtkElevation* elevation = vtkElevation::New();

elevation->SetExecutive(e);

reader->SetExecutive(e);

elevation->SetInput(reader->GetOutput());

elevation->Update();

or alternatively:

vtkPrioritizedStreamingPipeline::SetAsDefaultExecutive();

vtkXMLUnstructuredGridReader* reader = vtkXMLUnstructuredGridReader::New();

vtkElevation* elevation = vtkElevation::New();

elevation->SetInput(reader->GetOutput());

elevation->Update();

4 The Developer’s Point of View

The proposed framework will change VTK from the point of view of an internal developer or
third-party filter writer. While filters written for the current VTK will still work (see section
6), new filters should be written under the proposed framework. We expect filter writing to
be easier with the proposed design than it was previously.

The current VTK pipeline requires filters to implement a certain set of requests a specific
way, and has no support for taking advantage of additional functionality provided by a filter.
Filters in the existing architecture will not function properly if not written to support all
requests defined by the current pipeline.

The proposed framework does not require a specific set of requests from a vtkProcessor

or place restrictions on how the requests are implemented. It only requires a processor
to specify the kinds of requests it supports. The executives can take advantage of the
functionality a processor provides while working around the lack of support for other requests.

A vtkProcessor will report its input requirements and the downstream requests it sup-
ports through the input port information vector. It will implement a FillInputPortInformation
method similar to this example:

2

void FillInputPortInformation(vtkInformationVector* portInfo)

{

portInfo->SetNumberOfInformationObjects(1);

vtkInformation* inputInfo = portInfo->GetInformationObject(0);

vtkInformationVector* fieldInfoVector = vtkInformationVector::New();

// Input requirements.

inputInfo->Set(inputInfo->DATA_TYPE(), VTK_IMAGE_DATA);

inputInfo->Set(inputInfo->INPUT_REQUIRED_FIELDS(), fieldInfoVector);

fieldInfoVector->SetNumberOfInformationObjects(1);

vtkInformation* fieldInfo = fieldInfoVector->GetInformationObject(0);

fieldInfo->Set(fieldInfo->FIELD_ATTRIBUTE_TYPE(),

vtkDataSetAttributes::SCALARS);

fieldInfo->Set(fieldInfo->FIELD_OPERATION(),

vtkInformation::FIELD_OPERATION_MODIFIED);

fieldInfoVector->Delete();

// Downstream requests supported.

int downstream[] = { vtkInformation::KEY_DATA_OBJECT };

inputInfo->Set(inputInfo->SUPPORTED_DOWNSTREAM_REQUESTS(),

downstream, sizeof(downstream)/sizeof(int));

}

The example processor requires as input a vtkImageData instance with scalars data. It
supports only execution as a downstream request because it will handle only a data object
as input to such a request.

Upstream request support will be reported similarly through a FillOutputPortInformation
method. The same processor would implement ProcessDownstreamRequest to handle the
requests it reports in its input port information vector and similarly for ProcessUpstreamRequest.

5 Implementation

The following give prototype class declarations for the main classes involved in implementing
the proposed design. Some internal implementation details unrelated to the design have been
removed.

5.1 vtkProcessor

This is the superclass for all sources, filters, and sinks in VTK. It defines a generalized
interface for executing data processing algorithms.

Instances may be used independently or within pipelines with a variety of architectures
and update mechanisms. Pipelines are controlled by instances of vtkExecutive. Every
vtkProcessor instance has an associated vtkExecutive when it is used in a pipeline. The
executive is responsible for pipeline connectivity and data flow.

3

class vtkProcessor : public vtkObject

{

public:

static vtkProcessor *New();

vtkTypeRevisionMacro(vtkProcessor,vtkObject);

void PrintSelf(ostream& os, vtkIndent indent);

// Description:

// Check whether this processor has an assigned executive. This

// will NOT create a default executive.

int HasExecutive();

// Description:

// Get this processor’s executive. If it has none, a default

// executive will be created.

vtkExecutive* GetExecutive();

// Description:

// Set this processor’s executive. This processor is removed from

// any executive to which it has previously been assigned and then

// assigned to the given executive. A processor’s executive should

// not be changed after pipeline connectivity has been established.

void SetExecutive(vtkExecutive* executive);

// Description:

// Upstream/Downstream requests form the generalized interface

// through which executives invoke a processor’s functionality.

// Upstream requests correspond to information flow from the

// processor’s outputs to its inputs.

//

// An upstream request is defined by the contents of the output

// information vector passed to ProcessUpstreamRequest. The results

// of an upstream request are stored in the input information vector

// passed to ProcessUpstreamRequest.

virtual int ProcessUpstreamRequest(vtkInformationVector* inInfo,

vtkInformationVector* outInfo);

// Description:

// Upstream/Downstream requests form the generalized interface

// through which executives invoke a processor’s functionality.

// Downstream requests correspond to information flow from the

// processor’s inputs to its outputs.

//

// An downstream request is defined by the contents of the input

// information vector passed to ProcessDownstreamRequest. The

4

// results of an downstream request are stored in the output

// information vector passed to ProcessDownstreamRequest.

virtual int ProcessDownstreamRequest(vtkInformationVector* inInfo,

vtkInformationVector* outInfo);

// Description:

// Get the information objects associated with this processor’s

// input ports. There is one input port per input to the processor.

// Each input port tells executives what kind of data and downstream

// requests this processor can handle for that input.

vtkInformationVector* GetInputPortInformation();

// Description:

// Get the information objects associated with this processor’s

// output ports. There is one output port per output from the

// processor. Each output port tells executives what kind of

// upstream requests this processor can handle for that output.

vtkInformationVector* GetOutputPortInformation();

// Description:

// Set an input of this processor. The input must correspond to the

// output of another processor.

//

// TODO: Accept an actual vtkDataObject instance as input and use it

// to establish the pipeline connection to maintain backward

// compatibility. See vtkExecutive::SetInput().

void SetInput(int index, vtkProcessorOutput* input);

// Description:

// Get a proxy object corresponding to the given output of this

// processor. The proxy object can be passed to another processor’s

// SetInput method to establish a pipeline connection.

//

// TODO: Use an actual vtkDataObject instance as the proxy object to

// maintain backward compatibility. See vtkExecutive::GetOutput().

vtkProcessorOutput* GetOutput(int index);

// Description:

// Bring this processor’s outputs up-to-date.

virtual void Update();

// Description:

// Decrement the count of references to this object. This will

// detect executive/processor reference loops and break them when

// necessary.

5

virtual void UnRegister(vtkObjectBase* o);

protected:

vtkProcessor();

~vtkProcessor();

// Description:

// Fill the input port information objects for this processor. This

// is invoked by the first call to GetInputPortInformation so

// subclasses can specify what they can handle.

virtual void FillInputPortInformation(vtkInformationVector* portInfo);

// Description:

// Fill the output port information objects for this processor.

// This is invoked by the first call to GetOutputPortInformation so

// subclasses can specify what they can handle.

virtual void FillOutputPortInformation(vtkInformationVector* portInfo);

};

5.2 vtkExecutive

This is the superclass for all pipeline executives in VTK. A VTK executive is responsible
for controlling one or more instances of vtkProcessor. A pipeline consists of one or more
executives that maintain the connectivity and control data flow. Every reader, source, writer,
or data processing algorithm in the pipeline is implemented in an instance of vtkProcessor.

class vtkExecutive : public vtkObject

{

public:

vtkTypeRevisionMacro(vtkExecutive,vtkObject);

void PrintSelf(ostream& os, vtkIndent indent);

// Description:

// Set an input of the given vtkProcessor instance. The input must

// correspond to the output of another processor.

//

// TODO: Accept an actual vtkDataObject instance as input and use it

// to establish the pipeline connection to maintain backward

// compatibility.

virtual void SetInput(vtkProcessor* processor, int inIndex,

vtkProcessorOutput* input)=0;

// Description:

// Get a proxy object corresponding to an output of the given

// vtkProcessor instance. The processor must already be managed by

6

// this executive. The proxy object can be passed to this or

// another executives’s SetInput method to establish a pipeline

// connection.

//

// TODO: Use an actual vtkDataObject instance as the proxy object to

// maintain backward compatibility. The instance should be used by

// this executive as the processor’s real output when it is

// executed.

virtual vtkProcessorOutput* GetOutput(vtkProcessor* processor,

int outIndex)=0;

// Description:

// Bring the given processor’s outputs up-to-date. The processor

// must already be managed by this executive.

virtual void Update(vtkProcessor* processor)=0;

// Description:

// Decrement the count of references to this object. This will

// detect executive/processor reference loops and break them when

// necessary.

virtual void UnRegister(vtkObjectBase* o);

protected:

vtkExecutive();

~vtkExecutive();

// Description:

// Called from vtkExecutive::UnRegister and vtkProcessor::UnRegister

// to detect a connected component in the reference graph among

// processors and executives and delete it if it has a net reference

// count of 0.

void CheckReferenceLoops();

// Description:

// Report to the given root executive references this executive

// makes to other executives and processors. This is used by

// CheckReferenceLoops to detect isolated connected components in

// the reference graph for arbitrary executive implementations.

virtual void ReportReferences(vtkExecutive* root)=0;

// Description:

// Remove this executive’s references to other executives and

// processors. This is used by CheckReferenceLoops to delete a

// connected component in the reference graph that has a net

// reference count of 0.

7

virtual void RemoveReferences()=0;

// Description:

// Used by the ReportReferences method implementations in subclasses

// to report a reference to an executive or processor.

static void ReportReference(vtkExecutive* root, vtkExecutive* executive);

static void ReportReference(vtkExecutive* root, vtkProcessor* processor);

// Description:

// Add/Remove a processor from the control of this executive. Some

// executives support more than one processor while others do not.

// These methods are called by vtkProcessor::SetExecutive and should

// not be called from elsewhere.

virtual void AddProcessor(vtkProcessor* processor)=0;

virtual void RemoveProcessor(vtkProcessor* processor)=0;

};

5.3 vtkDistributedExecutive

This is the superclass for VTK’s distributed executives. Some pipeline architectures are
more easily maintained with an executive instance per vtkProcessor instance. This class
maintains pipeline connectivity in a distributed manner so subclasses can focus on their
pipeline update designs.

class vtkDistributedExecutive : public vtkExecutive

{

public:

static vtkDistributedExecutive* New();

vtkTypeRevisionMacro(vtkDistributedExecutive,vtkObject);

void PrintSelf(ostream& os, vtkIndent indent);

// Description:

// See vtkExecutive::SetInput().

virtual void SetInput(vtkProcessor* processor, int inIndex,

vtkProcessorOutput* input);

// Description:

// See vtkExecutive::GetOutput().

virtual vtkProcessorOutput* GetOutput(vtkProcessor* processor,

int outIndex);

// Description:

// Distributed executives have a one-to-one correspondence with

// their processors. Get the processor to which this executive has

// been assigned.

8

vtkProcessor* GetProcessor();

// Description:

// Bring the given processor’s outputs up-to-date. The processor

// must already be managed by this executive.

virtual void Update(vtkProcessor* processor);

protected:

vtkDistributedExecutive();

~vtkDistributedExecutive();

// Implement methods required by superclass.

virtual void AddProcessor(vtkProcessor* processor);

virtual void RemoveProcessor(vtkProcessor* processor);

virtual void ReportReferences(vtkExecutive* root);

virtual void RemoveReferences();

};

There will be several subclasses of vtkDistributedExecutive that support the old-
style pipeline functionality. A vtkDemandDrivenPipeline class will derive directly from
vtkDistributedExecutive to provide simple pipeline updates without streaming support.
The full old-style pipeline will be provided by vtkStreamingDemandDrivenPipeline, which
will derive from vtkDemandDrivenPipeline. New features such as prioritized streaming can
be added by providing another executive.

5.4 vtkCentralizedExecutive

This is the superclass for VTK’s centralized executives. Some pipeline architectures are
more easily maintained with a single executive managing the entire pipeline. This class
maintains pipeline connectivity in a centralized manner so subclasses can focus on their
pipeline update designs. This class is present in this document only for completeness, but
may not be implemented in practice until a need for it is found in the future.

class vtkCentralizedExecutive : public vtkExecutive

{

public:

static vtkCentralizedExecutive* New();

vtkTypeRevisionMacro(vtkCentralizedExecutive,vtkObject);

void PrintSelf(ostream& os, vtkIndent indent);

// Description:

// See vtkExecutive::SetInput().

virtual void SetInput(vtkProcessor* processor, int inIndex,

vtkProcessorOutput* input);

// Description:

9

// See vtkExecutive::GetOutput().

virtual vtkProcessorOutput* GetOutput(vtkProcessor* processor,

int outIndex);

// Description:

// Bring the given processor’s outputs up-to-date. The processor

// must already be managed by this executive.

virtual void Update(vtkProcessor* processor);

protected:

vtkCentralizedExecutive();

~vtkCentralizedExecutive();

// Implement methods required by superclass.

virtual void AddProcessor(vtkProcessor* processor);

virtual void RemoveProcessor(vtkProcessor* processor);

virtual void ReportReferences(vtkExecutive* root);

virtual void RemoveReferences();

};

5.5 vtkInformation

This represents information and/or data for one input or one output of a vtkProcessor.
It maps from keys to values of several data types. Instances of this class are collected in
vtkInformationVector instances and passed to vtkProcessor::ProcessUpstreamRequest

and vtkProcessor::ProcessDownstreamRequest calls. The information and data refer-
enced by the instance on a particular input or output define the request made to the
vtkProcessor instance.

class VTK_EXPORT vtkInformation : public vtkObject

{

public:

static vtkInformation *New();

vtkTypeRevisionMacro(vtkInformation,vtkObject);

void PrintSelf(ostream& os, vtkIndent indent);

// Description:

// Copy all information entries from the given vtkInformation

// instance. Any previously existing entries are removed.

void Copy(vtkInformation* from);

// Description:

// Get/Set an integer-valued entry.

void Set(vtkInformationIntegerKey* key, int value);

int Get(vtkInformationIntegerKey* key);

void Remove(vtkInformationIntegerKey* key);

10

int Has(vtkInformationIntegerKey* key);

// Description:

// Get/Set an integer-vector-valued entry.

void Set(vtkInformationIntegerVectorKey* key, int* value, int length);

int* Get(vtkInformationIntegerVectorKey* key);

void Get(vtkInformationIntegerVectorKey* key, int* value);

int Length(vtkInformationIntegerVectorKey* key);

// Description:

// Get/Set a string-valued entry.

void Set(vtkInformationStringKey* key, const char*);

const char* Get(vtkInformationStringKey* key);

// Description:

// Get/Set an entry storing another vtkInformation instance.

void Set(vtkInformationInformationKey* key, vtkInformation*);

vtkInformation* Get(vtkInformationInformationKey* key);

// Description:

// Get/Set an entry storing a vtkInformationVector instance.

void Set(vtkInformationInformationVectorKey* key, vtkInformationVector*);

vtkInformationVector* Get(vtkInformationInformationVectorKey* key);

// Description:

// Get/Set an entry storing a vtkDataSet instance.

void Set(vtkInformationDataSetKey* key, vtkDataSet*);

vtkDataSet* Get(vtkInformationDataSetKey* key);

//BTX

// Enumeration of standard information entry keys. These should not

// be used directly. Instead, call the method with the

// corresponding name to get an instance of the key.

enum Keys

{

KEY_DATA_OBJECT,

KEY_DATA_TYPE,

KEY_INPUT_REQUIRED_FIELDS,

KEY_FIELD_ATTRIBUTE_TYPE,

KEY_FIELD_OPERATION,

KEY_FIELD_NAME,

KEY_UPDATE_EXTENT,

KEY_SUPPORTED_UPSTREAM_REQUESTS,

KEY_SUPPORTED_DOWNSTREAM_REQUESTS,

KEY_USER_BEGIN=10000

11

};

// Description:

// Possible values for the FIELD_OPERATION information entry.

enum FieldOperations

{

FIELD_OPERATION_PRESERVED,

FIELD_OPERATION_REINTERPOLATED,

FIELD_OPERATION_MODIFIED,

FIELD_OPERATION_REMOVED

};

//ETX

// Description:

// Get a key instance for the information entry specified by the

// method name.

vtkInformationIntegerKey* DATA_TYPE();

vtkInformationInformationVectorKey* INPUT_REQUIRED_FIELDS();

vtkInformationDataSetKey* DATA_OBJECT();

vtkInformationStringKey* FIELD_NAME();

vtkInformationIntegerKey* FIELD_ATTRIBUTE_TYPE();

vtkInformationIntegerKey* FIELD_OPERATION();

vtkInformationIntegerVectorKey* UPDATE_EXTENT();

vtkInformationIntegerVectorKey* SUPPORTED_UPSTREAM_REQUESTS();

vtkInformationIntegerVectorKey* SUPPORTED_DOWNSTREAM_REQUESTS();

// Description:

// Get the enumeration value associated with the given key instance.

int GetKey(vtkInformationDataSetKey* key);

int GetKey(vtkInformationInformationKey* key);

int GetKey(vtkInformationInformationVectorKey* key);

int GetKey(vtkInformationIntegerKey* key);

int GetKey(vtkInformationIntegerVectorKey* key);

int GetKey(vtkInformationKey* key);

int GetKey(vtkInformationStringKey* key);

protected:

vtkInformation();

~vtkInformation();

// Get/Set a map entry directly through the vtkObjectBase instance

// representing the value. Used internally to manage the map.

void SetAsObjectBase(vtkInformationKey* key, vtkObjectBase* value);

vtkObjectBase* GetAsObjectBase(vtkInformationKey* key);

};

12

5.6 vtkInformationVector

vtkInformationVector stores a vector of zero or more vtkInformation objects corresponding
to the input or output information for a vtkProcessor. An instance of this class is passed to
vtkProcessor::ProcessUpstreamRequest and vtkProcessor::ProcessDownstreamRequest calls.

class VTK_EXPORT vtkInformationVector : public vtkObject

{

public:

static vtkInformationVector *New();

vtkTypeRevisionMacro(vtkInformationVector,vtkObject);

void PrintSelf(ostream& os, vtkIndent indent);

// Description:

// Get/Set the number of information objects in the vector. Setting

// the number to larger than the current number will create empty

// vtkInformation instances. Setting the number to smaller than the

// current number will remove entries from higher indices.

int GetNumberOfInformationObjects();

void SetNumberOfInformationObjects(int n);

// Description:

// Get/Set the vtkInformation instance stored at the given index in

// the vector. The vector will automatically expand to include the

// index given if necessary. Missing entries in-between will be

// filled with empty vtkInformation instances.

void SetInformationObject(int index, vtkInformation* info);

vtkInformation* GetInformationObject(int index);

// Description:

// Copy the set of vtkInformation objects from the given vector.

// All data in the information objects will be duplicated and stored

// in new instances. Any existing vector contents are removed.

void DeepCopy(vtkInformationVector* from);

// Description:

// Copy the set of vtkInformation objects from the given vector.

// The same instances of vtkInformation will be referenced. Any

// existing vector contents are removed.

void ShallowCopy(vtkInformationVector* from);

protected:

vtkInformationVector();

~vtkInformationVector();

};

13

6 Backward Compatibility

Integrating the proposed framework into the current VTK will be very intrusive, but it
is possible to provide some backward compatibility. Our goal is to maintain backward
compatibility in two forms. First, applications using VTK filters to create pipelines should
work with few or no changes. Second, existing VTK filters implemented within VTK or by
outside projects should compile and run with as little modification as possible.

Support for existing application code will be straightforward because pipeline connectiv-
ity will still be specified using the SetInput/GetOutput idiom already in place. Although
connectivity is no longer stored in the filter or data instances, enough information is available
to generate it or request it from an executive as needed.

We will support existing filters by taking advantage of the existing class hierarchy of
filters and modifying the top-most classes. The new vtkProcessObject will derive from
vtkProcessor, and vtkSource will still derive from vtkProcessObject. These classes will
override ProcessUpstreamRequest and ProcessDownstreamRequest to support a stream-
ing, demand driven pipeline by translating requests to old-style pipeline update calls.

While rather strong backward compatibility can be maintained, it will not be possible to
be fully compatibile. Filters or applications that abuse the current pipeline implementation
by taking advantage of unspecified but known implementation details will not work without
modification. We expect most of these cases to be situations in which the old-style pipeline
was barely adequate but that will be supported by the proposed framework.

6.1 vtkProcessObject

This is the superclass for all old-style VTK readers, writers, and filters. Along with vtkSource,
it translates upstream/downstream requests into old-style pipeline calls to subclasses.

class vtkProcessObject : public vtkProcessor

{

public:

static vtkProcessObject *New();

vtkTypeRevisionMacro(vtkProcessObject,vtkProcessor);

void PrintSelf(ostream& os, vtkIndent indent);

// Description:

// Get this processor’s executive. If it has none, a

// vtkStreamingDemandDrivenPipeline will be created.

vtkExecutive* GetExecutive();

// ... other old vtkProcessObject methods ...

protected:

vtkProcessObject();

~vtkProcessObject();

14

// Description:

// Provide subclasses with access to filter’s input

// as it was previously stored. This will not actually own

// any references to the input, but will be set correctly

// before calls to subclasses are made.

vtkDataObject** Inputs;

// Description:

// Fill the input port information objects for this processor.

// Port requirements and capabilities will match those of the old

// VTK vtkProcessObject inputs.

virtual void FillInputPortInformation(vtkInformationVector* portInfo);

// Description:

// Fill the output port information objects for this processor.

// There are no output ports because vtkProcessObject did not support

// output.

virtual void FillOutputPortInformation(vtkInformationVector* portInfo);

};

6.2 vtkSource

This is the superclass for all old-style VTK readers and filters. Along with vtkProcessObject,
it translates upstream/downstream requests into old-style pipeline calls to subclasses.

class vtkSource : public vtkProcessObject

{

public:

static vtkSource *New();

vtkTypeRevisionMacro(vtkSource,vtkProcessObject);

void PrintSelf(ostream& os, vtkIndent indent);

// Description:

// Translate upstream requests into PropagateUpdateExtent

// and TriggerAsynchronousUpdate calls.

virtual int ProcessUpstreamRequest(vtkInformationVector* inInfo,

vtkInformationVector* outInfo);

// Description:

// Translate downstream requests into Execute and ExecuteInformation calls.

virtual int ProcessDownstreamRequest(vtkInformationVector* inInfo,

vtkInformationVector* outInfo);

// Old pipeline update methods:

virtual void Execute();

15

virtual void ExecuteInformation();

virtual void PropagateUpdateExtent();

virtual void TriggerAsynchronousUpdate();

// ... other old vtkSource methods ...

protected:

vtkSource();

~vtkSource();

// Description:

// Provide subclasses with access to filter’s output

// as it was previously stored. This will not actually own

// any references to the output, but will be set correctly

// before calls to subclasses are made.

vtkDataObject** Outputs;

// Description:

// Fill the output port information objects for this processor.

// Port capabilities will match those of the old vtkSource outputs.

virtual void FillOutputPortInformation(vtkInformationVector* portInfo);

};

6.3 Old-Style Pipeline Execution

The current VTK pipeline will be represented in the proposed framework by an exectuve class
called vtkStreamingDemandDrivenPipeline. This will be the default executive created for
vtkProcessor instances.

Figure 2 shows the three basic stages of the old-style VTK pipeline update process.
First, the UpdateInformation phase propagates information about what data are available
from the sources through all the filters to the sinks. Second, the PropagateUpdateExtent

phase sends information about what data are desired from the sinks back through all the
filters to the sources. Finally, the Update phase executes sources and then filters as nec-
essary to produce the requested data. vtkStreamingDemandDrivenPipeline will imple-

PropagateUpdateExtent

Output

Downstream

Downstream
vtkProcessor

Upstream

Input

Downstream

Downstream
vtkProcessor

Upstream

InputOutput

UpdateInformation

Update

Figure 2: Streaming Demand Driven Pipeline Update

ment the old-style execution by making the proper calls to ProcessDownstreamRequest and
ProcessUpstreamRequest on each vtkProcessor in the proper order.

16

