
ParaView Scripting

David E DeMarle
Kitware Inc.

DATA FOR TUTORIAL

• https://www.kitware.com/Customers/IEEEVIS09

• username=password=“IEEEVIS09”
• multicomb_0.vts

• DataSet is part of ParaViewData, which is
available from www.paraview.org

https://www.kitware.com/Customers/IEEEVIS09�

Why?
• Run in Batch mode

– Set up Vis task on small dataset locally
– Repeat with real data on supercomputer

• Interface ParaView with other tools
• Scripted tasks in GUI
• Rapid Prototyping
• Script arbitrary parallel processing tasks

– Not just visualization
– A parallel interpreted programming environment
– Manipulate individual values in huge data sets

Reader

Clip

Contour

Histogram

Render Plot

Reader

Clip

Contour

Histogram

Render Plot

ParaView
Architecture

VTK Pipeline,
in parallel,
on remote server(s),

controlled by and feeds
into client application.

Reader

Clip

Contour

StreamTracer

Render Render

Qt Client
Application

TCP

C
L
I
E
N
T

S
E
R
V
E
R

Reader

Clip

Contour

Histogram

Render Plot

Reader

Clip

Contour

Render Plot

ParaView
Scripting

VTK Pipeline,
in parallel,
on remote server(s),

controlled by and feeds
into python script.

Reader

Clip

Contour

Render Render

Python Script

TCP

C
L
I
E
N
T

S
E
R
V
E
R

Histogram
StreamTracer

Reader

Clip

Contour

Histogram

Render Plot

Reader

Clip

Contour

Render Plot

ParaView
Scripting

VTK Pipeline,
in parallel,
on remote server(s),

controlled by and feeds
into python script.

Python
Reader

Clip

Python Filter

Render Render

Python Script

TCP

C
L
I
E
N
T

S
E
R
V
E
R

Histogram
StreamTracer

Reader

Clip

Contour

Histogram

Render Plot

Reader

Clip

Contour

Histogram

Render Plot

Proxies, Properties
• Client makes Proxies to

control remote objects
• Proxies that control filters

are called SourceProxies
• Proxies’ Properties call

specific methods on
those objects

aVtkContourFilter->SetValue(0.0);

aContour.ContourValues = [0.0]

Reader

Clip

Contour

StreamTracer

Render Render

Python Script

CLIENT

SERVER

ContourProxy

How it Works
• Python wrapping of VTK

– All public methods* of concrete classes callable
– Unfortunately, can only call them on objects that live on client

• Python wrapping of ServerManager (SM)
– vtkServerManager library is what allows client to control remote

VTKSMSOURCEPROXY, VTKSMPROPERTY, etc
– At this level you can control things on server

• Layered modules on top of wrapping simplify life
>>> import paraview (deprecated, PV <= 3.2)
>>> from paraview import servermanager (deprecated, PV <= 3.4)
>>> from paraview.simple import * (New and Improved! PV >= 3.6)

* That do not take pointer arguments, are not within //BTX … //ETX, and are not in
manually excluded files

WARNING!

• ParaView evolves quickly
– 3.6.2 Trace
– create python scripts that track GUI actions
– then look at the script to see how to do X
– most of this talk is lower level than you need

– But it helps you understand the scripts

• Shell within GUI
– Tools->Python Shell
– Fixed to same server that GUI is connected to

• Any python interpreter
– Set PATHS to include ParaView libraries (bin and

Utilities/VTKPythonWrapping)

• pvpython
– python interpreter that comes with ParaView
– Paths are set automatically

• pvbatch
– MPI pvpython
– Made to run on supercomputer
– Can not interact with it, must give it filename of a script to run
– Can not change server (no TCP) it actually runs inside the server

• All: Start script with “>>> from paraview.simple import *”
WARNING! None have event loop -> No mouse, just good old

command line

How to Use it

Using External Interpreter
• Mac/Linux
% set PVBUILD=/Builds/ParaView/devel/build
% export PATH=${PATH}:${PVBUILD}/bin
% export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${PVBUILD}/bin
% export PYTHONPATH=${PVBUILD}/bin:
% export PYTHONPATH=${PYTHONPATH}:${PVBUILD}/Utilities/VTKPythonWrapping

• Windows
Start->Control Panel->Performance and Maintenance ->

System->Advanced->Environment Variables
Add new user variable PVBUILD C:\Builds\ParaView\devel\build
Add/Edit user variable PATH %PVBUILD%\Debug\bin
Add/Edit user variable PYTHONPATH %PVBUILD%\Debug\bin;
Edit user variable PYTHONPATH %PVBUILD%\Utilities\VTKPythonWrapping

Where to Start?
• build a pipeline by

creating SourceProxies*
• Use properties to inspect

and change the filter’s
settings

• Properties are often
assigned at instantiation

>>> myCone = Cone()

>>> print myCone.Center
>>> myCone.Center = [10,10,10]

>>> aDuplicateCone =
Cone(Center=[10,10,10])

* SourceProxy – ParaView term for any reader, procedural generator, filter, or writer

Getting Help
• help(paraview.simple)

lists all functions that paraview.simple gives you
Includes names and descriptions of all SourceProxies

• help(Cone)
gives top level information about Cones (the class)

• help(myCone)
gives more details (ex properties you can access) when you give it a

particular Cone (the object)

• dir(myCone) compact and sometimes more complete alternative
• print(myCone) sometimes gives more details about member values

About Properties
• Properties are python-

esque

• VTK and ParaView are
lazily evaluated. You don’t
see results until you tell
Pipeline to run

>>> myCone.Center = [0,0,0]
>>> myCone.Center[0] = [1]
>>> myCone.Center[2:3] = [2,3]

>>> myCone.Radius = 2.0
>>> Show(myCone)
>>> Render()
>>> myCone.Radius = 0.1

>>> #!? Why no change?

>>> Render()

Building a Pipeline
• Like in GUI, build on

top of the “Active”
source

• Set Properties as you
go, like editing
Property Tab in GUI’s
ObjectInspector

>>>aReader =
XMLStructuredGridReader(
FileName=“multicomb_0.vts”)

>>> aClip = Clip()
>>> aClip.ClipType.Normal = [0,-1,0]

>>> aContour = Contour()
>>> aContour.ContourBy = "Density"
>>> aContour.Isosurfaces = [0.5]

Reader

Reader

Clip

Reader

Clip

Contour

Building a Pipeline
• Branch by

changing the
active source, like
choosing in GUI’s
PipelineBrowser

• Unlike in GUI,
displays are not
automatically
made or refreshed

>>> SetActiveSource(aReader)

>>> aST = StreamTracer()
>>> aST.Vectors = "Momentum"
>>> aST.SeedType.Center = [3,2,28]
>>> aST.SeedType.Radius = 2
>>> aST.SeedType.NumberOfPoints

= 100

>>> Show(aContour)
>>> Show(aStreamTracer)
>>> Render()

Reader

Clip

Contour

Reader

Clip

Contour

StreamTracer

Reader

Clip

Contour

StreamTracer

Render Render

Navigating the Pipeline
• Don’t have to use active

source to branch, can
assign at creation

• Can change after the fact

• Can inspect ActiveSource

• Can get a hold of all or
any particular
SourceProxy

>>> aST = StreamTracer(Input=aReader)

>>> aST = StreamTracer()
>>> aST.Input = aReader
>>> aST.Input = aClip

>>> aSource = GetActiveSource()

>>> GetSources()
>>> someSource = FindSource(“Contour1”)

Merging and Multiplicity
• Some SourceProxies

require multiple inputs,
usually named “Input”
and “Source”, but not
always

• Some SourceProxies
have inputs that are
repeatable, use array
notation to assign them

• A few SourceProxies
produce multiple
outputs, use array
notation to retrieve
them

>>> probe = ProbeLocation()
>>> probe.Input = Mandebrot()
>>> probe.ProbeType = Sphere()

>>> append = AppendGeometry()
>>> append.Input = [poly1, poly2]

>>> reader =
GaussianCubeReader(filename=“my.cube”)

>>> shrink=Shrink()
>>> shrink.Input=reader[1]

Probe

Field Locations

Append

Geom 1 … Geom N

Gauss

Output Grid

Displaying Results
• Parallel Flexible Display Pipeline

complexity encapsulated by
“Representations” in “Views”

• Representation – visual qualities
of an output
≈ Mapper + Actor + parallel
transport
Show() returns a Representation

• View - Visual qualities of a window
≈ Renderer + Camera + Lights +
RenderWindow
Render() returns a View

• To make it easier to build,
commands default to working with
the Active Representation and

Active View

Reader

Clip

Contour Representation

View

Representation

Representation

Controlling Display
• Change Properties of View

and Representation Proxies
to affect display

• Don’t forget lazy evaluation

• Visibility is particularly
important, since all pipeline
stages can be shown
Show() and Hide() shortcuts
set Visibility property

>>> aView = GetActiveView()
>>> help(aView)
>>> aView.Background = [0.0,0.0,0.0]

>>> Render()

>>> aRep = GetRepresentation()
>>> help(aRep)
>>> Show(aRep)
>>> Hide(aRep)

Controlling Display
• Many methods take

ActiveRepresentation and
ActiveView as default
arguments

• But can get hold of and
then control any View and
Representation

>>> clipFiltersRepInMyView =
GetDisplayProperties(aClip, myView)

>>> clipFiltersRep =
GetDisplayProperties(aClip)

>>> activeSourcesRep =
GetDisplayProperties()

>>> GetRenderViews()
>>> view0 = GetRenderViews()[0]
>>> allReps = view0.Representations()
>>> rep0_0 = allReps[0]

Camera
• RenderViews (not PlotViews

etc) have Cameras
• View has properties to

manipulate them

>>> view0.CameraPosition
>>> view0.CameraPosition = [16,0,51]
>>> view0.CameraFocalPoint
>>> view0.CameraFocalPoint = [0,0,0]
>>> view0.CameraViewUp
>>> view0.CameraViewUp = [0,1,0]
>>> view0.CameraAngle
>>> view0.CameraAngle = 20

Rendering Modes
• A Representation’s

Representation* property
controls rendering mode:

Bounding Box
Points
Wireframe
Polygons (surface)
Volume Render
etc

>>> aRep = Show(aClip)
>>> aRep.GetProperty(“Representation”).

Available
>>> aRep.Representation = ‘Outline’
>>> Render()
>>> aRep.Representation = ‘Points’
>>> Render()
>>> aRep.Representation = ‘Wireframe’
>>> Render()
>>> aRep.Representation = ‘Surface With

Edges’
>>> Render()
>>> aRep.Representation = ‘Surface’
>>> Render()

* Yes terminology is confusing, so top level is often called “Display Property” or
“Display Pipeline”

Color Mapping
• Representations have

LookupTables that assign colors
to values

• MakeBlueToRedLT(min,max) is
a convenient way to make one

• You can design your own if you
need to:
Pick an array to color with
Pick the value ranges
Pick the colors

>>> aRep.ColorArrayName = ‘Density’
>>> aRep.LookupTable=

MakeBlueToRedLT(0,1)
>>> Render()

>>> aRep.ColorAttributeType=‘POINT_DATA’
>>> aRep.ColorArrayName=“Density”
>>> lut = servermanager.rendering.

PVLookupTable()
>>> aRep.LookupTable = lut
>>> # value, R,G,B
>>> lut.RGBPoints = [0.0, 0.0, 0.0, 1.0,

0.1, 0.5, 0.0, 0.5
1.0, 1.0, 0.0, 0.0]

Getting information
• ParaView has a client server architecture, and is lazily

evaluated (designed for large data)
• You have to ask ParaView politely when you need

results back from server (other than display)

• Three ways ways to get quantitative results back
– Information properties
– DataInformation
– Fetch

Information Properties
• Properties

Most VTK methods on server
set parameters

SETFILENAME(),
SETCONTOURS()

• Information Properties
Some VTK methods return
simple results

GETFILENAME(),
GETNUMBEROFPOINTS()

Information Properties let the
client read these results

>>> aReader.FileName = “multicomb_0.vts”
>>> print aReader.FileName
foo.ex2
>>> #does not ask server, just remembers
>>> #what we set

>>> aReader.UpdatePropertyInformation()
>>> print aReader.TimestepValues

>>> aST2 = StreamTracer(Input=aReader)
>>> aST2.UpdatePipeline()
>>> aST2.UpdatePropertyInformation()
>>> aST2.GetProperty(“NumberOfPoints”)

Data Information
• Data Information

– What GUI shows in Pipeline
Browser’s Information Tab

– What GUI uses to assign
filter default settings

– Meta-Information about
output of a SourceProxy
CLASSNAME,
MEMORYSIZE,
EXTENT,
NUMCELLS, NUMPOINTS,
ARRAYS, ARRAY NAMES,
ARRAY RANGES

– Can’t get individual values
out

>>> aReader.UpdatePipeline()
>>> aReader.UpdatePipelineInformation()
>>> dInfo = aReader.GetDataInformation()
>>> dInfo.GetDataClassName()
>>> pdInfo =

dInfo.GetPointDataArrayInformation()
>>> pdInfo.GetNumberOfArrays()
>>> ai0 = pdinfo,GetArrayInformation(0)
>>> ai0.GetName()
>>> ai0.GetNumberOfComponents()
>>> ai0.GetComponentRange(0)
>>> ai0.GetNumberOfTuples()

Fetch
• Copies entire DataSet from

server to Client
• Once local, you can

manipulate the data with
python Wrapped VTK API and
access individual data values

• Since data is large, don’t often
want whole data set on client

• Can also do some simple
aggregation of attribute values
Just specify an aggregator
function to apply on the way

>>> output = servermanager.Fetch(aClip)

>>> print(output)

>>> processor1sOutput =
servermanager.Fetch(aClip,1)

>>> mm = MinMax()
>>> mm.Operation = "MIN”
>>> minResult = servermanager.Fetch(elev, mm,

mm)
>>> a0 = minResult.GetPointData().GetArray(1)
>>> a0.GetName()
>>> a0.GetValue(0)

Now that you know…
• Choosing a server

Disconnect from one server (destroying pipeline there)
and connect to another.

>>> Connect(host, portnum)
>>> Help(Connect)

• Writers
Save output of any SourceProxy on server’s file system
>>> writer =XMLUnstructuredGridWriter()
>>> writer.FileName = “foo.pvtk”
>>> writer.Input = aClip
>>> writer.UpdatePipeline()

Features I’m skipping
• Screen Shots

>>> WriteImage(filename, view==ActiveView, Magnification==0.0)
• Animation

Create key frames in tracks and automatically animate through
them. Like GUI’s Animation View

>>> scene = servermanager.animation.AnimationScene()
>>> track1 = servermanager.animation.KeyFrameAnimationCue()
>>> keyframe1 = servermanager.animation.CompositeKeyFrame()
>>> track1.KeyFrames = [keyframe1, keyframe2]
>>> scene.Cues = [track1]

• Movies
Save as series of screenshots or into a movie file*
>>> AnimateReader(reader, view, “myMovie.png”)

*Assuming your ParaView has a codec, otherwise limited to numbered screenshots

?
{Your Python
Code here}

Even More Features
• State

Save state in GUI, load it in python (and vice-versa)
>>> servermanager.LoadState(“myteststate.pvsm")
>>> SetActiveView(GetRenderView())
>>> Render()

• Python Programmable Filter
A white box filter
Arbitrary scripted parallel processing
Numerous examples on wiki

?
{Your Python
Code here}

?
{Your Python
Code here}

Python Programmable Filter
runs inside a filter’s RequestData() on

server
python wrapped VTK API

Get hold of input and output DataSet(s)
examine geometry, topology and

attributes
Do some arbitrary calculation

>>> pfilter = ProgrammableFilter()
>>> pfilter.Script = “””
pdi = self.GetPolyDataInput()
pdo = self.GetPolyDataOutput()
newPoints = vtk.vtkPoints()
numPoints = pdi.GetNumberOfPoints()
for i in range(0, numPoints):

coord = pdi.GetPoint(i)
x, y, z = coord[:3]
x = x * 1
y = y * 1
z = 1 + z*0.3
newPoints.InsertPoint(i, x, y, z)

pdo.SetPoints(newPoints)
“””

Getting More Help
• Wiki Page

– http://www.paraview.org/Wiki/ParaView
• Source Code Documentation

– http://www.paraview.org/ParaQ/Doc/Nightly/html/anno
tated.html

• Mailing List
– Sign up-

>http://public.kitware.com/mailman/listinfo/paraview
– Search ->http://markmail.org/search/?q=list:paraview

• Bug Tracker
– http://www.paraview.org/Bug/my_view_page.php
– Project:-> ParaView3

http://www.paraview.org/Wiki/ParaView�
http://www.paraview.org/ParaQ/Doc/Nightly/html/annotated.html�
http://www.paraview.org/ParaQ/Doc/Nightly/html/annotated.html�
http://public.kitware.com/mailman/listinfo/paraview�
http://markmail.org/search/?q=list:paraview�
http://www.paraview.org/Bug/my_view_page.php�

	ParaView Scripting
	DATA FOR TUTORIAL
	Why?
	ParaView �Architecture
	ParaView �Scripting
	ParaView �Scripting
	Proxies, Properties
	How it Works
	WARNING!
	How to Use it
	Using External Interpreter
	Where to Start?
	Getting Help
	About Properties
	Building a Pipeline
	Building a Pipeline
	Navigating the Pipeline
	Merging and Multiplicity
	Displaying Results
	Controlling Display
	Controlling Display
	Camera
	Rendering Modes
	Color Mapping
	Getting information
	Information Properties
	Data Information
	Fetch
	Now that you know…
	Features I’m skipping
	Even More Features
	Python Programmable Filter
	Getting More Help

