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DATA FOR TUTORIAL

• https://www.kitware.com/Customers/IEEEVIS09

• username=password=“IEEEVIS09”
• multicomb_0.vts

• DataSet is part of ParaViewData, which is 
available from www.paraview.org

https://www.kitware.com/Customers/IEEEVIS09�


Why?
• Run in Batch mode

– Set up Vis task on small dataset locally 
– Repeat with real data on supercomputer

• Interface ParaView with other tools
• Scripted tasks in GUI
• Rapid Prototyping
• Script arbitrary parallel processing tasks 

– Not just visualization
– A parallel interpreted programming environment
– Manipulate individual values in huge data sets
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Proxies, Properties
• Client makes Proxies to 

control remote objects
• Proxies that control filters 

are called SourceProxies
• Proxies’ Properties call 

specific methods on 
those objects

aVtkContourFilter->SetValue(0.0);

aContour.ContourValues = [0.0]
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How it Works
• Python wrapping of VTK

– All public methods* of concrete classes callable
– Unfortunately, can only call them on objects that live on client

• Python wrapping of ServerManager (SM)
– vtkServerManager library is what allows client to control remote

VTKSMSOURCEPROXY, VTKSMPROPERTY, etc
– At this level you can control things on server

• Layered modules on top of wrapping simplify life
>>> import paraview (deprecated, PV <= 3.2 )
>>> from paraview import servermanager (deprecated, PV <= 3.4)
>>> from paraview.simple import * (New and Improved! PV >= 3.6)

* That do not take pointer arguments, are not within //BTX … //ETX, and are not in 
manually excluded files



WARNING!

• ParaView evolves quickly
– 3.6.2 Trace
– create python scripts that track GUI actions
– then look at the script to see how to do X
– most of this talk is lower level than you need

– But it helps you understand the scripts



• Shell within GUI
– Tools->Python Shell
– Fixed to same server that GUI is connected to

• Any python interpreter
– Set PATHS to include ParaView libraries (bin and 

Utilities/VTKPythonWrapping)

• pvpython 
– python interpreter that comes with ParaView
– Paths are set automatically

• pvbatch
– MPI pvpython
– Made to run on supercomputer
– Can not interact with it, must give it filename of a script to run
– Can not change server (no TCP) it actually runs inside the server

• All: Start script with “>>> from paraview.simple import *”  
WARNING! None have event loop -> No mouse, just good old 

command line

How to Use it



Using External Interpreter
• Mac/Linux
% set PVBUILD=/Builds/ParaView/devel/build
% export PATH=${PATH}:${PVBUILD}/bin
% export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${PVBUILD}/bin
% export PYTHONPATH=${PVBUILD}/bin:
% export PYTHONPATH=${PYTHONPATH}:${PVBUILD}/Utilities/VTKPythonWrapping

• Windows
Start->Control Panel->Performance and Maintenance ->

System->Advanced->Environment Variables
Add new user variable PVBUILD C:\Builds\ParaView\devel\build
Add/Edit user variable PATH %PVBUILD%\Debug\bin
Add/Edit user variable PYTHONPATH %PVBUILD%\Debug\bin;
Edit user variable PYTHONPATH %PVBUILD%\Utilities\VTKPythonWrapping



Where to Start?
• build a pipeline by 

creating SourceProxies*
• Use properties to inspect 

and change the filter’s 
settings

• Properties are often 
assigned at instantiation

>>> myCone = Cone()

>>> print myCone.Center
>>> myCone.Center = [10,10,10]

>>> aDuplicateCone = 
Cone(Center=[10,10,10])

* SourceProxy – ParaView term for any reader, procedural generator, filter, or writer



Getting Help
• help(paraview.simple)

lists all functions that paraview.simple gives you
Includes names and descriptions of all SourceProxies

• help(Cone)
gives top level information about Cones (the class)

• help(myCone)
gives more details (ex properties you can access) when you give it a 

particular Cone (the object)

• dir(myCone) compact and sometimes more complete alternative
• print(myCone) sometimes gives more details about member values 



About Properties
• Properties are python-

esque

• VTK and ParaView are 
lazily evaluated. You don’t 
see results until you tell 
Pipeline to run

>>> myCone.Center = [0,0,0]
>>> myCone.Center[0] = [1]
>>> myCone.Center[2:3] = [2,3]

>>> myCone.Radius = 2.0
>>> Show(myCone)
>>> Render()
>>> myCone.Radius = 0.1

>>> #!? Why no change?

>>> Render()



Building a Pipeline
• Like in GUI, build on 

top of the “Active” 
source

• Set Properties as you 
go, like editing 
Property Tab in GUI’s 
ObjectInspector

>>>aReader = 
XMLStructuredGridReader(
FileName=“multicomb_0.vts”)

>>> aClip = Clip()
>>> aClip.ClipType.Normal = [0,-1,0]

>>> aContour = Contour()
>>> aContour.ContourBy = "Density"
>>> aContour.Isosurfaces = [0.5]
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Building a Pipeline
• Branch by 

changing the 
active source, like 
choosing in GUI’s 
PipelineBrowser

• Unlike in GUI, 
displays are not 
automatically 
made or refreshed

>>> SetActiveSource(aReader)

>>> aST = StreamTracer()
>>> aST.Vectors = "Momentum"
>>> aST.SeedType.Center = [3,2,28]
>>> aST.SeedType.Radius = 2
>>> aST.SeedType.NumberOfPoints

= 100

>>> Show(aContour)
>>> Show(aStreamTracer)
>>> Render()
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Navigating the Pipeline
• Don’t have to use active 

source to branch, can 
assign at creation

• Can change after the fact

• Can inspect ActiveSource

• Can get a hold of all or 
any particular 
SourceProxy

>>> aST = StreamTracer(Input=aReader)

>>> aST = StreamTracer()
>>> aST.Input = aReader
>>> aST.Input = aClip

>>> aSource = GetActiveSource()

>>> GetSources()
>>> someSource = FindSource(“Contour1”)



Merging and Multiplicity
• Some SourceProxies

require multiple inputs, 
usually named “Input” 
and “Source”, but not 
always

• Some SourceProxies
have inputs that are 
repeatable, use array 
notation to assign them

• A few SourceProxies
produce multiple 
outputs, use array 
notation to retrieve 
them

>>> probe = ProbeLocation()
>>> probe.Input = Mandebrot()
>>> probe.ProbeType = Sphere()

>>> append = AppendGeometry() 
>>> append.Input = [poly1, poly2]

>>> reader = 
GaussianCubeReader(filename=“my.cube”)

>>> shrink=Shrink()
>>> shrink.Input=reader[1]

Probe

Field Locations

Append

Geom 1 … Geom N

Gauss

Output Grid



Displaying Results
• Parallel Flexible Display Pipeline 

complexity encapsulated by 
“Representations” in “Views”

• Representation – visual qualities 
of an output
≈ Mapper + Actor + parallel 
transport
Show() returns a Representation

• View - Visual qualities of a window
≈ Renderer + Camera + Lights + 
RenderWindow
Render() returns a View

• To make it easier to build, 
commands default to working with 
the Active Representation and 

Active View

Reader

Clip

Contour Representation

View

Representation

Representation



Controlling Display
• Change Properties of View 

and Representation Proxies 
to affect display

• Don’t forget lazy evaluation

• Visibility is particularly 
important, since all pipeline 
stages can be shown
Show() and Hide() shortcuts
set Visibility property

>>> aView = GetActiveView()
>>> help(aView)
>>> aView.Background = [0.0,0.0,0.0]

>>> Render()

>>> aRep = GetRepresentation()
>>> help(aRep)
>>> Show(aRep)
>>> Hide(aRep)



Controlling Display
• Many methods take 

ActiveRepresentation and 
ActiveView as default 
arguments

• But can get hold of and 
then control any View and 
Representation

>>> clipFiltersRepInMyView =    
GetDisplayProperties(aClip, myView)

>>> clipFiltersRep = 
GetDisplayProperties(aClip)

>>> activeSourcesRep =
GetDisplayProperties()

>>> GetRenderViews()
>>> view0 = GetRenderViews()[0]
>>> allReps = view0.Representations()
>>> rep0_0 = allReps[0]



Camera
• RenderViews (not PlotViews 

etc) have Cameras
• View has properties to 

manipulate them

>>> view0.CameraPosition
>>> view0.CameraPosition = [16,0,51]
>>> view0.CameraFocalPoint
>>> view0.CameraFocalPoint = [0,0,0]
>>> view0.CameraViewUp
>>> view0.CameraViewUp = [0,1,0]
>>> view0.CameraAngle
>>> view0.CameraAngle = 20



Rendering Modes
• A Representation’s 

Representation* property 
controls rendering mode:

Bounding Box
Points
Wireframe
Polygons (surface)
Volume Render
etc

>>> aRep = Show(aClip)
>>> aRep.GetProperty(“Representation”).

Available
>>> aRep.Representation = ‘Outline’
>>> Render() 
>>> aRep.Representation = ‘Points’
>>> Render() 
>>> aRep.Representation = ‘Wireframe’
>>> Render() 
>>> aRep.Representation = ‘Surface With 

Edges’
>>> Render() 
>>> aRep.Representation = ‘Surface’
>>> Render() 

* Yes terminology is confusing,  so top level is often called “Display Property” or 
“Display Pipeline”



Color Mapping
• Representations have 

LookupTables that assign colors 
to values

• MakeBlueToRedLT(min,max) is 
a convenient way to make one

• You can design your own if you 
need to:
Pick an array to color with
Pick the value ranges
Pick the colors 

>>> aRep.ColorArrayName = ‘Density’ 
>>> aRep.LookupTable=

MakeBlueToRedLT(0,1)
>>> Render()

>>> aRep.ColorAttributeType=‘POINT_DATA’
>>> aRep.ColorArrayName=“Density”
>>> lut = servermanager.rendering.

PVLookupTable()
>>> aRep.LookupTable = lut
>>> #                           value,    R,G,B
>>> lut.RGBPoints = [  0.0,       0.0, 0.0, 1.0, 

0.1,       0.5, 0.0, 0.5
1.0,       1.0, 0.0, 0.0]



Getting information
• ParaView has a client server architecture, and is lazily 

evaluated (designed for large data)
• You have to ask ParaView politely when you need 

results back from server (other than display)

• Three ways ways to get quantitative results back
– Information properties
– DataInformation
– Fetch



Information Properties
• Properties

Most VTK methods on server
set parameters 

SETFILENAME(), 
SETCONTOURS()

• Information Properties
Some VTK methods return
simple results

GETFILENAME(), 
GETNUMBEROFPOINTS()

Information Properties  let the
client read these results

>>> aReader.FileName = “multicomb_0.vts”
>>> print aReader.FileName
foo.ex2
>>> #does not ask server, just remembers
>>> #what we set

>>> aReader.UpdatePropertyInformation()
>>> print aReader.TimestepValues

>>> aST2 = StreamTracer(Input=aReader)
>>> aST2.UpdatePipeline()
>>> aST2.UpdatePropertyInformation()
>>> aST2.GetProperty(“NumberOfPoints”)



Data Information
• Data Information

– What GUI shows in Pipeline 
Browser’s Information Tab

– What GUI uses to assign 
filter default settings

– Meta-Information about 
output of a SourceProxy
CLASSNAME, 
MEMORYSIZE, 
EXTENT,
NUMCELLS, NUMPOINTS, 
ARRAYS, ARRAY NAMES, 
ARRAY RANGES

– Can’t get individual values 
out

>>> aReader.UpdatePipeline()
>>> aReader.UpdatePipelineInformation()
>>> dInfo = aReader.GetDataInformation()
>>> dInfo.GetDataClassName()
>>> pdInfo = 

dInfo.GetPointDataArrayInformation()
>>> pdInfo.GetNumberOfArrays()
>>> ai0 = pdinfo,GetArrayInformation(0)
>>> ai0.GetName()
>>> ai0.GetNumberOfComponents()
>>> ai0.GetComponentRange(0)
>>> ai0.GetNumberOfTuples()



Fetch
• Copies entire DataSet from 

server to Client
• Once local, you can 

manipulate the data with 
python Wrapped VTK API and 
access individual data values

• Since data is large, don’t often 
want whole data set on client

• Can also do some simple 
aggregation of attribute values
Just specify an aggregator 
function to apply on the way

>>> output = servermanager.Fetch(aClip)

>>> print(output)

>>> processor1sOutput = 
servermanager.Fetch(aClip,1)

>>> mm = MinMax()
>>> mm.Operation = "MIN”
>>> minResult = servermanager.Fetch(elev, mm, 

mm)
>>> a0 = minResult.GetPointData().GetArray(1)
>>> a0.GetName()
>>> a0.GetValue(0)



Now that you know…
• Choosing a server

Disconnect from one server (destroying pipeline there) 
and connect to another.

>>> Connect(host, portnum) 
>>> Help(Connect)

• Writers
Save output of any SourceProxy on server’s file system
>>> writer =XMLUnstructuredGridWriter()
>>> writer.FileName = “foo.pvtk”
>>> writer.Input = aClip
>>> writer.UpdatePipeline()



Features I’m skipping 
• Screen Shots

>>> WriteImage(filename, view==ActiveView, Magnification==0.0)
• Animation

Create key frames in tracks and automatically animate through 
them. Like GUI’s Animation View

>>> scene = servermanager.animation.AnimationScene()
>>> track1 = servermanager.animation.KeyFrameAnimationCue()
>>> keyframe1 = servermanager.animation.CompositeKeyFrame()
>>> track1.KeyFrames = [keyframe1, keyframe2]
>>> scene.Cues = [track1]

• Movies
Save as series of screenshots or into a movie file*
>>> AnimateReader(reader, view, “myMovie.png”)

*Assuming your ParaView has a codec, otherwise limited to numbered screenshots



?
{Your Python 
Code here}

Even More Features
• State

Save state in GUI, load it in python (and vice-versa)
>>> servermanager.LoadState(“myteststate.pvsm")
>>> SetActiveView(GetRenderView())
>>> Render()

• Python Programmable Filter
A white box filter
Arbitrary scripted parallel processing
Numerous examples on wiki

?
{Your Python 
Code here}

?
{Your Python 
Code here}



Python Programmable Filter
runs inside a filter’s RequestData() on 

server
python wrapped VTK API

Get hold of input and output DataSet(s)
examine geometry, topology and 

attributes
Do some arbitrary calculation

>>> pfilter = ProgrammableFilter()
>>> pfilter.Script = “””
pdi = self.GetPolyDataInput()
pdo =  self.GetPolyDataOutput()
newPoints = vtk.vtkPoints()
numPoints = pdi.GetNumberOfPoints()
for i in range(0, numPoints):

coord = pdi.GetPoint(i)
x, y, z = coord[:3]
x = x * 1
y = y * 1
z = 1 + z*0.3
newPoints.InsertPoint(i, x, y, z)

pdo.SetPoints(newPoints)
“””



Getting More Help
• Wiki Page

– http://www.paraview.org/Wiki/ParaView 
• Source Code Documentation

– http://www.paraview.org/ParaQ/Doc/Nightly/html/anno
tated.html 

• Mailing List 
– Sign up-

>http://public.kitware.com/mailman/listinfo/paraview 
– Search ->http://markmail.org/search/?q=list:paraview

• Bug Tracker
– http://www.paraview.org/Bug/my_view_page.php 
– Project:-> ParaView3

http://www.paraview.org/Wiki/ParaView�
http://www.paraview.org/ParaQ/Doc/Nightly/html/annotated.html�
http://www.paraview.org/ParaQ/Doc/Nightly/html/annotated.html�
http://public.kitware.com/mailman/listinfo/paraview�
http://markmail.org/search/?q=list:paraview�
http://www.paraview.org/Bug/my_view_page.php�
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