Customizing ParaView

Utkarsh A. Ayachit*

David E. DeMarle®

Kitware Inc.

ABSTRACT

ParaView is an Open Source Visualization Application that scales,
via data parallel processing, to massive problem sizes. The nature
of Open Source software means that ParaView has always been well
suited to customization. However having access to the source code
does not imply that it is trivial to extend or reuse the application. An
ongoing goal of the ParaView project is to make the code simple to
extend, customize, and change arbitrarily.

In this paper we present the ways by which the application can be
modified to date. We then describe in more detail the latest efforts
to simplify the task of reusing the most visible part of ParaView, the
client GUI application. These efforts include a new CMake config-
uration macro that makes it simple to assemble the major functional
components of a new application, and then describe the Reaction
and Behavior abstractions which help to make the Qt level applica-
tion code modular enough so that the existing widgets can be easily
reused.

Index Terms: D.2.13 [Software Engineering]: Reusable
Software—Reusable libraries 1.3.8 [Computing Methodologies]:
Computer Graphics—Applications

1 INTRODUCTION

ParaView [7] is an open source application which is built upon
VTK, the visualization toolkit [6]. ParaView has three fundamental
purposes. One purpose is to use parallel processing to scale in terms
of data size so that if a given problem is too large to be analyzed on
a single workstation, it will be possible to analyze it directly by
connecting to a larger parallel computer. The second purpose is
to be a front end to VTK. This means that users of ParaView do
not need to br programmers or even to understand scientific visu-
alization techniques in order to perform useful analysis of complex
scientific data. The third goal is to function as a reusable library
so that, like VTK, it may be used to create or become a part of
larger works that the initial designers could not anticipate. The first
two goals both increase the size and complexity of the application’s
software, and therefore are counterproductive to the third.

2 ARCHITECTURE

ParaView’s solution to the problem of parallel processing is to make
use of the Proxy pattern [5]. That is, a family of proxy classes, each
of which is populated by parsing XML files, are instantiated at run
time to control instances of VTK classes. The objects controlled
through the proxies may live in the same process as the proxies
themselves or may be instantiated on remote machines. The ob-
jects may exist as single instances or may be replicated on many
machines to form a data parallel unit. Proxies provide a means to
create parallel configuration insensitive VTK pipelines.
ParaView’s extensive use of proxies adds a level of indirection to
the software. This level of indirection is referred to as the Server-
Manager. The ServerManager is the initial layer of complexity that

*e-mail:utkarsh.ayachit@kitware.com
Te-mail:dave.demarle @kitware.com

VTK developers must overcome in order to extend ParaView. For-
tunately the ServerManager includes both Module [2] and server
side Plugin [3] facilities. The two facilities differ in that Modules
are statically linked into ParaView at compile time, whereas Plug-
ins are dynamically linked into ParaView at run time. Either facility
standardizes, through CMake[6] configuration macros, the process
by which new types of VTK objects can be added to ParaView. Plu-
gin and Module macros turn the build environment definition into
a simple procedure call. A standard list of arguments is populated
with information such as the names of the C++ files for the new rou-
tines, and the macro creates the correct platform independent build
environment to make a library that is compatible with the applica-
tion. An elementary Plugin macro, which adds a new VTK class to
ParaView’s ServerManager follows.

ADD_PARAVIEW_PLUGIN (
ANewFilter 1.0 #<-- Name and version
#C++ source for the VTK class
SERVER_MANAGER_SOURCES vtkNewFilter.cxx
#file that tells ParaView how to use it
SERVER_MANAGER_XML NewFilter.xml

It is possible to create new applications by working directly at
the ServerManager layer. Unfortunately, developing a full featured
application of the same scale as the ParaView client is a non trivial
task, requiring several man years of effort.

The ParaView client is an application that provides interfaces (ei-
ther Qt GUI based or python scripted) that an end user can use to
create VTK pipelines and perform visualization. The existing client
is meant to be general. For example, every intermediate output gen-
erated along the pipeline is controllable and can be displayed simul-
taneously. There are many cases where a general application is not
beneficial. For example, novice users may benefit from a more lim-
ited application with fewer choices and more automatic guidance.
Domain specific users may need only a fraction of the filters avail-
able in ParaView, may require other special purpose ones, and may
require the application to use the terminology (jargon) of the do-
main.

Fortunately Plugins can also be used to change the standard Par-
aView client application. There are thirteen (at last count) “client
side” Plugin types. As with server side plugins, CMake macros
are invoked to simplify compilation of client plugins. Each macro
standardizes the definition of the source code implementation for
a specific type of change. Examples include adding custom filter
property editing and display controlling panels, adding new menus
and toolbars, adding startup and shutdown routines, and adding ar-
bitrary dockable control panels. A non trivial example Plugin is that
developed for VisTrails [1].

Unfortunately, there are important customizations tasks for
which there is no Plugin type. Please note that all of the existing
Plugins provide ways to add functionality to ParaView and none
provide ways to take functionality away'. In order to make a cus-
tom client which exposes only a subset of the standard application’s
features, one is forced to directly modify the standard client’s code,
or copy from it heavily. This has been done so far in only a handful

Uthis can be done given an intimate knowledge of the client side Qt code

of cases. The problem with doing so is that the standard application
is monolithic and too complex for all but experienced ParaView
developers to tackle. What is neede, is a code restructuring that
breaks apart internal class dependencies, thereby making it possi-
ble to build a customized ParaView application from the bottom up.
Ideally, this rearchitecture will make it possible to use Qt Designer
to visually assemble the application from existing components. The
rest of this paper describes our ongoing work towards this aim.

3 APPLICATION DESIGN
3.1 Top Down Application Design

Developers who undertake the task of deriving a Qt application
from ParaView are immediately faced with a design choice. That
is, should the new application build up a ParaView like application,
starting from a minimal set and adding only the desired features, or
should it start from the entire existing application and remove the
pieces that are not needed.

Despite the obvious lack of elegance implied by copying the
more than three thousand lines of code in the Applications/Client
directory, to date everyone who has faced the choice has chosen
the top down approach. The code in that directory defines the top
level of the standard application client, and contains a number of
potentially useful utilities. These include features like an applica-
tion level testing framework to orchestrate parallel regression tests
and binary release bundling scripts for example. However, none
of the utilities is readily reusable in other applications. For in-
stance, the application startup and shutdown process is actually im-
plemented in pqClientProcessModuleGUIHelper, a class that lies
within the ParaView Qt level library. When one wants to change
some of these features, one has to not only copy the top level calls,
but also to delve into ParaView’s Qt level library code to make tai-
lored changes in behavior. The OverView and StreamingParaView
experimental applications serve as examples of derivative applica-
tions that were written in a top down manner.

3.2 Bottom Up Application Design

When only a handful of the existing features are needed, or when
substantial changes are to be made, the obvious approach is to build
from the bottom up. One begins by trying to find the minimal set of
Qt components that are required to build an application that lets the
user contro ParaView’s servermanager API A View window, which
provides an area to see the result of the visualization pipeline, is
certainly necessary. A file browser, that can show and let the user
open files on the server’s file system is also essential. An Object
Inspector panel, which one uses to enable and then control filter
parameters also seems necessary. However an investigation of the
code shows that the Object Inspector panel will not function without
signals that tell it what filter it is supposed to control. Those signals
originate in the the Pipeline Browser, in which ParaView displays
the layout of the visualization pipeline. The Pipeline Browser itself
has dependencies. The dependencies form a knot such that the min-
imal set of components needed to make a ParaView like application
are the complete set of components in the ParaView application.

Furthermore, as these dependencies are untangled, one finds that
the slot handling code that responds to the signaling events, for ex-
ample disabling the selection buttons when a non 3D view are made
active, lie deep within the internals of the four thousand line pg-
MainWindowCore file.

4 SOLUTION
4.1 Branding Macros

To make it easier to put together the set of libraries and c++ files that
make up a new application, one will soon use Branding macros.
A Branding macro is similar to a Plugin macro. It consists of a
callable CMake function that one supplies arguments to which de-
fine the set of components that make up an application. Internally

the macro glues those components together and creates a build en-
vironment that is able to link them all together. For example, sup-
ply the filename of an image file to the SPLASH_IMAGE argument
and the resulting application will show that image at startup while it
parses the required proxy definining XML files. The XML files are
themselves defined with the GUI_.CONFIGURATION_XML argu-
ments. In the current code, these same choices are made by hard-
coded rules buried within the application, library and CMake con-
figuration code.

The complete branding macro for a new application, one that
mimics the standard client, follows. Note that this new application
will become the standard client and the current monolithic one dep-
recated or removed by the ParaView 3.8 release.

build_paraview_client (paraview_revamped
TITLE "ParaView (Revamped)"
ORGANIZATION "Kitware Inc."
VERSION_MAJOR 3
VERSION_MINOR 7
VERSION_PATCH 1
SPLASH_IMAGE
\'$ {CC_SOURCE_DIR}/PVSplashScreen.png
PVMAIN_WINDOW pgClient2MainWindow
PVMAIN_WINDOW_INCLUDE
paClient2MainWindow.h
EXTRADEPENDENCIES pgClient?2
GUI_CONFIGURATION_XMLS
\$ {CC_SOURCE_DIR}/ParaViewSources.xml
\${CC_SOURCE_DIR}/ParaViewFilters.xml
\${CC_SOURCE_DIR}/ParaViewReaders.xml
\${CC_SOURCE_DIR}/ParaViewWriters.xml
)

4.2 Reactions

With the availability of a application specifying macro, what re-
mains is to make sure that the individual components of the Ul
function in isolation, and yet are able to work in concert, in a pre-
dictable manner, when put together. It is also desireable, in order to
make more than cosmetic modifications, to be able to change what
the coordinated behaviors are.

In Qt, QActions typically correspond to actions that the user can
perform on the user interface such a clicking buttons, toolbars etc.
Every QAction has an handler connected to it which performs the
tasks that need to be done when the user has triggered the action.
Additionally, there is logic that determines when the action can be
enabled based on the current state of the application. In the cur-
rent ParaView client, thie action handler and enable state code are
hardcoded in various places within the GUI panels.

In the new design we encapsulate the QAction logic within a
new ParaView Reaction type. Reactions are independent objects
that use ParaView’s core functionality to execute users commands.
Reaction range widely, from showing the about dialog, to opening
datasets, to establishing connections with a remote server, etc.

Reactions are autonomous and complete i.e. they do not have
any cross dependencies and make use of the core ParaView func-
tionality. This makes it easier to for custom applications to bring
in components from ParaView eg. if a custom application wants
to provide support for connecting to a remote server, they simply
need to connect the pgServerConnectReaction to the appropriate
QAction in the GUI and they get the logic to connect with servers,
manage server configuration etc.

new pgServerConnectReaction (
ui.actionConnectToServer) ;

4.3 Behaviors

Every application typically has behaviors ingrained into them e.g.
for word processors, when a file is opened, the act of showing the

first page initially is a behavior. An alternative behavior is to show
the page that was open when the file was last saved. In ParaView,
behaviors include things like creating a 3D visualization window as
soon as a connection is established to a server. Another example
is the way that the application prompts the user to save the current
state when a connection is about to be terminated. Typically, such
behavior is coded into the internal logic of the application, which
makes it hard to override standard behaviors. Hence, we formalized
behaviors in ParaView. ParaView Behavoirs are classes that use the
core to implement such application level logic. Any custom appli-
cation can now pick and choose the behaviors it wants by simply
instantiating the appropriate behavior classes. Furthermore custom
applications can subclass from thee provided classes to fine tune the
way the user interacts with the application.

With Reactions and Behaviors, we have been able to remove the
direct signal/slot interdependencies between the major GUI com-
ponents, such as the Object Inspector, Pipeline Browser, and Se-
lection Manager. Now all of these talk to a global pgApplication-
Core singleton, from which Reactions and Behaviors observe and
coordinate without direct interaction. The code in the singleton is
abstract, and relies on swappable Reaction and Behavior classes for
enforcement.

5 TRYINGIT

The code being developed today is publicly available. To
try it, install the git [8] source code control system on
your development machine. Then clone the repository at
git://github.com/utkarshayachit/ParaView.git to obtain the modified
ParaView source. The branding code is on the Branding branch,
and a new reference application, called paraview_revamed will be
found in Applications/Client2. Once downloaded, the process for
building is the same as for building normal paraview [4].

5.1 Legal Considerations

ParaView has a BSD license and, from ParaView release 2.8 on, the
Qt library that ParaView’s GUI is built upon has an LGPL license.
In practice this means that ParaView can be freely used in commer-
cial and non-commercial settings, provided only that the ParaView
copyright be provided with the derived work.

6 CONCLUSION

ParaView 3.6, with its Plugin and Module facilities made it feasi-
ble for people to add to the standard ParaView client application.
Due to the monolithic code structure of ParaView’s Qt code layer,
it requires a great deal of knowledge of the ParaView source code
to create derived works, especially when those works reuse only a
portion of the ParaView User Interface. A new restructuring of the
Qt Code layer, specifically the introduction and implementation of
Reaction and Behavior abstractions, and the introduction of a new
application building CMake macro for ParaView, will rectify this
in the next ParaView release. These changes should significantly
lower the experience barrier needed to develop new ParaView based
applications. It is our hope that these changes will catalyze the in-
troduction of a wide assortment of new end user visualization tools.

ACKNOWLEDGEMENTS

The authors wish to thank Ken Moreland of Sandia National Labs
and Stephane Ploix of EDF for having a need for and for providing
funding for this work.

REFERENCES

[1] 2009. VisTrails: A scientific workflow management system. Sci-
entific Computing and Imaging Institute (SCI), Download from:
http://www.vistrails.org.

(2]

(3]
[4]
(5]
)
(7]
(8]

Extending paraview at compile time.
http://www.paraview.org/Wiki/Extending_ParaView_at_Compile_Time,
2009.

Extending paraview using plugins.
http://www.paraview.org/Wiki/Plugin_HowTo, 2009.
Paraview: Building and installation instructions.

http://www.paraview.org/Wiki/ParaView:Build_And _Install, 2009.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Pro-
fessional, 1995.

Kitware, Inc. The Visualization Toolkit User’s Guide, 2006.

Kitware, Inc. The ParaView Guide : A Parallel Visualization Applica-
tion, 2007.

J. Loeliger, B. Collins-Sussman, and B. W. Fitzpatrick. Version control
with Git.

