
vtkPainter: An Improved Poly Data 
Mapper 

Kenneth Moreland 

Last Updated: November 16, 2004. 

1. Purpose of this Document 

VTK is often criticized for its slow rendering speed.  Although vtkOpenGLPoly-
DataMapper has improved significantly, it leaves much to be desired.  The vtk-
OpenGLPolyDataMapper class passes data to OpenGL with calls to glVertex, 
glNormal, and the like, which often make speed of the rendering API bound.  The 
vtkOpenGLPolyDataMapper class can also use display lists, but display lists are 
slow to build and require a significant amount of memory. 

The vtkSNL repository contains vtkOpenGLVertexArrayPolyDataMapper.  This 
mapper uses vertex arrays rather than display lists.  The vtkOpenGLVertexArray-
PolyDataMapper is very efficient for certain types of poly data, such as a 
collection of only triangles with only point normals and colors.  However, slight 
deviations incur drastic performance hits.  Short length triangle strips, polygons of 
varying size, and cell centered data can all kill the performance of vtkOpenGL-
VertexArrayPolyDataMapper.  Furthermore, the monolithic code of vtkOpenGL-
VertexArrayPolyDataMapper makes it hard to improve the rendering speed for 
the various conditions that can occur in poly data.  Therefore, vtkOpenGLVertex-
ArrayPolyDataMapper is a mediocre solution for a general purpose poly data 
mapper. 

This is an informal document to the capture design criteria and ideas for an 
improved VTK mapper.  The code exists and is currently residing in the vtkSNL 
repository. 

2. Mapper Overview 

The failure of the design of vtkOpenGLVertexArrayPolyDataMapper was that it 
picked a rendering method (vertex arrays) that was fast for a certain class of poly 
data.  It then handled all other types of poly data by shoehorning them into 
rendering methods that did not render them well or using fallback rendering 
methods that are simply slow to begin with. 

To design a better poly data mapper, we should keep two things in mind.  First, 
the layout of the polygons in the poly data is not consistent.  Second, there is no 
rendering method that will be the best for every collection of polygons.  The 



optimal rendering method can change depending on whether the polygons are 
only triangles, arranged in triangle strips, or a zoo of various polygon types.  
Furthermore, the optimal rendering method can change depending on whether 
properties are defined on points, cells, or both.  To make the problem even more 
complicated, rendering performance can change from system to system, meaning 
we may never know the best rendering method a-priori. 

To ensure the flexibility of the new poly data mapper, we use the Strategy design 
pattern from the gang-of-four book.1  The pattern would make the poly data 
mapper work as follows.  The poly data mapper object simply maintains a 
context, which is state of the rendering process.  The poly data mapper object 
delegates the algorithm it uses to render to a separate strategy object.  The 
strategy object is defined by an interface in an abstract class with concrete 
implementations inheriting from it.  The algorithm used by the poly data mapper 
can be chosen by simply picking the concrete implementation of the strategy. 

 
Figure 1 New poly data mapper. 

Figure 1 shows a UML diagram of the layout for the new poly data mapper.  
From the outside, vtkThinOpenGLPolyDataMapper behaves like any other poly 
data mapper.  It fits in the VTK pipeline, listens to render requests, and sets the 
OpenGL pipeline state based on things like the current lighting and material 
properties.  It also draws OpenGL primitives, but not directly.  Instead, this 
responsibility is delegated to a vtkPainter.  The vtkPainter is responsible for 
nothing but issuing drawing commands.  That is, it issues only OpenGL 
commands that send vertices and their properties into the pipeline (i.e. glVertex, 
glColor, glNormal, and so on) and commands that establish connectivity 
information (i.e. glBegin and glEnd).2 

                                                 
1 Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard 
Helm, Ralph Johnson, and John Vlissides. 
2 The painter may also issue these commands via other means such as vertex arrays or display 
lists. 

vtkOpenGLPolyDataMapper 

vtkThinOpenGLPolyDataMapper vtkPainter Painter 



 
Figure 2  Sample implementations of vtkPainter. 

The vtkPainter class is an abstract interface.  Concrete subclasses must be 
instantiated to perform its functionality, as shown in Figure 2.  An implementation 
of vtkPainter need only focus on one type of rendering.  Furthermore, an 
implementation of vtkPainter need not be able to render every type of poly data.  
For example, vtkVertexArrayPainter may not work on poly data with cell data.  
Allowing a painter to focus on only a subset of possible poly data types should 
make the implementation easier to code, easier to read, and easier to optimize.  
Because implementing a new rendering scheme is as easy as subclassing 
vtkPainter, the poly data mapper becomes much more flexible. 

3. vtkPainter 

In this section we discuss the vtkPainter object and describe how it is 
implemented, subclassed, and used.  First, we describe the interface of vtkPainter 
and provide the reasoning for this interface.  Second, we describe a helper class 
that provides an abstract interface to the rendering system.  Third, we list some 
straightforward implementations of vtkPainter that are currently available. 

vtkPainter 

vtkStandardPainter vtkDefaultPainter vtkVertexArrayPainter 



3.1. vtkPainter Interface 
 
class vtkPainter : public vtkObject 
{ 
public: 
  vtkTypeRevisionMacro(vtkPainter, vtkObject); 
  virtual void PrintSelf(ostream &os, vtkIndent indent); 
  static vtkPainter *New(); 
 
  virtual void SetPolyData(vtkPolyData *arg); 
 
  vtkBooleanMacro(StaticData, int); 
  vtkBooleanMacro(ConserveMemory, int); 
  vtkBooleanMacro(HighQuality, int); 
 
  virtual void SetPointPosition(vtkDataArray *data); 
  virtual void SetPointNormals(vtkDataArray *data); 
  virtual void SetCellNormals(vtkDataArray *data); 
  virtual void SetPointColors(vtkDataArray *data); 
  virtual void SetCellColors(vtkDataArray *data); 
  virtual void SetPointTCoords(vtkDataArray *data); 
  virtual void SetCellTCoords(vtkDataArray *data); 
 
  virtual void SetPointAttribute(int index, vtkDataArray *data); 
  virtual void SetCellAttribute(int index, vtkDataArray *data); 
 
  virtual void SetDevice(vtkPainterDeviceAdapter *d); 
 
  virtual void DrawVerts(vtkRenderer *renderer); 
  virtual void DrawLines(vtkRenderer *renderer); 
  virtual void DrawPolys(vtkRenderer *renderer); 
  virtual void DrawStrips(vtkRenderer *renderer); 
... 

Figure 3  Partial interface for vtkPainter. 

Figure 3 lists a subset for an example listing of vtkPainter.  For brevity, Figure 3 
has several obvious omissions, such as the Get counterparts to all the Set methods.  
This section will discuss the methods included in the interface and detail why they 
are important. 

The vtkPainter has the methods standard on all vtkObject classes, declared with 
vtkTypeRevisionMacro and PrintSelf.  The New method returns a default imple-
mentation of vtkPainter (as described in Section  4). 

A vtkPainter needs polygon data to render.  The obvious storage format is a 
vtkPolyData object.  The vtkPainter may also build a secondary representation for 
speedier rendering.  Keeping a reference to the vtkPolyData object should not 
waste memory since the data will undoubtedly also be held elsewhere. 

A vtkPainter may need to make choices as to the best way to render data.  Thus, it 
holds some additional state as to the nature of the poly data and the rendering 
system being used.  The Boolean flag StaticData gives the frequency that the 



input data changes.  If true, then slow preprocessing for fast frame rates will 
probably be rewarded.  If false, then the preprocessing may occur too frequently 
to be worthwhile.  The ConserveMemory flag signals whether the vtkPainter 
should avoid building large auxiliary structures, even at the expense of speed.  
The HighQuality flag signals whether the vtkPainter can make changes to the data 
that adversely affect image quality but may speed up rendering (for example 
turning cell data into point data). 

Although the vtkPainter accepts a vtkPolyData object, this object is only used for 
connectivity information.  Attribute information (i.e. point locations, normals, 
colors, and texture coordinates) are set explicitly.  Attribute information is given 
as vtkDataArrays.  Some arrays may come directly from attribute information in 
the poly data.  Since this information is also stored as vtkDataArrays, the only 
overhead is a reference copy.  Other arrays, such as the colors, will need to be 
built. 

The attribute arrays can be defined over points or over cells (but not both).  The 
one exception is the point position array, which, by definition, can only be defined 
over points. 

There is also another convention of setting attribute arrays as unnamed, indexed 
arrays.  These are useful when using a shading language such as Cg or the 
upcoming OpenGL 2.0 GLSL.  When using a shader, the naming of the attribute 
may be meaningless.  The number of attributes can also vary.  The use of 
vtkPainter with high level shading languages is discussed in more detail in 
Section  6. 

 

Table 1  Attribute aliasing in vtkPainter. 

Alias Index OpenGL Function 

PointPositions 0 glVertex 

Normals 2 glNormal 

Colors 3 glColor 

TCoords 8 glTexCoord 

 

The attribute arrays for point positions, normals, colors, and texture coordinates 
are really just aliases for numbered attributes.  Table 1 lists how these aliases are 
mapped to the attributes.  This aliasing was established to agree with similar 
mappings used in OpenGL extensions such as GL_ARB_vertex_program, GL_-
NV_vertex_program, and GL_NV_vertex_program2. 



vtkPainter also hold a vtkPainterDeviceAdapter.  The device adapter is used to 
send rendering commands to a rendering system (such as OpenGL).  Like the 
unnamed attributes, the abstract device adapter’s primary purpose is to support 
high level shading languages.  A high level shader may require attribute 
information to be sent in a way that is inconsistent with the functions used without 
the shaders.  The interface for vtkPainterDeviceAdapter is described in detail in 
Section  3.2. 

Finally, the vtkPainter has methods to draw polygons.  There are separate 
methods for drawing points, lines, polygons, and triangle strips.  The reason for 
this is twofold.  First, the painter will undoubtedly have different techniques to 
render each type and may in fact choose not to render some types.  Second, the 
rendering parameters for each type are probably different, and having different 
methods allows the calling vtkThinPolyDataMapper to change the rendering state 
for each type. 

3.2. vtkPainterDeviceAdapter Interface 
 
class vtkPainterDeviceAdapter : public vtkObject 
{ 
public: 
  vtkTypeRevisionMacro(vtkPainterDeviceAdapter, vtkObject); 
  virtual void PrintSelf(ostream &os, vtkIndent indent); 
 
  virtual void BeginPrimitive(int mode) = 0; 
  virtual void EndPrimitive() = 0; 
  virtual void SendAttribute(int index, int components, int type, 
                             const void *attribute) = 0; 
 
  void SetAttributePointer(int index, 
                           vtkDataArray *attributeArray); 
  virtual void SetAttributePointer(int index, int numcomponents, 
                                   int type, int stride, 
                                   const void *pointer) = 0; 
  virtual void EnableAttributeArray(int index) = 0; 
  virtual void DisableAttributeArray(int index) = 0; 
  virtual void DrawArrays(int mode, vtkIdType first, 
                          vtkIdType count) = 0; 
  virtual void DrawElements(int mode, vtkIdType count, int type, 
                            void *indices) = 0; 
 
  virtual int Compatible(vtkRenderer *renderer) = 0; 
}; 

Figure 4  Interface for vtkPainterDeviceAdapter. 

Figure 4 shows the interface for vtkPainterDeviceAdapter.  The methods in vtk-
PainterDeviceAdapter intentionally parallel the drawing functions available in 
OpenGL.  There is one implementation of vtkPainterDeviceAdapter available: 
vtkOpenGLPainterDeviceAdapter.  I will describe the interface of vtkPainter-
DeviceAdapter in terms of the OpenGL implementation.  This will make the 
interface clear for anyone reasonably familiar with OpenGL programming. 



Like OpenGL 1.1, vtkPainterDeviceAdapter supports two modes of defining 
primitives: directly sending attributes and vertex arrays.  The first mode 
demarcates the primitives with the BeginPrimitive and EndPrimitive methods, 
which have the same function as glBegin and glEnd.  The attributes for each 
vertex are established with the SendAttribute method.  The OpenGL 
implementation of SendAttribute calls one of the glVertex, glColor, glNormal, or 
glTexCoord functions.  The conversion from attribute number to OpenGL 
function is consistent with the vtkPainter aliasing and is given in Table 1.  As 
attributes are specified, a current set of attributes is mainatined.  When 
SendAttribute method is called for attribute 0, all attributes are captured for the 
vertex and sent to the rendering system.  This is consistent with the behavior of 
glVertex. 

The second mode for sending primitives uses vertex arrays.  Instead of sending 
attributes one at a time, the application can store groups of attributes in arrays and 
then instruct the vtkPainterDeviceAdapter to send many of these attributes at 
once.  Before vertex arrays may be used, the attribute pointers must be 
established.  This is done with the SetAttributePointer methods.  They correspond 
to the glVertexPointer, glColorPointer, glNormalPointer, and glTexCoordPointer 
functions.  The mapping from attribute number to OpenGL function is again 
consistent with Table 1.  The attribute arrays in play are selected with the 
EnableAttributeArray and DisableAttributeArray methods, which correspond to 
the glEnableClientState and glDisableClientState functions.  The attributes are 
sent to the rendering system when DrawArrays or DrawElements is called.  As 
part of their arguments, the order to send the attributes is specified.  These two 
methods correspond to the glDrawArrays and glDrawElements functions. 

One final feature of vtkPainterDeviceAdapter is that it can report whether it can 
be used with a particular vtkRenderer with its Compatible method. 

3.3. Some vtkPainter Implementations 

Here is a list of some straightforward implementations of vtkPainter.  That is, 
these implementation directly draw the poly data they are given.  Sections  4 and  5 
list some other vtkPainter implementations with different behavior. 

• vtkStandardPainter is jack of all trades and a master at none.  This is a 
very straightforward implementation of a vtkPainter that can handle any 
type of vtkPainter.  However, little effort is made in optimizing the speed 
of the rendering (in particular, the rendering is seriously API bound).  The 
vtkStandardPainter can be used as catch-all for all types of rendering 
although an alternative method should be used if found. 

• vtkVertexArrayPainter reduces the API overhead by using vertex arrays.  
However, vtkVertexArrayPainter does not work with any poly data that 
has attributes defined over cells (point data only). 



• vtkOpenGLVertexArrayPainter is like vtkVertexArrayPainter but it 
also uses OpenGL extensions for vertex array objects and primitive 
restarts. 

• vtkStreamingPainter iterates over attributes in much the same way as 
vtkStandardPainter but caches the values in vertex arrays rather than 
sending them directly to the vtkPainterDeviceAdapter. 

4. Choosing a vtkPainter 

The main disadvantage of presenting users with a choice is that they now have to 
choose.  Because there was only one poly data mapper, users did not have to 
choose one.  However, now users may be faced with perhaps many painters.  How 
will a user which one to pick?  How can a user know which painter will be best at 
drawing the data on the current platform?  To make matters more complicated, 
not all painters will be capable of performing the drawing.  There may also be 
painters of which the user is unaware. 

 
Figure 5  The painter chooser object. 

The solution is to create another object, called vtkDefaultPainter, that knows 
about a set of painters and their capabilities and choose one for the user.  The 
vtkDefaultPainter object inherits from vtkPainter, as shown in Figure 5, so that it 
looks like any other painter to the rest of the program.  However, 
vtkDefaultPainter does not itself draw anything.  Instead, using the poly data, 
rendering system, and internal flags as criteria, chooses the best fit painters.  The 
drawing is then delegated to these painters. 

vtkPainter 

vtkDefaultPainter 
VertPainter 

LinePainter 

PolyPainter 

StripPainter 



If an application has no reason to pick a particular painter, it simply uses vtk-
DefaultPainter as a default.  That way, the “best” painter will always be chosen.  
Of course, there may be painters of which vtkDefaultPainter is not aware.  How-
ever, when someone writes a new painter or set of painters, they also have the 
option to make a new painter chooser.  She could then register her painter chooser 
with the vtkObjectFactory.  In this way, a user can plug a custom set of painters 
into an application without modifying the application. 

5. Code Reuse 

Another issue with this approach is that of code reuse.  A good deal of code may 
be replicated amongst the painters, whereas a monolithic class such as vtkOpen-
GLPolyDataMapper can easily reuse its own code.  For example, what if we 
wanted a painter that built display lists?  We would still need code to draw the 
primitives.  Rather than re-implement the drawing code from, say, vtkStandard-
Painter, we would prefer to reuse it. 

Some amount of code replication is inevitable, but there are some approaches that 
will drastically reduce the amount of code replication.  One method is simply 
object inheritance.  That is, one object may be able to reuse a significant amount 
of code from another object by incorporating that object as part of itself.  
Although we shall certainly use inheritance in this way in the vtkPainter 
hierarchy, the technique for use in code reuse is limited.  Trying to implement all 
of our code reuse in this will lead to obfuscated code (case in point, see vtkOpen-
GLVertexArrayPolyDataMapper and its subclass vtkNVidiaPolyDataMapper). 

For more code reuse, we again go to the gang-of-four book.  This time we apply 
the Decorator pattern.  In the Decorator pattern, a component delegates most of 
its work to another component.  However, it also modifies the result in some way 
before or after delegating the work. 

For example, consider the display list painter.  The display list painter can 
compile its display lists by calling on another vtkPainter to do the actual drawing.  
Viola, we have any type of rendering mode with the added feature of non 
immediate mode rendering. 

The Decorator pattern gives this design a big advantage.  The decorator painters 
can be combined in weird and wonderful ways.  Here are the currently available 
decorators (and some ideas for decorators). 

• vtkOpenGLDisplayListPainter compiles and renders display lists as 
described previously. 

• vtkSortingPainter reorders the polygons based on the camera direction. 

• vtkFilterPainter applies a filter to the polygon data (not implemented). 



• vtkViewDependentLODPainter applies a view dependent level of detail 
to the polygon data (not implemented). 

6. Using vtkPainter with Shaders 

The current generation of graphics hardware has a high degree of programmabili-
ty.  A user level application can replace the vertex and fragment processing units 
of their cards with their own programs.  This programmability lends to a much 
more powerful rendering process. 

Despite the flexibility of the pipeline, the data is sent to the card in much the same 
way.  Data are sent as attributes on a per-vertex basis.  Thus, the algorithms we 
develop within vtkPainter should also be used to drive modified graphics 
pipelines. 

Although the mechanism is the same, the actual functions used to send attribute 
information changes when using vertex programs.  This was the primary 
motivating factor for creating the vtkPainterDeviceAdapter (see Section  3.2).  The 
vtkPainterDeviceAdapter replaces the OpenGL calls used to send primitives to the 
graphics system.  Because they all use this abstract interface, you can use 
vtkPainters with vertex and fragment programs by subclassing vtkPainterDevice-
Adapter to call the appropriate functions. 

Note that the number of attributes specified per vertex is limited only by the 
underlying implementation of the graphics shader.  Any attribute that is not 
classified as point position, color, normal, or texture coordinate can simply be 
added as an unnamed attribute. 

7. Concluding Remarks 

The vtkPainter hierarchy provides a powerful and flexible architecture for 
implementing mapping in VTK.  Separating the drawing algorithm from the 
mapper makes it easier to implement more efficient drawing algorithms.  It also 
allows the drawing algorithm to be selected and replaced dynamically without a-
priori knowledge.  Using decorators, we can modify the behaviors of our drawing 
algorithms.  We can mix and match behaviors to provide unique and powerful 
mappings.  By having an abstract device interface, most painters are independent 
of the rendering system used.  They can be applied to graphics pipelines with 
programmed units or different rendering APIs altogether. 

The only major disadvantage of the vtkPainter hierarchy is the added overhead of 
the more generic features.  The abstract vtkPainterDeviceAdapter means a higher 
overhead for each function call.  The limitless attributes mean iterating over all 
attribute types.  The looser coupling between decorators and the algorithm they 
modify mean more memory reordering and copying.  However, the flexibility of 



the system should ensure that, in general, a better algorithm for mapping is being 
used.  The appropriate use of rendering resources should mitigate any added 
overhead vtkPainter imposes. 

8. Acknowledgements 

This work was done at Sandia National Laboratories.  Sandia is a multiprogram 
laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


