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Section 1: Introduction to ParaView Catalyst 

Computer simulations are growing in sophistication and producing results of ever greater 

fidelity. This trend has been enabled by advances in numerical methods and increasing 

computing power. Yet these advances come with several costs including massive increases in 

data size, difficulties examining output data, challenges in configuring simulation runs, and 

difficulty debugging running codes. For computer simulation to provide the many significant 

benefits that have been exhaustively documented (“The Opportunities and Challenges of 

Exascale Computing: Summary Report of the Advanced Scientific Computing Advisory 

Committee (ASCAC) Subcommittee,” 

http://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf, 

Fall 2010), it’s imperative to address these issues.  

 

The Catalyst library is a system that addresses such challenges. It is designed to be easily 

integrated directly into large-scale numerical codes. Built on and designed to interoperate with 

the standard visualization toolkit VTK and and scalable ParaView application, it enables 

simulations to intelligently perform analysis, generate relevant output data, and visualize results 

concurrent with a running simulation. This ability to visualize and analyze data from simulations 

is referred to synonymously as in situ processing, co-processing, co-analysis, and co-

visualization. Thus Catalyst is often referred to as a co-processing, or in situ,  library for high-

performance computing (HPC). 

 

In the remainder of this Introduction section, we will motivate the use of Catalyst, and describe 

an example workflow to demonstrate just how easy Catalyst is to use in practice.  

Motivation 

Computing systems have been increasing in speed and capacity for many years now. Yet not all 

of the various subsystems which make up a computing environment have been advancing 

equally as fast. This has led to many changes in the way large-scale computing is performed. 

For example, simulations have long been scaling towards hundreds of thousands of parallel 

computing cores in recognition that serial processing is inherently limited by the bottleneck of a 

single processor. As a result, parallel computing methods and systems are now central to 

modern computer simulation. Similarly, with the number of computing cores increasing to 

address bigger problems, IO is now becoming a limiting factor as the table below indicates. 

While the increase in FLOPS between FY2010 and 2018 is expected to be on the order of 500, 

IO bandwidth is increasing on the order of 100 times. 

 

 2010 2018 Factor Change 

 Peak FLOP Rate 2 Pf/s 

 

1 Ef/s 500 

Input/Output Bandwidth 0.2 TB/s 20 TB/s 100 
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Table 1.1: Potential exascale computer performance. Source: DOE Exascale Initiative 

Roadmap, Architecture and Technology Workshop, San Diego, December, 2009. 

 

This divergence between computational power and IO bandwidth has profound implications on 

the way future simulation is performed. In the past it was typical to break the simulation process 

into three pieces: pre-processing (preparing input); simulation (execution); and post-processing 

(analyzing and visualizing results). This workflow is fairly simple and treats these three tasks 

independently, simplifying the development of new computational tools by relying on a loose 

coupling via data file exchange between each of the pieces. For example, preprocessing system 

are typically used to discretize the domain and specify material properties and boundary 

conditions, finally writing this information out into one or more input files to the simulation code. 

Similarly, the simulation process typically writes output files which are read in by the 

postprocessing system. However limitations in IO bandwidth throw a monkey wrench into this 

process, as the time to read and write data on systems with relatively large computational power 

is becoming a severe bottleneck to the simulation workflow. Savings can be obtained even for 

desktop systems with a small amount of parallel processes. This is shown in the figure below for 

a 6 process run on a desktop machine performing different analysis operations as well as IO. It 

is clear that the abundance of computational resources (cores) results in relatively rapid 

analysis, which even when taken together are faster than the time it takes for the simulation 

code to save a full dataset.  

 
Figure 1.1: Comparison of compute time in seconds for certain analysis operations vs. saving 

the full data set for a 6 process run on a desktop machine. 

 

The root problem is that due to the ever increasing computational power available on the top 

HPC machines, analysts are now able to run simulations with increasing fidelity. Unfortunately 

this increase in fidelity corresponds to an increase in the data generated by the simulation. Due 

to the divergence between IO and computational capabilities, the resulting data bottleneck is 

now negatively impacting the simulation workflow. For large problems, gone are the days when 
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data could be routinely written to disk and/or copied to a local workstation or visualization 

cluster. The cost of IO is becoming prohibitive, and large-scale simulation in the era of cheap 

FLOPS and expensive IO requires new approaches. 

 

One popular, but crude approach relies on configuring the simulation process to save results 

less frequently (for example, in a time-varying analysis, every tenth time step may be saved, 

meaning that 90% of the results are simply discarded). However even this strategy is 

problematic: It is possible that a full save of the simulation data for even a single time step may 

exceed the capacity of the IO system, or require too much time to be practical. 

 

A better approach, and the approach that Catalyst takes, is to change the traditional three-step 

simulation workflow of pre-processing, simulation, and post-processing (shown below) 

 
to one that integrates post-processing directly into the simulation process as shown below. 

 
 

This integration of simulation with post-processing provides several key advantages. First, it 

avoids the need to save out intermediate results for the purpose of post-processing; instead 

post-processing can be performed in situ as the simulation is running, This saves considerable 

time as illustrated below. 

 

 
Figure 1.2: Comparison of full workflow for CTH with post-processing results (left plot) vs. full 

workflow with in situ processing with Catalyst. Results courtesy of Sandia National Laboratories. 
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Further, instead of saving full datasets to disk, IO can be reduced by extracting only relevant 

information. Data extracts like isocontours, data slices, or streamlines are generally orders of 

magnitude smaller than the full dataset (see figure below). Thus writing out extracts significantly 

reduces the total IO cost. 

 

 
Figure 1.3: Comparison of file size in bytes for saving full data set vs. saving specific analysis 

outputs. 

 

Finally, unlike blind subsampling of results, using an integrated approach it becomes possible to 

analyze the current state of the simulation and save only information pertinent to the scientific 

query at hand. For example, it is possible to identify the signs of a forming shock and then save 

only that information in the neighborhood of the shock. 

 

There are other important applications that address the complexity of the simulation process. 

Using co-processing it is possible to monitor the progress of the simulation, and ensure that it is 

progressing in a valid way. It is not uncommon for a long running simulation (maybe days or 

longer in duration) to be tossed out because initial boundary conditions or solution parameters 

were specified incorrectly. By checking intermediate results it’s possible to catch mistakes like 

these and terminate such runs before they incur excessive costs. Similarly, co-processing 

enables debugging of simulation codes. Visualization can be used to great effect to identify 

regions of instability or numerical breakdown. 

 

Catalyst was created as a library to achieve the integration of simulation and post-processing. It 

has been designed to be easy to use and introduces minimal disruption into numerical codes. It 

leverages standard systems such as VTK and ParaView (for post-processing) and utilizes 

modern scientific tools like Python for control and analysis. Overall Catalyst has been shown to 

dramatically increase the effectiveness of the simulation workflow by reducing the amount of IO, 

thereby reducing the time to gain insight into a given problem, and more efficiently utilizing 

modern HPC environments with abundant FLOPS and restricted IO bandwidth. 

Example Workflow 
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The figure below demonstrates a typical workflow using Catalyst for in situ processing. In this 

figure it is assumed that Catalyst has already been integrated into the simulation code (see 

Section 3 for details on how to integrate Catalyst).  The workflow is initiated by creating a 

Python script using ParaView’s GUI which specifies the desired output from the simulation. 

Next, when the simulation starts it loads this script; then during execution any analysis and 

visualization output is generated in synchronous fashion (i.e., while the simulation is running). 

Catalyst can produce images/screenshots, compute statistical quantities, generate plots, and 

extract derived information such as polygonal data or iso-surfaces to visualize geometry and/or 

data. 

 
Figure 1.4: In situ workflow with various Catalyst outputs. 

 

Catalyst has been used by a variety of simulation codes. CTH, a shock physics code from 

Sandia, has been instrumented to use Catalyst. Additionally, Phasta from UC Boulder <insert 

ref>, NPIC and VPIC from LANL, Helios from the Army’s Aeroflightdynamics Directorate, S3D 

and the Sierra simulation framework from Sandia and H3D from UCSD have all been 

instrumented to use Catalyst. Some example outputs are shown below. 
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A  B  

C   D  

Figure 1.5: Various results from simulation codes linked with Catalyst (A: Phasta; B: Helios; C: 

S3D; D: CTH). Note that post-processing with different packages was performed with B and D. 

 

Of course Catalyst is not necessarily applicable in all situations. First, if significant reductions in 

IO are important, then it’s important that the specified analysis and visualization pipelines 

invoked by Catalyst actually produce reduced data size. Another important consideration is 

whether these pipelines scale appropriately. If they do not, then a large-scale simulation may 

bog down during co-processing, detrimentally impacting total analysis cycle time. However, both 

the underlying ParaView and VTK systems have been developed with parallel scaling in mind, 

and generally perform well in most applications. The figure below shows two scale plots for two 
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popular algorithms: slicing through a dataset, and decimating large meshes (e.g., reducing the 

size of an output isocontour).  

 
Figure 1.6: Scaling performance of the slice filter (left) and decimate filter (right). 

Such stellar performance is typical of VTK algorithms, but we recommend that you confirm this 

behavior for your particular analysis pipeline(s). 

Further Information 

The following are various links of interest related to Catalyst: 

● www.paraview.org - the main ParaView page with links to wikis, code, documentation, 

etc. 

● www.paraview.org/paraview/resources/software.php - the main ParaView download 

page -- useful for installing ParaView on local machines for creating Catalyst scripts and 

viewing Catalyst output. 

● catalyst.paraview.org - the main page for Catalyst 

● paraview@paraview.org - the mailing list for general ParaView and Catalyst support 

 

The remainder of this guide is broken up into three main sections. Section 2 addresses users 

that wish to use simulation codes that have already been instrumented with Catalyst. Section 3 

is for developers who wish to instrument their simulation code. Section 4 focuses on those users 

who wish to install and maintain Catalyst on their computing systems.  

  

http://www.paraview.org/
http://www.paraview.org/paraview/resources/software.php
mailto:paraview@paraview.org


10 

Section 2: Catalyst for Users 

This section describes Catalyst from the perspective of the simulation user. As described in the 

previous section, Catalyst changes the workflow with the goal of efficiently extracting useful 

insights from the numerical simulation process.  

 

 
Figure 2.1: Traditional workflow (blue) and Catalyst enhanced workflow (green). 

 

With the Catalyst enhanced workflow, the user specifies visualization and analysis output during 

the pre-processing step. These output data are then generated during the simulation run and 

later analyzed by the user. The Catalyst output can be produced in a variety of formats such as 

rendered images; pseudo-coloring of variables; plots (e.g. bar graphs, line plots, etc.); data 

extracts (e.g. iso-surfaces, slices, streamlines, etc); and computed quantities (e.g. lift on a wing, 

maximum stress, flow rate, etc.). The goal of the enhanced workflow is to reduce the time to 

gain insight into a given physical problem by performing some of the traditional post-processing 

work in situ. While the enhanced workflow uses ParaView Catalyst to produce in situ outputs, 

the user does not need to be familiar with ParaView to use this functionality. Configuration of the 

pre-processing step can be based on generic information to produce desired outputs (e.g. an 

iso-surface value and the variable to iso-surface) and the output can be written in either image 

file or other formats with which the user has experience. 

 

There are two major ways in which the user can utilize Catalyst for in situ analysis and 

visualization. The first is to specify a set of parameters that are passed into a pre-configured 

Catalyst pipeline. The second is to create a Catalyst pipeline script using ParaView’s GUI. 

Pre-Configured Catalyst Pipelines 

Creating pre-configured Catalyst pipelines places more responsibility on the simulation 

developer but can simplify matters for the user. Using pre-configured pipelines can lower the 

barrier to using Catalyst with a simulation code. The concept is that for most filters there is a 

limited set of parameters that need to be set. For example, for a slice filter the user only needs 

to specify a point and a normal defining the slice plane. Another example is for the threshold 

filter where only the variable and range needs to be specified. For each pipeline though, the 

parameters should also include a file name to output to and an output frequency. These 
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parameters can be presented for the user to set in their normal workflow for creating their 

simulation inputs. 

Creating Catalyst Scripts in ParaView 

The downside to using pre-configured scripts is that they are only as useful as the simulation 

developer makes them. These scripts can cover a large amount of use cases of interest to the 

user but inevitably the user will want more functionality or better control. This is where it is 

useful for the simulation user to create their own Catalyst Python scripts pipeline using the 

ParaView GUI.  

 

There are two main prerequisites for creating Catalyst Python scripts in the ParaView GUI. The 

first is that ParaView is built with the CoProcessing Script Generator plugin enabled (it is 

enabled by default when building ParaView from source as well as for versions of ParaView 

installed from the available installers). Note that the version of ParaView used to generate the 

script should also correspond to the version of Catalyst that the simulation code runs with. The 

second prerequisite is that the user has a representative data set to start from. What we mean 

by this is that when reading the data set from disk into ParaView that it is the same data set type 

(e.g. vtkUnstructuredGrid, vtkImageData, etc.) and has the same attributes defined over the 

grids as the simulation adaptor code will provide to Catalyst during simulation runs. Ideally, the 

geometry and the attribute ranges will be similar to what is provided by the simulation run’s 

configuration. The steps to create a Catalyst Python pipeline in the ParaView GUI are: 

 

1. First load the ParaView plugin for creating the scripts. Do this by going to the Tools 

menu and selecting “Manage Plugins...”. In the window that pops up, select 

CoProcessingPlugin and press the “Load Selected” button. After this, press the Close 

button to close the window. This will create two new top-level menu items, Writers and 

CoProcessing. Note that you can have the plugin automatically loaded when ParaView 

starts up by expanding the CoProcessingPlugin information by clicking on the + sign in 

the box to the left of it and then by checking the box to the right of Auto Load. 

 

2. Next, load in a representative data set and create a pipeline. In this case though, instead 

of actually writing the desired output to a file we need to specify when and where the 

files will be created when running the simulation. For data extracts we specify at this 

point that information by choosing an appropriate writer under the Writers menu. The 

user should specify a descriptive file name as well as a write frequency in the Properties 

panel as shown in the image below. The file name must contain a %t in it as this gets 

replaced by the time step when creating the file. Note that the step to specify screenshot 

outputs for Catalyst is done later. 
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Figure 2.2: Example of a pipeline with two writers included. The first writes output from 

the Calculator filter and the second write output from the Slice filter. The highlighted 

polydata writer also shows the file name and the write frequency for Catalyst output. 

 

3. Once the full Catalyst pipeline has been created, the Python script must be exported 

from ParaView. This is done by choosing the Export State wizard under the 

CoProcessing menu. The user can click on the Next button in the initial window that 

pops up. 

 

4. After that, the user must select the sources (i.e. pipeline objects without any input 

connections) that the adaptor will create and add them to the output. In this case it is the 

fullgrid_99.pvtu source from the above figure that is analogous to the input that the 

simulation code’s adaptor will provide. The user can either double click on the desired 

sources in the left box to add them to the right box or select the desired sources in the 

left box and click Add. This is shown in the Figure below. After all of the proper sources 

have been selected, click on Next. 
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Figure 2.3: Selecting fullgrid_99.vtu as an input for the Catalyst pipeline. The left image 

shows the source not being selected and the right shows it being selected. 

 

5. The next step is labeling the inputs. The most common case is a single input in which 

case we use the convention that it should be named “input”, the default value. For 

situations where the adaptor can provide multiple sources (e.g. fluid-structure interaction 

codes where a separate input exists for the fluid domain and the solid domain), the user 

will need to label which input corresponds to which label. This is shown in the figure 

below. After this is done, click Next. 

 
Figure 2.4: Providing identifier strings for Catalyst inputs. 

 

6. The next page in the wizard gives the user the option to allow Catalyst to check for a 

Live Visualization connection and to output screenshots from different views. Check the 

box next to Live Visualization to enable it. For screenshots, there are a variety of 

options. The first is a global option which will rescale the lookup table for pseudo-

coloring to the current data range for all views. The other options are per view and are: 

○ Image type -- choice of image format to output the screenshot in. 
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○ File Name -- the name of the file to create. It must contain a %t in it so that the 

actual simulation time step value will replace it. 

○ Write Frequency -- how often the screenshot should be created. 

○ Magnification -- the user can create an image with a higher resolution than the 

resolution shown in the current ParaView GUI view. 

○ Fit to Screen -- specify whether to fit the data in the screenshot. This gives the 

same results in Catalyst as clicking on the  button in the ParaView GUI. 

 

If there are multiple views, the user should toggle through each one with the Next View 

and Previous View buttons in the window. After everything has been set, click on the 

Finish button to create the Python script. 

 
Figure 2.5: Setting the parameters for outputting screenshots. 

 

7. The final step is specifying the name of the generated Python script. Specify a directory 

and a name to save the script at and click OK when finished. 

Creating a Representative Data Set 

A question that often arises is how to create a representative data set. There are two ways to do 

this. The first is by using the sources and filter in ParaView and the second one is to run the 

simulation with Catalyst with a script that outputs the full grid with all attribute information. 

The easiest grids to create within the GUI are image data grids (i.e. uniform rectilinear grids), 

polydata and unstructured grids. For those knowledgeable enough about VTK, the 

programmable source can also be used to create all grid types. If a multi-block grid is needed, 

the group datasets filter can be used to group together multiple data sets into a single output. 
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The next step is to create the attribute information (i.e. point and/or cell data). This can be easily 

done with the calculator filter as it can create data with one or three components, name the 

array to match the name of the array provided by the adaptor, and set an appropriate range of 

values for the data. Once this is done, the user should save this out and then read the file back 

in to have the reader act as the source for the pipeline.The second method involves running the 

simulation with Catalyst with a general Python pipeline script that outputs the data set in its 

proper file format.  

Manipulating Python scripts 

For users that are comfortable programming in Python, we encourage them to modify the given 

scripts as desired. The following information can be helpful for doing this: 

● Sphinx generated ParaView Python API documentation at 

www.paraview.org/ParaView3/Doc/Nightly/www/py-doc/index.html.  

● Using the ParaView GUI trace functionality to determine how to create desired filters and 

set their parameters. This is done with Start Trace and Stop Trace under the Tools 

menu. 

● Using the ParaView GUI Python shell with tab completion. This is done with Python 

Shell under the Tools menu. 

Avoiding Data Explosion 

A key point to keep in mind when creating Catalyst pipelines is that the choice and order of 

filters can make a dramatic difference in the performance of Catalyst. Often, the source of 

performance degradation is when dealing with very large amounts of data. For memory-limited 

machines like today’s supercomputers, poor decisions when creating a pipeline can cause the 

executable to crash due to insufficient memory. The worst case scenario is creating an 

unstructured grid from a topologically regular grid. This is because the filter will change from 

using a compact grid data structure to a more general grid data structure.  

 

We classify the filters into several categories, ordered from most memory efficient to least 

memory efficient: 

1. Total shallow copy or output independent of input -- negligible memory used in creating a 
filter’s output. 

2. Add field data -- the same grid is used but an extra variable is stored. 
3. Topology changing, dimension reduction -- the output is a polygonal data set but the output 

cells are one or more dimensions less than the input cell dimensions. 
4. Topology changing, moderate reduction -- reduces the total number of cells in the data set 

but outputs in either a polygonal or unstructured grid format. 
5. Topology changing, no reduction -- does not reduce the number of cells in the data set while 

changing the topology of the data set and outputs in either a polygonal or unstructured grid 
format. 
 

When creating a pipeline, the filters should generally be ordered in this same fashion to limit 

data explosion. For example, pipelines should be organized to reduce dimensionality early. 

Additionally, reduction is preferred over extraction (e.g. the Slice filter is preferred over the Clip 

http://www.paraview.org/ParaView3/Doc/Nightly/www/py-doc/index.html


16 

filter). Extracting should only be done when reducing by an order of magnitude or more. When 

outputting data extracts, subsampling (e.g. the Extract Subset filter or the Decimate filter) can 

be used to reduce file size but caution should be used to make sure that the data reduction 

doesn’t hide any fine features. Below we categorize the common filters in ParaView. 

Total Shallow Copy or Output Independent of Input 

Annotate Time, Append Attributes, Extract Block, Extract Datasets, Extract Level, Glyph, Group 

Datasets, Histogram, Integrate Variables, Normal Glyphs, Outline, Outline Corners, Plot Over 

Line, Probe Location 

Add Field Data 

Block Scalars, Calculator, Cell Data to Point Data, Compute Derivatives, Curvature, Elevation, 

Generate Ids, Generate Surface Normals, Gradient, Level Scalars, Median, Mesh Quality, 

Octree Depth Limit, Octree Depth Scalars, Point Data to Cell Data, Process Id Scalars, Random 

Vectors, Resample with Dataset, Surface Flow, Surface Vectors, Transform, Warp (scalar), 

Warp (vector) 

Topology Changing, Dimension Reduction 

Cell Centers, Contour, Extract CTH Fragments, Extract CTH Parts, Extract Surface, Feature 

Edges, Mask Points, Outline (curvilinear), Slice, Stream Tracer  

Topology Changing, Moderate Reduction 

Clip, Decimate, Extract Cells by Region, Extract Selection, Quadric Clustering, Threshold  

Topology Changing, No Reduction 

Append Datasets, Append Geometry, Clean, Clean to Grid, Connectivity, D3, Delaunay 2D/3D, 

Extract Edges, Linear Extrusion, Loop Subdivision, Reflect, Rotational Extrusion, Shrink, 

Smooth, Subdivide, Tessellate, Tetrahedralize, Triangle Strips, Triangulate 
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Section 3: Catalyst for Developers 

In this section we describe how developers can interface a simulation code with the Catalyst 

libraries. The interface to the simulation code is called an adaptor. Its primary function is to 

adapt the internal structures of the simulation code information and transform these structures 

into forms that Catalyst can process. This process is depicted in the figure below. 

 

 
A developer creating an adaptor needs to have knowledge of the simulation code data 

structures, relevant understanding of the appropriate VTK data model, and the Catalyst API. 

Examples of adaptors are available online at https://github.com/acbauer/CatalystExampleCode. 

High-Level View 

While interfacing Catalyst with a simulation code may require significant effort, the impact on the 

code base is minimal. In most situations, there are only three functions that need to be called 

from the existing simulation code: 

 

1. Initialize -- Catalyst needs to be initialized in order to be put in the proper state. For 

codes that depend on MPI, this is normally done after MPI_Init() is called. The initialize method 

is often implemented in the adaptor. 

2. CoProcess -- This function calls the adaptor code to check on any computations that 

Catalyst may need to do. This call needs to provide the grid and field data structures to the 

adaptor as well as time and time step information. It may also provide additional control 

information but that is not required. This is normally called at the end of every time step update 

in the simulation code (i.e. after the fields have been updated to the new time step and/or the 

grid has been modified). 

3. Finalize -- On completion the simulation code must call Catalyst to finalize any state and 

properly clean up after itself. For codes that depend on MPI, this is normally done before 

MPI_Finalize() is called. The finalize method is often implemented in the adaptor. 

 

This is demonstrated in the code below: 

MPI_Init(argc, argv); 

#ifdef CATALYST 

CatalystInit(argc, argv); 

#endif 

for(int timeStep=0;timeStep<numberOfTimeSteps;timeStep++) 

  { 

  <update grids and fields to timeStep> 

  #ifdef CATALYST 

  CatalystCoProcess(timeStep, time, <grid info>, <field info>); 

  #endif 

  } 

https://github.com/acbauer/CatalystExampleCode
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#ifdef CATALYST 

CatalystFinalize(); 

#endif 

MPI_Finalize(); 

 

The adaptor code should be implemented in a separate source file. The reason for this is that it 

simplifies the simulation code build process. The fact that there are only three calls to the 

adaptor from the simulation code also helps in this matter. 

 

As shown above, the adaptor code is responsible for the interface between the simulation code 

and Catalyst. Besides being responsible for initializing and finalizing Catalyst, the other 

responsibilities of the adaptor are: 

● Querying Catalyst to see if any co-processing needs to be performed. 

● Providing VTK data objects representing the grids and fields for co-processing. 

 

The pseudo-code shown below gives an idea of what this would look like in the adaptor: 

void CatalystCoProcess(int timeStep, double time, <grid info>, 

                       <field_info>) 

{ 

1. Specify current timeStep and time for Catalyst 

2. Check with Catalyst if anything needs to be done this call 

3. If nothing needs to be done this call, return 

4. Create VTK grid 

5. Create VTK fields and associate with VTK grid 

6. Specify VTK grid for Catalyst 

7. Call Catalyst to perform co-processing (i.e. execute VTK 

   pipelines) 

} 

A complete example of a simple adaptor is shown below. Following this section we’ll discuss the 

details of the API to help solidify the understanding of the flow of information. 

 

// static data 

vtkCPProcessor* Processor = NULL; 

 

void CatalystInit(int numScripts, char* scripts[]) 

{ 

  if(Processor == NULL) 

    { 

    Processor = vtkCPProcessor::New(); 

    Processor->Initialize(); 

    } 

  // scripts are passed in as command line arguments 

  for(int i=0;i<numScripts;i++) 

    { 

    vtkCPPythonScriptPipeline* pipeline = 
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      vtkCPPythonScriptPipeline::New(); 

    pipeline->Initialize(scripts[i]); 

    Processor->AddPipeline(pipeline); 

    pipeline->Delete(); 

    } 

} 

 

void CatalystFinalize() 

{ 

  if(Processor) 

    { 

    Processor->Delete(); 

    Processor = NULL; 

    } 

} 

 

// The grid is a uniform, rectilinear grid that can be specified 

// with the number of points in each direction and the uniform 

// spacing between points. There is only one field called 

// temperature which is specified over the points/nodes of the 

// grid. 

void CatalystCoProcess( 

  int timeStep, double time, unsigned int numPoints[3],     

  double spacing[3], double* field) 

 { 

  vtkCPDataDescription* dataDescription = 

    vtkCPDataDescription::New(); 

  dataDescription->AddInput("input"); 

  dataDescription->SetTimeData(time, timeStep); 

  if(Processor->RequestDataDescription(   

     dataDescription) != 0) 

    { 

    // Catalyst needs to output data 

    // Create a uniform grid 

    vtkImageData* grid = vtkImageData::New(); 

    grid->SetExtents(0, numPoints[0]-1, 0, numPoints[1]-1, 

                     0, numPoints[2]-1);  

    dataDescription->GetInputDescriptionByName("input") 

      ->SetGrid(grid); 

    grid->Delete(); 

    // Create a field associated with points 

    vtkDoubleArray* array = vtkDoubleArray::New(); 

    array->SetName(“temperature”); 

    array->SetArray(field, grid->GetNumberOfPoints(), 1); 

    grid->GetPointData()->AddArray(array); 
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    array->Delete(); 

    Processor->CoProcess(dataDescription); 

    } 

  dataDescription->New(); 

} 

Overview 

Before we go into the details of the VTK and Catalyst API required for writing the adaptor code, 

we would like to highlight some general details to keep in mind: 

 

● VTK does indexing starting at 0. 

● A vtkIdType is an integer type that is set during Catalyst configuration. It can either be a 

32 bit or a 64 bit integer and by default is based on a native data type. A user may 

decide to manually configure Catalyst to use either size. The advantage here could be 

reusing existing data array memory instead of allocating extra memory to store 

essentially the same information in a different data type. 

● The most up-to-date Doxygen generated VTK documentation can be found at 

www.vtk.org/doc/nightly/html/classes.html. 

● The most up-to-date Doxygen generated ParaView documentation can be found at 

www.paraview.org/ParaView3/Doc/Nightly/html/classes.html 

 

The most in-depth knowledge of VTK that is required for writing the adaptor code is how to 

create the VTK objects that are used to represent the grid and the field information.  

Since VTK is a general toolkit, it has a variety of ways of representing grids. The reason for this 

is that it needs the generality of being able to handle topologically unstructured grids while also 

having the constraint that it can handle simpler grids (e.g. topologically uniform, axis-aligned 

grids) efficiently as well. The following figure shows the types of grids that are supported in VTK.  

 

http://www.vtk.org/doc/nightly/html/classes.html
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Figure 3.1: VTK data set types. 

 

In addition to these data set types, VTK also supports a wide variety of cell types as well. These 

include all of the normal 2D and 3D linear cell types such as triangles, quadrilaterals, 

tetrahedron, pyramids, prisms/wedges and hexahedron. VTK also supports associating field 

information with each point or cell in the data sets. In VTK this is called attribute data in general 

and point data and cell data when it is with respect to points or cells in the data set, respectively. 

Figure 3.10 below shows the difference between point data and cell data.  

 

The overall structure of a VTK data set is that it has grid information, arrays for information 

associated with each point in the grid and arrays for information associated with each cell in the 

grid. This is shown in the figure below. 
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Figure 3.2: High level view of a VTK data set. 

VTK Data Object API 

It is important to know that VTK uses a pipeline architecture to process data. See the Pipeline 

section on page 46 of the ParaView User’s Guide 

(http://www.paraview.org/paraview/help/download/ParaView%20User%27s%20Guide%20v3.10

.pdf). This pipeline architecture has some consequences for writing the adaptor. The first is that 

the objects that process the data, filters in VTK parlance, are not allowed to modify any input 

data objects. The second is since VTK is a visualization system, once data objects are created 

they are typically not incrementally modified (e.g. removing a cell from a grid). Hence many of 

the data objects are stored in flat arrays in memory to preserve computational efficiency. 

 

In the sections that follow, we do not discuss the full public API of each object since just a few 

methods are used when creating data objects from scratch. In addition, most of the methods 

described below are “setter” methods with corresponding “getter” methods that are not 

described here. For a full description of these classes we refer the reader to the online Doxygen 

documentation and the VTK and ParaView User’s Guides. 

vtkObject 

Almost all VTK classes derive from vtkObject. This class provides many basic capabilities 

including reference counting (to handle the creation, sharing and deletion of objects). Reference 

counting enables the VTK user to track how many places an instantiated object is used as well 

as when it can be deleted (i.e. when its reference count goes to zero). VTK doesn’t allow 

vtkObjects to be created directly through their constructors. Instead all objects that derive from 

vtkObject use the static New() method to create a new instance (this method is referred to as an 

object factory). Because of reference counting, users are also not allowed to directly delete an 

object. Instead, the reference count is reduced on an instance by invoking the Delete() method 

on it when it is no longer needed within a particular scope. Thus the vtkObject (and its 

http://www.paraview.org/paraview/help/download/ParaView%20User%27s%20Guide%20v3.10.pdf
http://www.paraview.org/paraview/help/download/ParaView%20User%27s%20Guide%20v3.10.pdf
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subclasses) will automatically be deleted when the reference count goes to zero. The following 

code snippet shows an example of how VTK objects are created, referenced and deleted. 

 

vtkDoubleArray* a = 

  vtkDoubleArray::New();    // a’s ref count = 1 

vtkPointData* pd = 

  vtkPointData::New()  ;    // pd’s ref count = 1 

pd->AddArray(a);            // a’s ref count = 2 

a->Delete();                // a’s ref count = 1 

a->SetName(“an array”);     // valid as a hasn’t been deleted 

pd->Delete();               // deletes both pd and a 

 

Some key points here, dereferencing a or pd after pd has been deleted is a bug. It is valid 

though to dereference a pointer to a VTK object after Delete() has been called on it as long as 

its reference count is one or greater. To simplify the management of objects that derive from 

vtkObject, vtkWeakPointer, vtkSmartPointer and vtkNew can be used. These are covered in the 

appendix. 

vtkDataArray 

The first major VTK data object we will discuss is vtkDataArray and its concrete 

implementations (e.g. vtkDoubleArray, vtkIntArray, vtkFloatArray, vtkIdTypeArray, etc.). 

Concrete classes that derive from vtkDataArray typically store numerical data and are always 

homogeneous. They also store their data in a contiguous block of memory and assume that the 

data is not sparse. Since there can be many data arrays associated with a grid, we identify them 

with a string name and use the const char* GetName() and void SetName(const char* name) 

methods to get and set the name of the array, respectively. vtkDataArray uses the concept of 

tuples and components. A component is a single data value of a tuple. A tuple is a set of pieces 

of information representing a single concept.  For example, for representing pressure there 

would be a single component in each tuple. For velocity in a 3D space there would be 3 

components in a tuple. The number of tuples in a vtkDataArray corresponds to the number of 

these objects to be represented. For example, if the array was being used to store values at 

nodes, or points, of the grid, the number of tuples for the array would be equal to the number of 

nodes in the grid it is defined over. This is shown in the figure below where we have a tuple of 

size 3 and 6 nodes in the grid, resulting in an array of size 18. 
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Figure 3.3: Grid representation of a vtkDataArray specified at nodes of the grid. The node index 

is in red and the array index of each tuple component is shown in blue. 

 

vtkDataArray can either use existing memory or allocate its own space to store the data. The 

preferred way is to use existing memory if the layout matches what VTK is expecting. If the 

memory layout matches, this is the recommended way since no extra memory is needed to 

store the information in VTK format and no memory copy operation needs to be performed. The 

methods to do this for a vtkFloatArray are: 

● void SetArray(float* array, vtkIdType size, int save) 

● void SetArray(float* array, vtkIdType size, int save, int deleteMethod) 

The parameters are: 

● array -- the pointer to the existing chunk of memory to be used. 

● size -- the length of the array which needs to be at least the number of tuples multiplied 

by the number of components in the vtkDataArray. 

● save -- set to 1 to keep the class from deleting the array when it is deleted or set to 0 to 

have the array deleted when the object is deleted. By default the memory will be freed 

using free(). 

● deleteMethod -- set to VTK_DATA_ARRAY_FREE to use free() or set to 

VTK_DATA_ARRAY_DELETE to use delete[] to free the memory.  

 

As VTK filters don’t modify their input, it is guaranteed that Catalyst will not modify any of the 

values in the passed in array. An example of creating a vtkFloatArray from existing memory is 

shown below: 

 

vtkFloatArray* arr = vtkFloatArray::New(); 

arr->SetName(“an array”); 

float* values = new float[300]; 

arr->SetArray(values, 300, 0,    
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              vtkDoubleArray::VTK_DATA_ARRAY_DELETE); 

arr->SetNumberOfComponents(3); 

 

In this example, values will be deleted when the array arr gets deleted. It will have 100 tuples 

and 3 components. The component values still need to be specified however. 

 

If the memory layout doesn’t match what VTK expects, the adaptor will have to allocate 

additional memory in order to pass the data to Catalyst. There are multiple ways to set the size 

of the array. For adaptors the length of the array is usually known before it is constructed. In this 

case the user should call SetNumberOfComponents(int) first and then 

SetNumberOfTuples(vtkIdType) to set the proper length. The values of the array should be set 

using one of the following, assuming we’re using a vtkFloatArray object: 

 

● void SetValue(vtkIdType id, float value) -- set a single value at location id in the array. 

● void SetTupleValue(vtkIdType i, float* tuple) -- set all components of the i’th tuple in the 

array. 

 

It is important to note that the above methods do not perform range checking. This enables 

faster execution time but at the expense of potential memory corruption. Some sample code is 

shown below. 

 

 vtkIntArray* arr = vtkIntArray::New(); 

 arr->SetNumberOfComponents(3); 

 arr->SetNumberOfTuples(100); 

 arr->SetName(“an array”); 

 int tuple[3]; 

 for(vtkIdType i=0;i<100;i++) 

   { 

   tuple[0] = <value>;  

   tuple[1] = <value>; 

   tuple[2] = <value>; 

   arr->SetTupleValue(i, tuple); 

   } 

 

If the array length isn’t know ahead of time then the following methods, which perform range 

checking and allocate memory as necessary, should be used, again assuming that the object is 

a vtkFloatArray: 

 

● vtkIdType InsertNextValue(float value) -- set a single value in the next location in the 

array and return the newly created array index. 

● vtkIdType InsertNextTupleValue(const float* tuple) -- set the next tuple of values in the 

array and return the newly created tuple index. 

● void InsertValue(vtkIdType id, float value) -- set the value at location id in the array to 

value. 
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● void InsertTupleValue(vtkIdType i, const float* tuple) -- set the tuple values for the array 

at tuple location i. 

 

Note that all of these methods will allocate memory as needed. Similar to C++’s stl vector, 

memory is not allocated for every call to these methods though but doubled when inserting 

beyond its capacity. The Squeeze() method can be used to regain all of the unused capacity. 

For the last two functions, the user needs to be careful since using them can result in 

uninitialized values to be contained in the array. 

Grid Types 

VTK has a variety of grid types to choose from. They all derive from vtkDataSet and are 

inherently spatial structures. vtkDataSet also allows the subcomponents, i.e. the points and cells 

in VTK parlance, to have attributes stored in vtkDataArrays set on them. The types of grids 

available in VTK are polygonal mesh/polydata, unstructured grid, structured (curvilinear) grid, 

rectilinear grid and image data/uniform rectilinear grid. In VTK these grid types correspond to 

the following classes respectively: vtkPolyData, vtkUnstructuredGrid, vtkStructuredGrid, 

vtkRectilinearGrid and vtkImageData/vtkUniformGrid. Examples of each are shown in the Figure 

3.1. The class hierarchy is shown below: 

 
Figure 3.4: Class hierarchy for VTK data sets.  

 

The most efficient grids for storage take advantage of a predefined topology and geometry. 

They are also the least general.  

Topologically Structured Grids 

vtkImageData, vtkUniformData, vtkRectilinearGrid and vtkStructuredGrid all assume a regular 

grid topology. When iterating over points or cells, the order is fastest in the logical i direction, 

next in the logical j direction and finally in the logical k direction. For axis-aligned grids these 

correspond to the x-, y-, and z-directions, respectively. For these regular grids, we use what are 

called extents for describing their topology as well as how they are partitioned over multiple 

processes. Extents are arrays of 6 integers which specify the start and end indices of the points 

in each of the three logical directions. The whole extent is the extent for the entire grid and sub-

extent, often referred to just as the extent, is one portion of the whole extent that is accessed at 

a time. For adaptors the sub-extent will usually correspond to an individual process’s part of the 
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grid. This is shown in the figure below. Note that due to using extents, the partitioning is forced 

to be logically blocked into contiguous pieces. While extents exist for each logical direction, 

these grids are not required to have more than a single point in any logical direction. This allows 

the creation of 1D, 2D or 3D structured grids. 

 

 
Figure 3.5: Three process partition of a grid. The whole extent for the points is (0, 8, 0, 6, 0, 0). 

Process 0 (blue) has an extent of (0, 3, 0, 6, 0, 0) which results in 21 points and 18 cells, 

process 1 (grey) has an extent of (3, 8, 0, 3, 0, 0) which results in 28 points and 18 cells, and 

process 2 (red) has an extent of (3, 8, 3, 6, 0, 0) which results in 28 points and 18 cells. 

 

For each of VTK’s topologically structured grid types, the user must set the extent for each 

process. This can be done with either of the two following methods: 

 

● void SetExtent (int extent[6]) 

● void SetExtent (int x1, int x2, int y1, int y2, int z1, int z2) 

 

Negative values for extents can be used as long as the second extent in a direction is greater 

than or equal to the first. The user should not use the SetDimensions() methods of any of these 

classes as this will cause problems with partitioning the structured grids in parallel. Additionally, 

in the adaptor the user must call either of the following two methods in the 

vtkCPInputDataDescription object for setting the whole extent of the grid: 

 

● void SetWholeExtent (int x1, int x2, int y1, int y2, int z1, int z2) 

● void SetWholeExtent (int extent[6]) 

 

We will go into the details of this later but it is worth mentioning here as this step is often 

forgotten. 

 

As we mentioned earlier, iterating over points and cells is fastest in the logical i direction, then 

the logical j direction, and slowest in the logical k direction. Indexing of points and cells is done 
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independent of its whole extent but the logical coordinates are with respect to the whole extent. 

For example, the flat indexing and logical indexing of the points and cells are shown in the figure 

below for process 2’s partition in the above figure. 

 
Figure 3.6: Showing the cell numbering in white and the point numbering for the corners for 

process 2’s extents in the above figure. The first number is its index and the set of numbers in 

parentheses are its logical global coordinates. 

vtkImageData and vtkUniformGrid 

vtkImageData and vtkUniformGrid, which derives from vtkImageData, are axis-aligned grids with 

constant spacing between the points. vtkUniformGrid adds in blanking to vtkImageData which 

can be useful for overset grid types (covered later). Beyond setting the extents of the grid, the 

spacing between points in each direction must be specified as well as the geometric location of 

logical point (0,0,0), i.e. the origin of the grid. The spacing can be set as: 

 

● void SetSpacing(double x, double y, double z) 

● void SetSpacing(double x[3]) 

 

The origin of the grid can be set as: 

 

● void SetOrigin(double x, double y, double z) 

● void SetOrigin(double x[3]) 

 

This is for logical coordinate (0,0,0), even if the whole extent does not contain (0,0,0). This is all 

that is required to set the geometry and topology of a vtkImageData object. The example below 

shows how to create a vtkImageData: 

 

vtkImageData* grid = vtkImageData::New(); 
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grid->SetExtent(-10, 10, -20, 20, -10, 10); 

grid->SetSpacing(2.0, 1.0, 2.0); 

grid->SetOrigin(100., 100., 100.); 

 

In this example, the grid will have 18,081 points and 16,000 cells. The bounds of grid will be 

80≦x,y,z≦120.  

 

If blanking is needed then the following vtkUniformGrid methods can be used for blanking points 

and/or cells: 

 

● void BlankPoint(vtkIdType ptId) 

● void BlankPoint(const int i, const int j, const int k) 

● void BlankCell(vtkIdType cellId) 

● void BlankCell(const int i, const int j, const int k) 

 

The above methods operate on individual grid entities. The user can create a 

vtkUnsignedCharArray to manually specify grid entity blanking as well. Array values of 1 

indicate the grid entity is visible and values of 0 indicate the grid entity is blanked. The 

vtkUniformGrid methods to set the point and cell blanking arrays with a vtkUnsignedCharArray 

are: 

 

● void SetPointVisibilityArray (vtkUnsignedCharArray *pointVisibility) 

● void SetCellVisibilityArray (vtkUnsignedCharArray *cellVisibility) 

 

Note that a cell is considered visible (i.e. not blanked) if both it is visible and all of its points are 

visible. Point visibility though is independent of any blanked cells. 

vtkRectilinearGrid 

The vtkRectilinearGrid class is the next more general grid representation in VTK. It is still 

topologically structured but geometrically it is a semi-regular array of points. The cells are still 

axis-aligned but the spacing between the points in each direction is specified with a 

vtkDataArray. This is done with the following methods: 

 

● void SetXCoordinates(vtkDataArray *xCoordinates) 

● void SetYCoordinates(vtkDataArray *yCoordinates) 

● void SetZCoordinates(vtkDataArray *zCoordinates) 

 

Note that the number of components in each of these arrays should be 1 and the length should 

be equal to the local process’s extent in that direction, not the whole extent. An example of how 

to construct a rectilinear grid is: 

 

vtkRectilinearGrid* grid = vtkRectilinearGrid::New(); 

grid->SetExtent(0, 10, 0, 20, 0, 0); 

vtkFloatArray* xCoords = vtkFloatArray::New(); 
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xCoords->SetNumberOfTuples(11); 

for(vtkIdType i=0;i<11;i++) 

  xCoords->SetValue(i, i*i); 

vtkFloatArray* yCoords = vtkFloatArray::New(); 

yCoords->SetNumberOfTuples(21); 

for(vtkIdType i=0;i<21;i++) 

  yCoords->SetValue(i, i*i); 

grid->SetXCoordinates(xCoords); 

xCoords->Delete(); 

grid->SetYCoordinates(yCoords); 

yCoords->Delete(); 

 

In this example, the grid has 231 points and 200 2D cells. The points are irregularly spaced in 

both the X and Y directions. 

vtkPointSet 

The remaining grids, vtkStructuredGrid, vtkPolyData and vtkUnstructuredGrid, are all 

geometrically irregular grids. Subsequently, they all derive from vtkPointSet which explicitly 

stores the point locations in a vtkPoints object which has a vtkDataArray as a data member. The 

first way to set the point coordinates of the grid is to create a vtkDataArray and use vtkPoints’ 

void SetData(vtkDataArray* coords) method. The vtkDataArray object must have three 

components (i.e. tuple size of 3) in order to be used as the coordinates of a vtkPointSet. The 

other option for creating the points is to build up the points array directly in vtkPoints. The first 

method to call is to set the proper data precision for the coordinate representation using void 

SetDataTypeToFloat() or void SetDataTypeToDouble(). If the number of points are known a 

priori, the next call should be setting the number of points with void 

SetNumberOfPoints(vtkIdType numberOfPoints). After that, the coordinates can be set with the 

following methods: 

 

● void SetPoint(vtkIdType id, float x[3]) 

● void SetPoint(vtkIdType id, double x[3]) 

● void SetPoint vtkIdType id, double x, double y, double z) 

 

It is important to remember that the Set methods are the fastest but the reason for that is that 

they don’t do range checking (i.e. they can overwrite memory not allocated by the array). 

If the number of points is not known a priori, then the user should allocate an estimated size 

with the int Allocate (const vtkIdType size, const vtkIdType ext=1000) method. size is the 

estimated size. When a value is inserted which exceeds the vtkPoint object’s capacity, the 

capacity of the object is doubled. This used to be what the ext parameter was used for but that 

is no longer used.  As with vtkDataArray, there are Insert methods to add in coordinate values to 

vtkPoints and allocate memory as needed. They are: 

 

● void InsertPoint (vtkIdType id, const float x[3]) 

● void InsertPoint (vtkIdType id, const double x[3]) 
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● void InsertPoint (vtkIdType id, double x, double y, double z) 

● vtkIdType InsertNextPoint (const float x[3]) 

● vtkIdType InsertNextPoint (const double x[3]) 

● vtkIdType InsertNextPoint (double x, double y, double z) 

 

We reiterate the warning that using InsertPoint() improperly may lead to having uninitialized 

data in the array. Use void Squeeze() to reclaim unused memory. 

 

The final step is to define the vtkPoints in the vtkPointSet via the void SetPoints(vtkPoints* 

points) method. 

vtkStructuredGrid 

vtkStructuredGrid is still a topologically regular grid but is geometrically irregular. All of the major 

functions for creating a vtkStructuredGrid have been discussed already. The only thing left to 

mention is that the ordering of the coordinates in vtkPoints must match the ordering that they 

are iterated through. This was shown in the figure above. An example of creating a structured 

grid is: 

 

vtkStructuredGrid* grid = vtkStructuredGrid::New(); 

grid->SetExtent(0, 10, 0, 20, 0, 0); 

vtkPoints* points = vtkPoints::New(); 

points->SetNumberOfPoints(11*21); 

for(int j=0;j<21;j++) 

  for(int i=0;i<11;i++) 

     points->SetPoint(i+j*11, i, j, 0); 

 grid->SetPoints(points); 

 points->Delete(); 

Cell Types 

The two grid types left, vtkPolyData and vtkUnstructuredGrid, are the only grids that are not  

topologically structured and typically are also  not geometrically irregular. Beside point 

definitions, they consist of a collection of cells of different types. Before describing into these 

two grid types, we discuss the types of cells that are available in VTK.  

 

VTK supports a wide variety of cell types. As cells are implicitly stored as a type and a list of 

point ids in VTK’s unstructured grids as a vtkCellArray (discussed later), we don’t need to go 

into the API of vtkCell or any of its  subclasses. Instead, we provide the information required for 

adding cells to vtkPolyData and vtkUnstructuredGrid. All that is needed is the cell type value 

and the canonical ordering of the points that define the cell’s geometry. The two figures below 

give this information. Note that the cell definitions are in the vtkCellType.h header file. For a 

more in-depth guide to all of the cell types we refer the reader to the VTK User’s Guide 

(http://www.kitware.com/products/books/vtkguide.html).  

http://www.kitware.com/products/books/vtkguide.html
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Figure 3.7: Straight-edge cells. 

 
Figure 3.8: Curvi-linear edge cells. 

  

  

vtkIdList 

vtkIdList is an object that stores an ordered list of ids of type vtkIdType. They are stored in a flat 

array of memory. vtkIdList is commonly used for storing ids of points or cells. The methods of 

interested here are: 

 

● void SetNumberOfIds(const vtkIdType number) -- set the amount of ids the object will 

store. The list will contain uninitialized values that must be set. 

● vtkIdType GetNumberOfIds() -- return the number of ids stored in the list. 

● void SetId(const vtkIdType i, const vtkIdType vtkid) -- set the i’th index of the list to value 

vtkid. Note that for efficiency this doesn’t do range checking and can cause memory 

corruption if the proper amount of memory is not already allocated. 
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● void Allocate(const vtkIdType size, const int strategy) -- allocate a capacity of size for the 

list and set the number of ids in the list to 0. strategy is not used. 

● void Reset() -- keep the current capacity of the list but mark that no ids are stored in the 

list. 

● void InsertId(const vtkIdType i, const vtkIdType vtkid) -- set the i’th value to vtkid. This 

does range checking and will allocate space as needed. Using this is potentially 

dangerous in that it can cause uninitialized values to exist in the list. 

● vktIdType InsertNextId(const vtkIdType vtkid) -- insert vtkid at the end of the list. This 

method allocates space as needed. The return value is the index location where vtkid 

was inserted. 

● void Squeeze() -- reclaim any capacity not used by the list. 

 

The following is some code demonstrating the use of vtkIdList: 

 

 vtkIdList* idList = vtkIdList::New(); 

 idList->SetNumberOfIds(1); 

 idList->SetId(0, 5);       // first Id is 5 

 idList->InsertId(1, 3);    // second Id is 3 

vtkPolyData 

vtkPolyData supports all 0D, 1D and 2D VTK cell types. It derives from vtkPointSet for storing 

point information but has its own internal data structures for storing cell information. For 

efficiency it stores 0D cells, 1D cells, 2D cells and triangle strips separately in vtkCellArrays 

(covered below). Even though there are separate objects for storing cells, the cells are still 

iterated in the order that they are inserted in. With the coordinates already set using the 

methods discussed previously, the next step is adding in the cells. First, memory should be 

allocated using void Allocate(vtkIdType numCells, int extSize=1000) where numCells is a good 

estimate of the number of cells that the vtkPolyData object will hold. Note that the actual amount 

of memory allocated is 4*sizeof(vtkIdType) as each vtkCellArray gets allocated that amount of 

memory. Thus, it is important to use Squeeze() to reclaim the unused memory in the 

vtkCellDataArrays. Note that extSize is no longer used and that the capacity of each array is 

doubled when more memory is needed. Once this is done, the cells are inserted using: 

 

int InsertNextCell(int type, int numPoints, vtkIdType* pts) 

 

The type is the value shown in the above cell figures, numPoints is the number of points in the 

cell, and pts is an array of the cell’s points. The return value is the cell’s index in the vtkPolyData 

object. The points need to be in the proper canonical ordering shown in the above cell figures. 

Alternatively, the following method can be used to add cells to the grid, where now pts stores 

the cell’s point ids: 

 

int InsertNextCell(int type, vtkIdList* pts) 
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An example of creating a vtkPolyData with all quadrilaterall cells is: 

 

vtkPolyData* grid = vtkPolyData::New(); 

vtkPoints* points = vtkPoints::New(); 

points->SetNumberOfPoints(11*21); 

for(int j=0;j<21;j++) 

  for(int i=0;i<11;i++) 

     points->SetPoint(i+j*11, i, j, 0); 

 grid->SetPoints(points); 

 points->Delete(); 

for(int i=0;i<10;i++) 

  for(int j=0;j<20;j++) 

    { 

    vtkIdType ids[4] = {i+1+j*11, i+j*11, i+(j+1)*11, 

                        i+1+(j+1)*11}; 

    grid->InsertNextCell(9, 4, ids); 

    } 

vtkUnstructuredGrid 

vtkUnstructuredGrid supports all VTK cell types. It also derives from vtkPointSet for storing point 

information. It uses a single vtkCellArray to store all of the cells. As for vtkPolyData, we 

recommend using void Allocate(vtkIdType size) to pre-allocate memory for storing cells. In this 

case though we recommend a value of numCells*(numPointsPerCell+1) for the size. Similarly, 

for inserting cells, either the following methods should be used: 

 

● vtkIdType InsertNextCell(int type, vtkIdType numPoints, vtkIdType* pts) 

● vtkIdType InsertNextCell(int type, vtkIdList* pts) 

 

These are the same as for vtkPolyData. Similarly, the example for creating points and cells for a 

vtkUnstructuredGrid is the same as for vtkPolyData. 

vtkCellArray 

The functions listed above for adding cells to either vtkUnstructuredGrid or vtkPolyData are the 

simplest to use. The problem with this approach is that it won’t reuse existing memory for 

storing the cell connectivity arrays. Internally in vtkUnstructuredGrid and vtkPolyData, this 

information is stored in vtkCellArray objects. vtkCellArray is a supporting object that explicitly 

represents cell connectivity using a vtkIdTypeArray. The data in the array is stored in the form: 

(n,id1,id2,...,idn, n,id1,id2,...,idn, ...) where n is the number of points in the cell, and id is a zero-

offset index into the vtkDataArray in vtkPoints. This is shown in the figure below. Advantages of 

this data structure are its compactness, simplicity, and easy interface to external data. However, 

it is totally inadequate for random access. We include this information for completeness but 

unless a user’s native simulation data structure matches the vtkCellArray form, we suggest that 

users add cells to vtkPolyData and vtkUnstructuredGrid through the interfaces of those classes 

and not by creating a vtkCellArray and directly populating it with data. Note that if vtkCellArray is 
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directly used with existing allocated memory, the user can configure Catalyst to have vtkIdType 

match the native type that the simulation code uses to store ids. 

 

The directions for using an existing array with vtkCellArray is to first create a vtkIdTypeArray 

and use the SetArray() method to reuse existing memory. Next, use void SetCells(vktIdType 

numberOfCells, vtkIdTypeArray* cells) to use the cells array in vtkCellArray. The next steps 

depend on which grid type is being used. 

 

For a vtkPolyData, as we mentioned above, it actually has four vtkCellArrays to store its cells, 

one for vertex and polyvertex cells, one for line and polyline cells, one for triangle, quadrilateral, 

polygonal and pixel cells, and one for triangle strips. To set the cell arrays, the following 

methods should be used in the given order: 

 

1. void SetVerts(vtkCellArray* v) 

2. void SetLines(vtkCellArray* l) 

3. void SetPolys(vtkCellArray* p) 

4. void SetStrips(vtkCellArray* s) 

5. void BuildCells() 

 

Any of the above Set methods can be skipped if there are no corresponding cells of the proper 

type. This order should be followed to ensure that the ordering of the cells matches any cell data 

attributes that exist. The last method builds up the full cell information that enables random 

access to a vtkPolyData’s cells. 

 

For vtkUnstructuredGrids, we assume that there aren’t any polyhedral cells. In this case the 

following methods can be used: 

 

● void SetCells(int type, vtkCellArray* cells) 

● void SetCells(int* types, vtkCellArray* cells) 

● void SetCells(vtkUnsignedCharArray *cellTypes, vtkIdTypeArray *cellLocations, 

vtkCellArray *cells) 

● void SetCells(vtkUnsignedCharArray *cellTypes, vtkIdTypeArray *cellLocations, 

vtkCellArray *cells, vtkIdTypeArray *faceLocations, vtkIdTypeArray *faces) 

 

The first method is when all of the cell types are the same and the second is for heterogeneous 

cell type grids where types is an array length equal to the number of cells. These two methods 

will still build up the information needed for random access to the cells. The third method 

contains the cell types in the cellTypes array and cellLocations contains the array index of the 

vtkCellArray to find a cell’s point ids. The fourth method contains the cell types in the cellTypes 

array and cellLocations contains the array index of the vtkCellArray to find a cell’s point ids and 

can pass in NULL for the last 2 arguments when no polyhedra cell types are used. For all four 

SetCell() methods above, the cells argument corresponds to the vtkCellArray shown in the 

figure below. The cellTypes argument in the last two methods corresponds to the 
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vtkUnsignedCharArray and the cellLocations argument corresponds to the vtkIdTypeArray in the 

figure below. 

 

 

 
Figure 3.9: Internal vtkUnstructuredGrid data structures for storing cells’ connectivities.  

 

An example is shown below for creating the cell topology data structures for an unstructured 

grid. Note that it assumes the points have already been added to the grid. 

 

// create the cell data structures 

vtkCellArray* cellArray = vtkCellArray::New(); 

vtkIdTypeArray* offsets = vtkIdTypeArray::New(); 

vtkUnsignedCharArray* types = vtkUnsignedCharArray::New(); 

vtkIdType ids[8]; 

// create a triangle 

ids[0] = 0; ids[1] = 1; ids[2] = 2; 

cellArray->InsertNextCell(3, ids); 

offsets->InsertNextValue(0); 

types->InsertNextValue(VTK_TRIANGLE); 

// create a quad 

ids[0] = 0; ids[1] = 1; ids[2] = 2; ids[3] = 3; 
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cellArray->InsertNextCell(4, ids); 

offsets->InsertNextValue(4); 

types->InsertNextValue(VTK_QUAD); 

// create a tet 

ids[0] = 0; ids[1] = 1; ids[2] = 2; ids[3] = 4; 

cellArray->InsertNextCell(4, ids); 

offsets->InsertNextValue(9); 

types->InsertNextValue(VTK_TETRA); 

// create a hex 

ids[0] = 0; ids[1] = 1; ids[2] = 2; ids[3] = 3; 

ids[4] = 4; ids[5] = 5; ids[6] = 6; ids[7] = 7; 

cellArray->InsertNextCell(8, ids); 

offsets->InsertNextValue(14); 

types->InsertNextValue(VTK_HEXAHEDRON); 

// add the cell data to the unstructured grid 

grid->SetCells(types, offsets, cellArray); 

types->Delete(); 

offsets->Delete(); 

cellArray->Delete(); 

Field Data 

Once the grids are created, the next step is to associate attributes with the points and/or cells of 

the grid. The following figure shows a pseudo-coloring of a point data array and a cell data 

array. Note that the point data will have continuous values as long as the points are properly 

associated with the cells. In general, cell data will be discontinuous unless there is a constant 

value for the field. 

  

  
Figure 3.10: Pseudo-coloring of point data (left image) and cell data (right image). 
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The main class for field data is vtkFieldData which is a container to store vtkDataArrays. The 

arrays are stored in a flat array of memory and accessed either by their index location or the 

name of the vtkDataArray. The main methods here is int AddArray(vtkAbstractArray* array). 

This method  appends an array to the vtkFieldData object’s list of arrays unless an array with 

that name already exists. If an array with that name already exists then it replaces that with the 

passed in vtkDataArray. The return value is the index in the list where the array was inserted. 

Note that every vtkDataObject has a vtkFieldData member object which can be accessed 

through the vtkFieldData* GetFieldData() method. This can be used for storing meta-data about 

the vtkDataObject and the arrays stored in the vtkFieldData do not have to have the same 

number of tuples. 

 

If we want to store arrays where the tuples are associated with either points or cells, we use 

vtkPointData and vtkCellData, respectively. Both of these derive from vtkFieldData. Every 

vtkDataSet has both a vtkPointData and a vtkCellData object and they are accessed with 

vtkPointData* GetPointData() and vtkCellData* GetCellData(). Note that the arrays in either of 

these objects should have the number of tuples matching the number of grid entities of the 

corresponding type. There is no explicit check when inserting arrays into either of these but 

many filters will give warnings and/or fail if this condition isn’t met. 

 

The following snippet of code demonstrates how arrays are added to point data and cell data. 

 

vtkDoubleArray* pressure = vtkDoubleArray::New(); 

pressure->SetNumberOfTuples(grid->GetNumberOfPoints()); 

pressure->SetName(“pressure”); 

<set values for pressure> 

grid->GetPointData()->AddArray(pressure); 

pressure->Delete(); 

vtkFloatArray* temperature = vtkFloatArray::New(); 

temperature->SetName(“temperature”); 

temperature->SetNumberOfTuples(grid->GetNumberOfCells()); 

grid->GetCellData()->AddArray(temperature); 

temperature->Delete(); 

Multi-Block Data Sets 

So far we’ve covered all of the main data sets and how to define attributes over them (i.e. the 

point and cell data). For many situations though we will want to use multiple data sets to 

represent our simulation data structures. Examples include overlapping grids (e.g. AMR) or 

when a single data set type isn’t appropriate for storing the cell topology (e.g. using a 

vtkUniformGrid and a vtkUnstructuredGrid). The main class for this is the vtkCompositeDataSet 

class. This is an abstract class that is intended to simplify the way to iterate through the 

vtkDataSets stored in the different concrete derived classes. There are two main types of 

composite data sets. The first type is for AMR type grids where only vtkUniformGrid data sets 

are used to discretize the domain. These types of composite data sets have support for 

automatically stitching the grids together through blanking. The two classes for AMR grids are 
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vtkOverlappingAMR and vtkNonOverlappingAMR which both derive from vtkUniformGridAMR. 

The second composite data set type supports all grids that derive from vtkDataSet but require 

any blanking needed for overlapping grids to be taken care of explicitly. The two classes for 

these are vtkMultiBlockDataSet and vtkMultiPieceDataSet and both derive from 

vtkDataObjectTree. Because vtkCompositeDataSet derives from vtkDataObject it has a 

vtkFieldData object that can be accessed by the vtkFieldData* GetFieldData() method. This can 

be useful for storing meta-data.  

 

 
Figure 3.11: Class hierarchy for VTK composite data sets.  

vtkMultiBlockDataSet 

vtkMultiBlockDataSet is the most general of the concrete implementations of 

vtkCompositeDataSet. Each block can contain either any vtkDataSet type or any 

vtkCompositeDataSet type. This leads to a hierarchy of data sets that can be stored in a 

vtkMultiBlockDataSet. An example of this is shown below. The vtkMultiBlockDataSet can be 

used recursively to store blocks at different levels. For each level that a vtkMultiBlockDataSet is 

used, the adaptor should set the amount of blocks at that level using the void 

SetNumberOfBlocks(unsigned int numBlocks) method. In parallel, the tree hierarchy must 

match on each process but leaves of the tree are only required to be non-empty on at least one 

process. If the leaf is a vtkDataSet then it should be non-empty on exactly one process. To set a 

sub-block of a vtkMultiBlockDataSet, use the void SetBlock(unsigned int blockNumber, 

vtkDataObject* dataObject) method. This method assigns dataObject into the blockNumber 

location of its direct children. 
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Figure 3.12: Multi-block data set where the outlines are for blocks with vtkUniformGrids and the 

interior surface is a vtkUnstructuredGrid. 

vtkMultiPieceDataSet 

A vtkMultiPieceDataSet class groups data sets that span multiple processes together into a 

single logical sub-block of a vtkCompositeDataSet. The purpose is to help avoid some of the 

rigidity of concrete instances of vtkDataSets while maintaining their logical grouping together. 

One example of this is the rigidity of partitioning topologically regular grids into logically 

rectangular blocks of cells. A process may have multiple sub-blocks of the topologically regular 

grid such that when trying to combine them would cause the combined blocks to not be able to 

be stored in a topologically convex sub-block. Another use for the vtkMultiPieceDataSet is for a 

sub-block that is a partitioned vtkDataSet. In this case they are logically grouped together but 

can’t be stored in the same sub-block of a vtkMultiBlockDataSet since each process will think 

that it contains the entire vtkDataSet. The vtkMultiPieceDataSet is a flat structure with all of its 

children being the same grid type. The methods that are used to set the pieces of the 

vtkMultiPieceDataSet are: 

 

● void SetNumberOfPieces(unsigned int numPieces) -- sets the number of pieces to be 

contained in the vtkMultiPieceDataSet. This should be the same value on each process. 

When there is a single piece per process the value of numPieces will be the number of 

processes. 

● void SetPiece(unsigned int pieceNumber, vtkDataObject* piece) -- sets piece for the 

pieceNumber location. Note that piece must be a vtkDataSet even though the method 
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signature allows a vtkDataObject to be passed in. 

 

Note that vtkMultiPieceDataSet is intended to be included in other composite data sets e.g. 

vtkMultiBlockDataSet or vtkOverlappingAMR. There is no writer in ParaView that can handle a 

vtkMultiPieceDataSet as the main input so adaptors should nest any multi-piece data sets in a 

separate composite data set. An example of creating a multi-piece data set where we only 

partition the grid in the x-direction is shown below: 

 

vtkImageData* imageData = vtkImageData::New(); 

imageData->SetSpacing(1, 1, 1); 

imageData->SetExtent(0, 50, 0, 100, 0, 100); 

int mpiSize = 1; 

int mpiRank = 0; 

MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank); 

MPI_Comm_size(MPI_COMM_WORLD, &mpiSize); 

vtkMultiPieceDataSet* multiPiece = vtkMultiPieceDataSet::New(); 

multiPiece->SetNumberOfPieces(mpiSize); 

imageData->SetOrigin(50*mpiRank, 0, 0); 

multiPiece->SetPiece(mpiRank, imageData); 

imageData->Delete(); 

vtkMultiBlockDataSet* multiBlock = vtkMultiBlockDataSet::New(); 

multiBlock->SetNumberOfBlocks(1); 

multiBlock->SetBlock(0, multiPiece); 

multiPiece->Delete(); 

 

vtkUniformGridAMR 

The vtkUniformGridAMR class is used to deal with AMR grids and to automate the process of 

nesting the grids and blanking the appropriate points and cells, if blanking is needed. The first 

call to use in constructing a vtkUniformGridAMR or any of its derived classes is the void 

Initialize(int numLevels, const int* blocksPerLevel) method. This specifies how many levels 

there will be in the AMR data object and how many blocks in each level. Note that 

blocksPerLevel needs to have at least numLevels values. The values passed into Initialize() 

need to match on every process. Other class methods which should be used in the order listed 

are: 

 

● void SetDataSet (unsigned int level, unsigned int idx, vtkUniformGrid *grid) -- Once the 

uniform grid has been created it can be added to the vtkUniformGridAMR with this 

method. Note that coarsest level is 0 and that idx is the index that grid is to be inserted 

at for the specified level (i.e. 0 <= idx < blocksPerLevel[level], where blocksPerLevel was 

passed in the Initialize() method). 

● void SetGridDescription(int gridDescription) -- The values of gridDescription specify what 

geometric coordinates the uniform grids are meant to discretize. For example, 

VTK_XYZ_GRID indicates that the vtkUniformGridAMR discretizes a volume (the default 



43 

value) and VTK_XZ_PLANE indicates that the vtkUniformGridAMR discretizes an area 

in the XZ plane. The definitions of appropriate values for gridDescription are in 

vtkStructuredData.h. 

vtkOverlappingAMR 

The vtkOverlappingAMR grid is for when the set of uniform grids overlap in space and require 

blanking in order to determine which grid is used to discretize the domain and for specifying 

attributes over. This is the appropriate composite data set for Berger-Colella type AMR grids. 

Because of this hierarchy there is the notion of a global origin of the composite data set. This is 

set with the void SetOrigin(double* origin) method. A key point for vtkOverlappingAMR 

composite data sets is that the spacing is unique to each level and must be maintained by the 

vtkUniformGrids that are used to discretize the domain at that level of the composite data set. 

This is done with the following method: 

 

void SetSpacing(unsigned int level, const double spacing[3]) 

 

This needs to be called for each level with level 0 being the coarsest level. spacing is the 

distance between consecutive points in each Cartesian direction. In addition to the spacing of 

each level, the nested hierarchy must also be built up. vtkAMRBox is a helper class used to 

determine the hierarchy of the uniform grids and their respective blanking. The main thing to 

keep in mind is that there is both a global origin value as well as an origin value for each block. 

Additionally, vtkAMRBox needs the dimensions of each block and the spacing for each level. 

The dimensions are the number of points in each direction. The main function of interest for 

vtkAMRBox is the constructor which passes in all of the necessary values: 

 

● vtkAMRBox (const double *origin, const int *dimensions, const double *spacing, const 

double *globalOrigin, int gridDescription=VTK_XYZ_GRID) -- Here, origin is the 

minimum bounds of the vtkUniformGrid that the box represents, dimensions is the 

number of points in each of the grid’s logical directions, spacing is the distance between 

points in each logical direction, globalOrigin is the minimum bounds of the entire 

composite data set and gridDescription specifies the logical coordinates that the grid 

discretizes. 

 

Once the vtkAMRBox is created for a vtkUniformGrid, the following methods should be used: 

 

● void SetAMRBox (unsigned int level, unsigned int id, const vtkAMRBox &box) -- level is 

the hierarchical level that box belongs to and id is the index at that level for the box. Note 

that similar to the SetDataSet() method, valid values of id are between 0 and up to but 

not including the global number of vtkUniformGrids at that level. 

● void SetAMRBlockSourceIndex (unsigned int level, unsigned int id, int sourceId) -- This 

method is very similar to the SetDataSet() method but instead of specifying the data set 

for a given level and index at that level, it specifies the sourceId in the global composite 

data set hierarchy. This is the overall composite index of the data set and can be set as 

the total number of data sets that exist at coarser levels plus the number of data sets 
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that have a lower index but are at the same level as the given data set. 

 

After this has been done for each data set, the void GenerateParentChildInformation() method 

needs to be called. This method generates the proper relations between the blocks and the 

blanking inside of each block. After this has been done, the uniform grids should be added with 

SetDataSet(). An example of creating a vtkOverlappingAMR composite data set is included 

below to help elucidate how all of this comes together. 

 

 int numberOfLevels = 3; 

 int blocksPerLevel[3] = {1, 1, 1}; 

 vtkOverlappingAMR* amrGrid = vtkOverlappingAMR::New(); 

 amrGrid->Initialize(numberOfLevels, blocksPerLevel); 

 amrGrid->SetGridDescription(VTK_XYZ_GRID); 

 double origin[] = {0,0,0}; 

 double level0Spacing[] = {4, 4, 4}; 

 double level1Spacing[] = {2, 2, 2}; 

 double level2Spacing[] = {1, 1, 1}; 

 amrGrid->SetOrigin(origin); 

 int level0Dims[] = {25, 25, 25}; 

 vtkAMRBox level0Box(origin, level0Dims, level0Spacing, origin, 

    VTK_XYZ_GRID); 

 int level1Dims[] = {20, 20, 20}; 

 vtkAMRBox level1Box(origin, level1Dims, level1Spacing, origin, 

    VTK_XYZ_GRID); 

 int level2Dims[] = {10, 10, 10}; 

 vtkAMRBox level2Box(origin, level2Dims, level2Spacing, origin, 

    VTK_XYZ_GRID); 

 amrGrid->SetSpacing(0, level0Spacing); 

 amrGrid->SetAMRBox(0, 0, level0Box); 

 amrGrid->SetSpacing(1, level1Spacing); 

 amrGrid->SetAMRBox(1, 0, level1Box); 

 amrGrid->SetSpacing(2, level2Spacing); 

 amrGrid->SetAMRBox(2, 0, level2Box); 

 amrGrid->GenerateParentChildInformation(); 

 

 // the highest level grid 

 vtkUniformGrid* level0Grid = vtkUniformGrid::New(); 

 level0Grid->SetSpacing(level0Spacing); 

 level0Grid->SetOrigin(0, 0, 0); 

 level0Grid->SetExtent(0, 25, 0, 25, 0, 25); 

 amrGrid->SetDataSet(0, 0, level0Grid); 

 level0Grid->Delete(); 

 // the mid-level grid 

 vtkUniformGrid* level1Grid = vtkUniformGrid::New(); 

 level1Grid->SetSpacing(level1Spacing); 
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 level1Grid->SetExtent(0, 20, 0, 20, 0, 20); 

 amrGrid->SetDataSet(1, 0, level1Grid); 

 level1Grid->Delete(); 

 // the lowest level grid 

 vtkUniformGrid* level2Grid = vtkUniformGrid::New(); 

 level2Grid->SetSpacing(level2Spacing); 

 level2Grid->SetExtent(0, 10, 0, 10, 0, 10); 

 amrGrid->SetDataSet(2, 0, level2Grid); 

 level2Grid->Delete(); 

vtkNonOverlappingAMR 

The vtkNonOverlappingAMR grid is for the case of groups of vtkUniformGrids that do not 

overlap but can have grids that are associated with different levels of the hierarchy. Note that 

the adaptor could arbitrarily assign all vtkUniformGrids to be at the coarsest level but this would 

remove any hierarchical information that may be useful by storing the grids at different levels. 

The methods of interested for constructing non-overlapping composite data sets are all in its 

vtkUniformGridAMR superclass. An example is included below which demonstrates the 

construction of a vtkNonOverlappingAMR grid. 

 

 int numberOfLevels = 3; 

 int blocksPerLevel[3] = {1, 2, 1}; 

 vtkNonOverlappingAMR* amrGrid = vtkNonOverlappingAMR::New(); 

 amrGrid->Initialize(numberOfLevels, blocksPerLevel); 

 // the highest level grid 

vtkUniformGrid* level0Grid = vtkUniformGrid::New(); 

 level0Grid->SetSpacing(4, 4, 4); 

 level0Grid->SetOrigin(0, 0, 0); 

 level0Grid->SetExtent(0, 10, 0, 20, 0, 20); 

 amrGrid->SetDataSet(0, 0, level0Grid); 

 level0Grid->Delete(); 

 // the first mid-level grid 

 vtkUniformGrid* level1Grid0 = vtkUniformGrid::New(); 

 level1Grid0->SetSpacing(2, 2, 2); 

 level1Grid0->SetOrigin(40, 0, 0); 

 level1Grid0->SetExtent(0, 8, 0, 20, 0, 40); 

 amrGrid->SetDataSet(1, 0, level1Grid0); 

 level1Grid0->Delete(); 

 // the second mid-level grid 

 vtkUniformGrid* level1Grid1 = vtkUniformGrid::New(); 

 level1Grid1->SetSpacing(2, 2, 2); 

 level1Grid1->SetOrigin(40, 40, 0); 

 level1Grid1->SetExtent(0, 40, 0, 20, 0, 40); 

 amrGrid->SetDataSet(1, 1, level1Grid1); 

     level1Grid1->Delete(); 
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 // the lowest level grid 

 vtkUniformGrid* level2Grid = vtkUniformGrid::New(); 

 level2Grid->SetSpacing(1, 1, 2); 

 level2Grid->SetOrigin(0, 0, 0); 

 level2Grid->SetExtent(56, 120, 0, 40, 0, 40); 

 amrGrid->SetDataSet(2, 0, level2Grid); 

 level2Grid->Delete(); 

Grid Partitioning 

We have briefly covered partitioning the grid for parallel computing already but it is an important 

enough of a topic that it deserves to be discussed in a complete manner. The driving motivation 

here is to use the existing partitioning of the simulation grid. We assume that most filters will 

scale well with the existing grid partitioning supplied by the simulation. VTK’s data sets and 

composite data sets cover a wide enough range of use cases that it should be rare that 

interprocess communication will be necessary to migrate simulation grid data in order to 

properly create partitioned VTK grid data. VTK does assume a cell-based partitioning of the grid 

where a cell is uniquely represented on a single process. 

 

For topologically structured grids partitioning is done via extents as discussed above. For 

topologically regular grids the developer has two choices for partitioning the grid. The first is 

using the grid that derives from vtkDataSet and the second is using a vtkMultiBlockDataSet for 

each partition of the grid. Due to the rigidity of the local extents and how they interact with the 

VTK pipeline, we recommend using the vtkMultiBlockDataSet approach where each process’s 

partition of the data set is inserted as a block in the composite data set. This allows the extents 

to be independent for each block. For situations where a process’s partitioning of a topologically 

regular grid is not convex in the logical coordinates, a process can contribute multiple blocks to 

a vtkMultiBlockDataSet such that each block is a convex logical subset of the total grid. This is 

also useful for situations where the simulation data is chunked into smaller blocks to decrease 

cache misses during runs.  An example of a multi-block data set with one block per process is 

shown below where numberOfProcesses is the number of MPI processes and rank is the MPI 

rank of a process: 

 

vtkMultiBlockDataSet multiBlock = vtkMultiBlockDataSet::New(); 

multiBlock->SetNumberOfBlocks(numberOfProcesses); 

multiBlock->SetBlock(rank, dataSet); 

 

For vtkPolyData and vtkUnstructuredGrid, partitioning is straightforward when using cell-based 

partitionings of the simulation’s grid. Ghost cells should not be added to the VTK grids. 

For point-based partitionings of the grid, there is typically an overlap of a single layer of cells 

that exists on multiple process. These cells need to be assigned uniquely to a single process for 

VTK grids and partitionings. Similar to topologically regular grids, vtkPolyData and 

vtkUnstructuredGrid data sets can also be inserted into a vtkMultiBlockDataSet to allow for 

multiple blocks per process. 
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The VTK Pipeline 

For a full description of VTK’s pipeline architecture, we refer the reader to the VTK User’s 

Guide. We include a summary description of this architecture since it is key to understanding 

how Catalyst outputs are generated. From a high level, Catalyst simply defines and configures 

VTK pipelines that are executed at defined points in a simulation run.  

 

VTK uses a data flow approach to transform information into desired forms. The desired form 

may be derived quantities, subsetted quantities and/or graphical information. The 

transformations are performed by filters in VTK. These filters take in data and perform 

operations based on a set of input parameters to the filter. Most VTK filters do a very specific 

operation but by chaining multiple filters together a wide variety of operations can be done to 

transform the data. A filter that doesn’t have any input from a separate filter is called a source 

and a filter that doesn’t send its output to any other filters is called a sink. An example of a 

source filter would be a file reader and an example of a sink filter would be a file writer. We call 

this set of connected filters the pipeline. For Catalyst, the adaptor acts as the source filter for all 

pipelines. An example of this is shown below.  

 

 
The pipeline’s task is to configure, execute, and pass vtkDataObjects between the filters. The 

pipeline can be viewed as a directed, acyclic graph. Some key features of VTK’s pipeline are: 

 

● Filters are not allowed to modify their input data objects. 

● It is demand driven meaning that filters only execute when something downstream 

requests that they execute. 

● A filter will only re-execute if a request changed or something upstream changed. 

● Filters can have multiple inputs or outputs. 

● Filters can send their output to multiple separate filters. 

 

This affects Catalyst in several key ways. The first being that the adaptor can use existing 

memory when building the VTK data structures. The reason for this is that the VTK filter which 

operates on that data will either create a new copy if the data needs to change or reuse the 

existing data through reference counting if the data won’t be modified. The second key way is 

that the pipeline will only be re-executed when it is specifically requested 

The Catalyst API 
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In this section we discuss how the adaptor passes information back and forth between the 

simulation code and Catalyst. This information can be broken up into three areas: 

 

1. VTK data objects 

2. Pipelines 

3. Control information 

 

The VTK data objects are the information containing the input to the pipelines. The pipelines 

specify what operations to perform on the data and how to output the results. The control 

information specifies when each pipeline should execute and what information is needed in the 

VTK data objects in order for the pipelines to be able to execute properly.  

 

For most simulation codes, the interface between the main simulation code and the adaptor will 

only involve three function calls. The first call initializes Catalyst and the pipelines; the second 

call performs any requested co-processing; and the third call finalizes Catalyst. This was shown 

in the first code snippet near the beginning of Section 3. The rest of the interface between the 

simulation code and Catalyst is all contained in the adaptor code. This allows a small footprint in 

the main code base which makes it simple to build the simulation code both with and without 

linking to Catalyst.  

High-Level View 

Before diving into the details of the API, we want to describe the flow of information and its 

purpose to help give a higher level of understanding of how the pieces work together. The first 

step is initialization which sets up the Catalyst environment and creates the pipelines that will be 

executed later on. This is typically called near the beginning of the simulation shortly after MPI is 

initialized. The next step is to execute the pipelines if needed. This is usually done at the end of 

each time step update. The final step is finalizing Catalyst and is usually done right before MPI 

is finalized. 

 

The first and last steps are pretty simple but the middle step has a lot happening underneath the 

covers. Essentially, the middle step queries the pipelines to see if any of them need to be 

executed. If they don’t then it immediately returns control back to the simulation code. In our 

experience, this is nearly instantaneous. This must be fast since we expect many calls here and 

don’t want to waste valuable compute cycles. If one or more pipelines need to re-execute, then 

the adaptor needs to update the VTK data objects representing the grid and attribute 

information and then execute the desired pipelines. Depending on the amount of work that 

needs to be done by the filters in the pipeline, this can take a wide range of time. Once all of the 

pipelines that need to be re-executed finish, control is returned back to the simulation code.   

Class API 

The main classes of interest for the Catalyst API are vtkCPProcessor, vtkCPDataDescription, 

vtkCPInputDataDescription, vtkCPPipeline and the derived classes that are specialized for 

Python. When Catalyst is built with Python support, all of these classes are Python wrapped as 

well. 
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vtkCPProcessor  

vtkCPProcessor is responsible for managing the pipelines. This includes storing them, querying 

them to see if they need to be executed and executing them. The methods of interest for 

vtkCPProcessor are: 

 

● void Initialize() -- initializes the object and sets up Catalyst. This should be done after 

MPI_Init() is called. 

● void Finalize() -- releases all resources used by Catalyst. This should be done before 

MPI_Finalize() is called. 

● int AddPipeline(vtkCPPipeline* pipeline) -- add in a pipeline to be executed at requested 

times. 

● int RequestDataDescription(vtkCPDataDescription* description) -- determine if for a 

given description if any data pipelines should be executed. The return value is 1 if a 

pipeline needs to be executed and 0 otherwise. For this call, description should have the 

time and time step set and the identifier for the inputs that are available (i.e. 

vtkCPDataDescription::AddInput(const char* ) ). 

● int CoProcess(vtkCPDataDescription* description) -- executes the proper pipelines 

based on information in description. At this call the vtkDataObject representing the grids 

and fields should have updated to the current time step and added to description, in 

addition to the values set before the call to RequestDataDescription(). 

 

The above methods are usually sufficient for basic functionality. If the adaptor code wants to 

manually remove pipelines during the simulation runs, the following methods can be used: 

 

● int GetNumberOfPipelines() -- get the number of existing pipelines. 

● vtkCPPipeline* GetPipeline(int i) -- get the ith pipeline. 

● void RemoveAllPipelines() -- remove all of the existing pipelines from the co-processor 

and prevents them from being executed. 

● void RemovePipeline(vtkCPPipeline* pipeline) -- removes a pipeline and prevents it from 

being executed. 

 

vtkCPProcessor doesn’t add any extra functions to the public API. Its main purpose is to 

initialize the use of Python for co-processing. It is required to be used if the user wants to run a 

Python co-processing pipeline. If the pipelines are all implemented in C++ then vtkCPProcessor 

should be used. 

vtkCPPipeline and vtkCPPythonScriptPipeline 

vtkCPPipeline is the abstract base class for storing VTK pipelines that will be executed by 

vtkCPProcessor. vtkCPPythonScriptPipeline is a concrete derived class that takes in a Python 

script that stores the VTK pipeline. The methods of interest are: 

 

● int RequestDataDescription(vtkCPDataDescription *description) -- given description, 

return 1 if this pipeline needs to execute and 0 otherwise.  
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● int CoProcess(vtkCPDataDescription *description) -- execute the pipeline stored by this 

object and return 1 for success and 0 for failure. 

 

Note that both of these methods are abstract in vtkCPPipeline. For pipelines coded in C++, we 

expect the user to create them in a class that derives from vtkCPPipeline. They are 

implemented in vtkCPPythonScriptPipeline for Python pipelines. For vtkCPPythonScriptPipeline, 

the only other method of interest is: 

 

● int Initialize (const char *fileName) -- initialize the pipeline with the file name of a Python 

script. 

vtkCPDataDescription 

The vtkCPDataDescription class is meant to store information that gets passed between the 

adaptor and the pipelines. Some of the information is provided by the adaptor and is used by 

the pipeline and other parts of the information is provided by the pipeline and used by the 

adaptor. The methods for the information provided by the adaptor to the pipelines are: 

 

● void SetTimeData(double time, vtkIdType timeStep) -- sets the time step and current 

simulation time. This needs to be called before each call to 

vtkCPProcessor::RequestDataDescription(). 

● void AddInput (const char *gridName) -- add name keys for input grids produced by the 

simulation. For most use cases, the adaptor will provide a single input grid to Catalyst 

and the convention is that it is called “input”. Naming the inputs is needed for situations 

where the adaptor provides multiple input grids and each grid should be treated 

independently. An example of this is fluid-structure interaction simulations where 

separate grids may discretize each domain and each grid contains different field 

attributes. This is demonstrated in the figure below. This needs to be called before 

vtkCPProcessor::RequestDataDescription() is called but only needs to be called once 

per simulation time step. 

● void SetForceOutput (bool on) -- this allows the adaptor to force all of the pipelines to 

execute by calling this method with on set to true. By default it is false and it is reset after 

each call to vtkCPProcessor::CoProcess(). In general, the adaptor won’t know when a 

pipeline will want to execute but in certain situations the adaptor may realize that some 

noteworthy event has occurred. An example of this may be some key simulation feature 

occurs or the last time step of the simulation. In this situation the adaptor can use this 

method to make sure that all pipelines execute. Note that user implemented classes that 

derive from vtkCPPipeline should include logic for this. If this is used it should be called 

before calling vtkCPProcessor::RequestDataDescription(). 
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Figure 3.13: An example of a fluid-structure interaction simulation with separate grids and fields 

used for the solid and the fluid domains. 

 

After vtkCPProcessor::RequestDataDescription() has been called, if the method returned 1 then 

the adaptor needs to get the information set in the vtkCPPipeline objects. This information is 

used to determine what data to provide to the pipelines for the following 

vtkCPProcessor::CoProcess() call. The following methods can be used to get the 

vtkCPInputDataDescription object which is used to pass the grid to the pipelines: 

 

● vtkCPInputDataDescription* GetInputDescription(unsigned int) 

● vtkCPInputDataDescription* GetInputDescriptionByName(const char* name) 

 

For adaptors that provide a single pipeline input (i.e. AddInput() has only been called once), the 

conventional arguments for the above two methods are 0 and “input”, respectively. If multiple 

grid inputs are provided by the adaptor, it’s possible that not all of them are needed. To 

determine which ones are needed to update the required pipelines the following method can be 

used: 

 

● bool GetIfGridIsNecessary(const char* name) 

 

While vtkCPDataDescription is intended to pass the above information back and forth between 

the adaptor and the pipelines, for user-developed pipelines there may be more information 

necessary to pass back and forth. In this case, there is a user data object that can be used for 

this purpose. Currently we use a vtkFieldData object for this functionality. The reasons for this 

are that it is Python wrapped and it can hold a variety of data types through its intended use of 

aggregating classes that derive from vtkAbstractArray. The classes that derive from 

vtkAbstractArray are Python wrapped as well. The methods for this are: 

 

● void SetUserData(vtkFieldData* data) 

● vtkFieldData* GetUserData() 
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vtkCPInputDataDescription 

The vtkCPInputDataDescription class is similar to vtkCPDataDescription in that it passes 

information between the adaptor and the pipelines. The difference though is that 

vtkCPInputDataDescription is meant to pass information about the grids and fields. As 

mentioned above, there should be a vtkCPInputDataDescription object in vtkCPDataDescription 

for each separate input VTK data object provided by the adaptor. The main methods or interest 

are: 

 

● void SetGrid (vtkDataObject *grid) -- set the input data object representing the grids and 

their attributes for the pipelines. 

● void SetWholeExtent (int, int, int, int, int, int) or void SetWholeExtent (int[6]) -- for 

topologically regular grids, set the whole extent for the entire grid. 

 

There are a variety of other methods that are intended to increase the efficiency of the adaptor. 

The purpose of them is to inform the adaptor code which attributes are needed for the pipelines. 

It is potential future work for Catalyst and so for now the above methods are the proper ones to 

be used for this class. 

Adaptors: Putting it All Together 

Here we provide details through a summary example. Note that there are more examples 

available at https://github.com/acbauer/CatalystExampleCode.  

 

● Initialization steps 

○ Create a vtkCPProcessor object and call Initialize()  

○ Create vtkCPPipeline objects and add them to vtkCPProcessor 

● Calling the co-processing routines 

○ Create a vtkCPDataDescription object (*) 

■ call SetTimeData() 

■ For each input data object, call AddInput() with the key identifier string (*) 

■ Optionally, call SetForceOutput() 

○ Call vtkCPProcessor::RequestDataDescription() with created 

vtkCPDataDescription object 

■ If RequestDataDescription() returns 0, return control to simulation code 

■ If RequestDataDescription() returns 1: 

● For each vtkCPInputDataDescription create the vtkDataObject 

and attributes and add them with 

vtkCPDataDescription::GetInputDataDescriptionByName(const 

char* name)->SetGrid() 

● Call vtkCPProcessor::CoProcess() 

● Finalization steps 

○ Call vtkCPProcessor::Finalize() and delete the vtkCPProcessor object. 

 

https://github.com/acbauer/CatalystExampleCode
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Note that items with an asterisk only need to be done the first time the co-processing routines 

are executed as long as they remain persistent data structures. In the code below we walk the 

reader through a full example of a simplified adaptor. 

 

  // declare some static variables 

  vtkCPProcessor* Processor = NULL; 

  vtkUnstructuredGrid* VTKGrid; 

 

  // Initialize Catalyst and pass in some file names 

  // for Python scripts. 

  void Initialize(int numScripts, char* scripts[]) 

  { 

    if(Processor == NULL) 

      { 

    Processor = vtkCPProcessor::New(); 

    Processor->Initialize(); 

    } 

    else 

    { 

    Processor->RemoveAllPipelines(); 

    } 

    // Add in the Python script 

    for(int i=1;i<numScripts;i++) 

    { 

    vtkCPPythonScriptPipeline* pipeline =  

        vtkCPPythonScriptPipeline::New(); 

    pipeline->Initialize(scripts[i]); 

    Processor->AddPipeline(pipeline); 

  pipeline->Delete(); 

    } 

  } 

 

  // clean up at the end  

  void Finalize() 

  { 

    if(Processor) 

    { 

    Processor->Delete(); 

    Processor = NULL; 

    } 

    if(VTKGrid) 

    { 

    VTKGrid->Delete(); 

    VTKGrid = NULL; 

    } 
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  } 

 

  // The simulation calls this method at the end of every time 

  // step. grid and attributes are the simulation data structures. 

  // lastTimeStep is a flag indicating whether this will be 

  // the last time CoProcess is called. It will force all of 

  // the pipelines to execute. 

  void CoProcess(Grid& grid, Attributes& attributes, double time, 

               unsigned int timeStep, bool lastTimeStep) 

  { 

    vtkCPDataDescription* dataDescription = 

      vtkCPDataDescription::New(); 

    // specify the simulation time and time step for Catalyst 

    dataDescription->AddInput("input"); 

 dataDescription->SetTimeData(time, timeStep); 

    if(lastTimeStep == true) 

    { 

    // assume that we want to all the pipelines to execute if it 

    // is the last time step. 

    dataDescription->ForceOutputOn(); 

    } 

    if(Processor->RequestDataDescription(dataDescription) != 0) 

    { 

      // Catalyst wants to perform co-processing. We need to build 

      // the VTK grid and set the attribute information on it now. 

    BuildVTKDataStructures(grid, attributes); 

      // Make a map from “input” to our VTK grid so that 

      // Catalyst gets the proper input data set for the pipeline. 

      dataDescription->GetInputDescriptionByName("input")-> 

        SetGrid(VTKGrid); 

      // Call Catalyst to execute the desired pipelines. 

      Processor->CoProcess(dataDescription); 

    } 

    dataDescription->Delete(); 

  } 

Linking with C and Fortran Simulation Codes 

Catalyst is implemented as a C++ library with the addition of Python wrapping for many 

methods. This makes it simple to natively link Catalyst with simulation codes developed in either 

C++ or Python. However, many simulation codes are written in C or Fortran and require the 

addition of C++ code to create VTK data objects. This is a common enough situation that we 

have added methods to Catalyst to simplify this. Removing name mangling of C++ functions is 

necessary so that they may be called by Fortran or C code. This is done by adding in ‘extern “C” 
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‘to the beginning of the C++ function declaration. For header files that are to be used with C and 

C++ code, the following can be done: 

 

#ifdef __cplusplus 

extern "C" 

{ 

#endif 

  void CatalystInitialize(int numScripts, char* scripts[]); 

  void CatalystFinalize(); 

#ifdef __cplusplus 

} 

#endif 

 

The __cplusplus macro is only defined for C++ compilers which then support extern “C” to 

remove C++ mangling of the function names without affecting the C compilers use of the header 

file. Another key to inter-language calls is that generally only built-in types and pointers to arrays 

of built-in types should be used. For Fortran, all data objects are passed as pointers. For 

simulation codes written in C, the proper header file to include is CAdaptorAPI.h if Python isn’t 

used or needed. The main functions of interest defined here are: 

 

● void coprocessorinitialize() -- initialize Catalyst. 

● void coprocessorfinalize() -- finalize Catalyst. 

● void requestdatadescription(int* timeStep, double* time, int* coprocessThisTimeStep) -- 

check the current pipelines to see if any of them need to execute for the given time and 

time step. The return value is in coprocessThisTimeStep and is 1 if co-processing needs 

to be performed and 0 otherwise. 

● void coprocess() -- execute the Catalyst pipelines for the timeStep and time specified in 

requestdatadescription(). Note that the adaptor must update the grid and attribute 

information and set them in the proper vtkCPInputDataDescription object obtained 

through vtkCPAdaptorAPI::GetCoProcessorData() method. 

 

If Python is used in Catalyst, then the proper header file to include in C code is 

CPythonAdaptorAPI.h. The two functions defined in this header file are: 

 

● void coprocessorinitializewithpython(char* pythonFileName, int* pythonFileNameLength) 

-- initialize Catalyst with the ability to use Python. If pythonFileName is not null and 

pythonFileNameLength is greater than zero it also creates a vtkCPPythonScriptPipeline 

object and adds it to the vtkCPProcessor object. Note that this method should be used 

instead of coprocessorinitialize(). 

● void coprocessoraddpythonscript(char* pythonFileName, int* pythonFileNameLength) -- 

creates a vtkCPPythonScriptPipeline object and adds it to group of pipelines to be 

executed by the vtkCPProcessor object. 
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Note that these are just convenience methods and are not required to be used. A C example is 

included in the git examples repository (https://github.com/acbauer/CatalystExampleCode) 

which does not use these methods. 

Compiling and Linking Source Code 

The final step to integrating Catalyst with the simulation code is compiling all code and linking 

the resulting objects together. The simplest way to do this is to use CMake (www.cmake.org) as 

that will take care of all of the dependencies (i.e. header files as well as libraries). An example 

CMake file, CMakeLists.txt, is shown below. 

 

cmake_minimum_required(VERSION 2.8.8) 

project(CatalystCxxFullExample) 

 

set(USE_CATALYST ON CACHE BOOL 

    "Link the simulator with Catalyst") 

if(USE_CATALYST) 

  find_package(ParaView 3.98 REQUIRED COMPONENTS   

       vtkPVPythonCatalyst) 

  include("${PARAVIEW_USE_FILE}") 

  set(Adaptor_SRCS FEAdaptor.cxx) 

  add_library(Adaptor ${Adaptor_SRCS}) 

  target_link_libraries(Adaptor vtkPVPythonCatalyst) 

  add_definitions("-DUSE_CATALYST") 

else() 

  find_package(MPI REQUIRED) 

  include_directories(${MPI_CXX_INCLUDE_PATH}) 

endif() 

 

add_executable(FEDriver FEDriver.cxx FEDataStructures.cxx) 

if(USE_CATALYST) 

  target_link_libraries(FEDriver Adaptor) 

else() 

  target_link_libraries(FEDriver ${MPI_LIBRARIES}) 

endif() 

 

This gives the option of building the simulation code with or without linking to Catalyst by 

allowing the user at configure time to enable or disable using Catalyst with the USE_CATALYST 

CMake option. If Catalyst is enabled then the USE_CATALYST macro is defined and can be 

used in the driver code to include header files and function calls to the adaptor code.  

 

Additionally, this example CMake file adds a dependency on the Adaptor for the FEDriver 

simulation code example. If the simulation code doesn’t require the Python interface to Catalyst, 

the user can avoid the Python dependency by changing the required ParaView components 

https://github.com/acbauer/CatalystExampleCode
http://www.cmake.org/
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from vtkPVPythonCatalyst to vtkPVCatalyst. Either of these components also brings in the rest 

of the Catalyst components and header files for compiling and linking. 

 

For simulation codes that do not require CMake to build, we suggest using an example to 

determine the required header file locations for compiling and required libraries for linking. Due 

to system specific configurations, any attempt to list all the dependencies and locations here 

would be incomplete. 

Linking with Python Simulation Codes 

Python code doesn’t need to compile and link with Catalyst as the needed parts of Catalyst are 

Python wrapped and available by importing the proper modules. The typical Catalyst modules 

that need to be imported are paraview, vtkPVCatalystPython, vtkPVPythonCatalystPython, 

paraview.simple, paraview.vtk, paraview.numpy_support and vtkParallelMPIPython. However it 

is necessary to set up the proper system paths so that the Catalyst modules can be properly 

loaded. Assuming that the build tree is available, the following system variables need to be set 

for a Linux machine: 

 

● LD_LIBRARY_PATH needs to include the lib subdirectory of the build directory. 

● PYTHONPATH needs to include the lib and lib/site-packages subdirectories of the build 

directory. 

 

ParaView is built with NumPy (http://www.numpy.org/) support and optionally mpi4py 

(http://mpi4py.scipy.org/). mpi4py can be used for interprocess communication in the adaptor. 

NumPy has more utility in the adaptor in that if it is used to store data, a vtkDataArray object can 

easily be created from it. A snippet of code demonstrating this is shown below: 

 

import paraview 

import numpy 

from paraview import numpy_support 

scal = numpy.zeros(50) 

vtkscal = numpy_support.numpy_to_vtk(scal) 

vec = numpy.zeros(50,3) 

vtkvec = numpy_support.numpy_to_vtk(vec) 

 

This creates two vtkDataArrrays from NumPy arrays. The vtkscal will have 50 tuples and 1 

component while the vtkvec array will have 50 tuples and 3 components. 

Creating Specialized Catalyst Pipelines 

If Catalyst is built without Python support, all pipelines will need to be hard-coded in C++. Even 

in cases when Catalyst is built with Python, simulation code developers may wish to create 

hard-coded C++ pipelines for their users. The main reason for this approach is to create a 

http://mpi4py.scipy.org/
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simplified interface for the simulation user. The user does not have to use ParaView to create 

any Catalyst pipelines and may not even need to use ParaView for post-processing in situ 

extracts. In this section, we go through three different ways to do this. The first is directly 

creating VTK pipelines. The second is creating VTK pipelines through ParaView’s C++ server-

manager interface. The third is creating VTK pipelines through ParaView wrapped Python 

scripts. In the table below we list the main advantages and disadvantages of each. 

 

Pipeline Advantages Disadvantages 

VTK C++ Good documentation, not 
dependent on Python, many 
examples 

Complex to create output 
images in parallel, changes 
require recompilation 

ParaView C++  Automatically sets up 
compositing and render passes 
easily, not dependent on Python 

Sparse documentation, few 
examples, changes require 
recompilation 

ParaView Python Can be modified without 
requiring recompilation, can use 
existing scripts created in GUI 
and/or using ParaView’s trace 
functionality 

Requires linking with Python 

 

We recommend reviewing the Avoiding Data Explosion subsection of the Catalyst for Users 

section before creating specialized pipelines. The reason for this is that while many filters are 

very memory efficient, others can dramatically increase the amount of needed. This is a major 

factor to consider when running on memory limited HPC machines where no virtual memory is 

available. 

VTK C++ Pipeline 

Creating a custom VTK C++ pipeline is fairly straightforward for those that are familiar with VTK. 

This is done in a class that derives from vtkCPPipeline. The two methods that need to be 

implemented are RequestDataDescription() and CoProcess(). Optionally, Finalize() can be 

implemented if there are operations that the class needs to do before being deleted. 

RequestDataDescription() will contain code to determine if the VTK C++ pipeline needs to be 

executed and return 1 if it does and 0 otherwise. It should also check that the proper information 

is set (e.g. output file name information) for the pipeline to output the desired data. CoProcess() 

is the method in which the actual VTK C++ pipeline is executed. In the example in the git 

repository we create the pipeline every time it is needed but that is not necessary. Note that 

pipelines are not limited to using only filters specified in the VTK code base. They can also use 

filters specified in the ParaView code base as well. For example, we recommend using 

ParaView’s vtkCompleteArrays filter prior to using any of the parallel XML writers available in 

VTK. The reason for this is that the parallel XML writers can give bad output if process 0 has no 

points or cells due to not having the needed attribute information to include in the meta-file of 

the format. 
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It is beyond the scope of this Catalyst Users Guide to give a complete description of all of the 

filters in VTK and ParaView. In addition to the VTK User’s Guide, wiki and doxygen 

documentation web pages, we also recommend looking at the examples at 

http://vtk.org/Wiki/VTK/Examples/Cxx for help in creating VTK pipelines. A fully functioning 

example with a hard-coded VTK C++ pipeline is available from the Catalyst examples git 

repository. 

ParaView C++ Pipeline 

As background, ParaView’s server-manager is the code that controls the flow of information and 

maintains state in ParaView’s client-server architecture. It is used by the client to set up the 

pipeline on the server, to set the parameters for the filters and execute the pipeline, among 

other duties. Besides these duties, it will automatically do things like add in the 

vtkCompleteArrays filter prior to any parallel writers that are added in the pipeline. The reason 

for this is mentioned in the previous section. Additionally, it properly sets up the parallel image 

compositing that can be difficult in pure VTK code.  

 

Similar to creating a VTK C++ pipeline, we won’t go into the full details of creating a ParaView 

server-manager pipeline due to the extent of the information. Most classes that will be used 

derive from vtkSMProxy, vtkSMProperty or vtkSMDomain. vtkSMProxy is used for creating VTK 

objects such as filters and maintaining references and state of the VTK objects. vtkSMProperty 

is used for calling methods on the VTK objects with given passed in parameters (e.g. setting the 

file name of a writer or setting the isosurface values of the contour filter). vtkSMDomain 

represents the possible values properties can have (e.g. the radius of a sphere must be 

positive). The XML files under the ParaViewCore/ServerManager/SMApplication/Resources 

subdirectory of the ParaView source directory lists all of the proxy information. The key XML 

files are: 

 

● filters.xml -- contains the descriptions of all of the filters that may be available in Catalyst. 

● sources.xml -- contains pipeline sources such as spheres, planes, etc. They may be 

useful for setting inputs such as seed points for streamlines. 

● writers.xml -- contains descriptions of the writers that may be available in Catalyst. 

● utilities.xml -- contains utility proxies such as functions and point locators that may be 

needed by certain filters. 

● rendering.xml -- contains proxies for setting rendering options such as cameras, 

mappers, textures, etc. 

● views_and_representations.xml -- contains proxies for setting view information such as 

3d render views, charts, etc. and representations such as surface, wireframe, etc. 

 

Note that due to configuration of Catalyst, some proxies listed in the XML files may not be 

available. An example of a ParaView server-manager created Catalyst pipeline is included in 

the git examples repository. 

Custom Python Script Pipeline 

http://vtk.org/Wiki/VTK/Examples/Cxx
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For creating custom Catalyst Python pipelines, the simplest way is to start with something that is 

fairly similar already. The easiest way to do that is to create a similar pipeline in ParaView and 

export it using the co-processing script generator plugin (discussed in Section 4). For the most 

part, these generated Python scripts are very readable, especially if no screenshots are being 

output. Other useful ParaView tools for creating and/or modifying Catalyst Python scripts 

include: 

 

● the ParaView GUI's Python interpretor (available by going to Tools->Python Shell in the 

main menu) supports tab completion to help see available methods for each object. 

● using ParaView’s trace functionality that can record the Python commands that mimic a 

user's interaction with the GUI. This is available by using Tools->Start Trace and Tools-

>Stop Trace to start and stop the trace, respectively. 

 

Additionally, most of the ParaView wrapped objects have at least a minimal built-in 

documentation.  There is also sphinx generated documentation available at 

http://www.paraview.org/ParaView3/Doc/Nightly/html_pages/index.html. We assume that 

through the tools above users will be able to create the proper objects and set the proper 

parameters for them. The other information that is useful for creating custom Catalyst scripts is 

being able to query for information about the output from filters. This includes information like 

bounds of the output data set, the ranges of attributes, etc. These are the typical pieces of 

information that will be used to add logic into a custom Python pipeline. For example, when 

creating iso-surfaces through the contour filter it is necessary to know the range of the data 

array that is to be isosurfaced with respect to. From a ParaView Python wrapped filter proxy, the 

following methods are the most useful for querying filter output: 

 

● UpdatePipeline() -- executes the pipeline such that the filter output is current. This 

should be called before any information is requested from the following methods. 

● GetDataInformation() -- get information about the filter’s output data object. Members of 

interest are: 

○ GetDataSetTypeAsString() -- return the VTK class name of the data set (e.g. 

vtkPolyData) 

○ DataInformation -- the Python wrapped vtkPVDataInformation object. Methods of 

interest include: 

■ GetBounds() -- return the geometric bounds of the data object. Values are 

in a list with an ordering of {minimum X, maximum X, minimum Y, 

maximum Y, minimum Z, maximum Z} 

■ GetNumberOfPoints() -- return the number of points in the data object 

■ GetNumberOfCells() -- return the number of cells in the data object 

● GetPointData()/GetCellData() -- an object that provides information about the point data 

or cell data arrays, respectively. The main members of interest for this are: 

○ GetNumberOfArrays() -- give the number of point data or cell data arrays 

available 

http://www.paraview.org/ParaView3/Doc/Nightly/html_pages/index.html
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○ GetArray() -- return an array information object. The single argument to this 

method can either be an integer index or a string name. The main members of 

this are: 

■ Name -- the name of the array 

■ GetRange() -- the range of the values 

 

An example of how of querying a filter’s output is given below: 

 

from paraview.simple import * 

s = Sphere() 

e = Elevation() 

e.UpdatePipeline() # updates e so that output is generated 

di = e.GetDataInformation() 

# get the bounds of the output of e 

bounds = di.DataInformation.GetBounds() 

pd = e.GetPointData() 

# get the range of the Elevation point data array 

datarange = pd.GetArray("Elevation").GetRange() 

 

Note that these scripts can be added to vtkCPProcessor as long as they implement the 

RequestDataDescription() and DoCoProcessing() methods. 

Section 4: Building Catalyst 

This section is targeted towards those users or developers responsible for building ParaView 

Catalyst. As far as installation is concerned, Catalyst is a subset of the ParaView code base. 

Thus, all of the functionality available in Catalyst is also available in ParaView. The difference is 

that ParaView will by default have many more dependencies and thus will have a larger 

executable size. Catalyst is the flexible and specialized configuration of ParaView that is used to 

reduce the executable size by reducing dependencies. For example, if no output images are to 

be produced from a Catalyst-instrumented simulation run then all of the ParaView and VTK 

code related to rendering and the OpenGL libraries need not be linked in. This can result in 

significant memory savings, especially when considering the number of processes utilized when 

running a simulation at scale. In one simple example, the executable size was reduced from 75 

MB when linking with ParaView to less than 20 MB when linking with Catalyst. 

 

The main steps for configuring Catalyst are: 

1) Setting up an “edition” 

2) Extract the desired code from ParaView source tree into a separate Catalyst source tree 

3) Build Catalyst 

 

Most of the work is in the first step which is described below. A Catalyst edition is a 

customization of ParaView to support a desired subset of functionality from ParaView and VTK. 

There can be many editions of Catalyst and these editions can be combined to create several 
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customized Catalyst builds. Assuming that the desired editions have already been created, the 

second step is automated and is done by invoking the following command from the 

<ParaView_source_dir>/Catalyst directory: 

 

python catalyze.py –i <edition_dir> -o <Catalyst_source_dir> 

  

Note that more editions can be added with the –i <edition_dir> and that these are processed in 

the order they are given, first to last. For the minimal base edition included with ParaView, this 

would be –i Editions/Base. The generated Catalyst source tree will be put in 

<Catalyst_source_dir>. For configuring Catalyst from the desired build directory, do the 

following: 

 

<Catalyst_source_dir>/cmake.sh <Catalyst_source_dir> 

 

The next step is to build Catalyst (e.g. using make on Linux systems). 

Creating a Catalyst Edition 

The main operations for creating an edition of Catalyst are: 

1) Set CMake build parameters (e.g. static or shared library build). 

2) Specify files from the ParaView source tree to be copied into the created Catalyst source 

tree. 

3) Specify files from the edition to be copied into the Catalyst source tree. 

 

The information describing which files are in the generated Catalyst source tree is all stored in a 

JSON file called manifest.json in the main directory of the edition. The user processes this 

information with a Python script called catalyze.py that is located in the 

<ParaView_source_dir>/Catalyst directory. 

Setting CMake Build Parameters 

By default, Catalyst will be built with the default ParaView build parameters (e.g. build with 

shared libraries) unless one of the Catalyst editions changes that in its manifest.json file. An 

example of this is shown below: 

 

  "cmake":{ 

 "cache":[ 

   { 

        "name":"BUILD_SHARED_LIBS", 

     "type":"BOOL", 

     "value":"OFF" 

   } 

 ] 

  } 
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Here, ParaView’s CMake option of building shared libraries will be set to OFF. It should be 

noted that users can still change the build configuration from these settings but it should be 

done after Catalyst is configured with the cmake.sh script.  

Copying Files from the ParaView Source Tree into the Created 

Catalyst Source Tree 

By default, very little source code from the ParaView source tree will be copied to the generated 

Catalyst source tree. Each edition will likely want to add in several source code files to the 

Catalyst source tree. Most of these files will be filters but there may also be several helper 

classes that are needed to be copied over as well. In the following JSON snippet we 

demonstrate how to copy the vtkPVArrayCalculator class into the generated Catalyst source 

tree. 

  

  "modules":[ 

 { 

      "name":"vtkPVVTKExtensionsDefault", 

      "path":"ParaViewCore/VTKExtensions/Default", 

   "include":[ 

     { 

          "path":"vtkPVArrayCalculator.cxx" 

     }, 

     { 

          "path":"vtkPVArrayCalculator.h" 

     } 

  ], 

   "cswrap":true 

 } 

  } 

] 

  

A description of the pertinent information follows: 

 

 "name":"vtkPVVTKExtensionsDefault" – the name of the VTK or ParaView module. 

In this case it is vtkPVVTKExtensionsDefault. The name of the module can be found 

in the modules.cmake file in the corresponding directory. It is the first argument to the 

vtk_module() function. 

 "path":"ParaViewCore/VTKExtensions/Default" – the subdirectory location of the 

module relative to the main ParaView source tree directory (e.g. 

<ParaView_source_dir>/ParaViewCore/VTKExtensions/Default in this case) 

 "path":"vtkPVArrayCalculator.cxx" – the name of the file to copy from the ParaView 

source tree to the generated Catalyst source tree. 

 "cswrap":true – if the source code needs to be client-server wrapped such that it is 

available through ParaView’s server-manager. For filters that are used through 
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ParaView’s Python interface or through a server-manager hard-coded C++ pipeline 

this should be tree. For helper classes this should be false. 
  

The difficult part here is determining which files need to be included in Catalyst. In the example 

above, the actual name of the ParaView proxy for the vtkPVArrayCalculator is Calculator. Thus, 

to construct a ParaView client proxy for vtkPVArrayCalculator on the server, the user would 

need to call Calculator() in the Python script. The best way to determine this connection 

between the name of the ParaView proxy and the actual source code is in the XML files in the 

ParaViewCore/ServerManager/SMApplication/Resources. In this case the proxy definition is in 

the filters.xml file. The proxy label XML element will be converted into the Python constructor for 

the proxy and the class name is stored in the proxy class XML element. The conversion of the 

proxy label is done by removing spaces in the XML attribute. This is sufficient for many 

situations but for some cases there will be additional classes needed to be included in order to 

properly compile Catalyst. This can occur when the included source code derives from a class 

not already included in Catalyst or uses helper classes not already included in Catalyst. For the 

vtkPVArrayCalculator class we will also need to include the vtkArrayCalculator class that it 

derives from. 

Copying files from the edition into the Catalyst source tree 

Some of the files that need to be in the generated Catalyst source tree cannot be directly copied 

over from the ParaView source tree. For example, CMakeLists.txt files need to be modified in 

the Catalyst source tree when multiple editions need to added into a specialized CMakeLists.txt 

file in the same directory. This is done with the “replace” keyword. An example of this is shown 

below for the vtkFiltersCore module. Here, the vtkArrayCalculator source code is added to the 

Catalyst source tree and so the CMakeLists.txt file in that directory needs to be modified in 

order to include that class to be added to the build. 

 

"modules":[ 

  { 

    "name":"vtkFiltersCore", 

    "path":"VTK/Filters/Core", 

 "include":[ 

   { 

        "path":"vtkArrayCalculator.cxx" 

   }, 

   { 

        "path":"vtkArrayCalculator.h" 

   } 

 ], 

 "replace":[ 

   { 

        "path":"VTK/Filters/Core/CMakeLists.txt" 

   } 

 ], 
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 "cswrap":true 

  } 

] 

  

In this case, the CMakeLists.txt file that needs to be copied to the Catalyst source tree exists in 

the <edition_dir>/VTK/Filters/Core directory, where edition_dir is the location of this custom 

edition of Catalyst. Since the Base edition already includes some files from this directory, we 

want to make sure that the CMakeLists.txt file from this edition also includes those from the 

Base edition. This CMakeLists.txt file is shown below: 

 

set(Module_SRCS 

vtkArrayCalculator.cxx 

vtkCellDataToPointData.cxx 

vtkContourFilter.cxx 

vtkContourGrid.cxx 

vtkContourHelper.cxx 

vtkCutter.cxx 

vtkExecutionTimer.cxx 

vtkFeatureEdges.cxx 

vtkGridSynchronizedTemplates3D.cxx 

vtkMarchingCubes.cxx 

vtkMarchingSquares.cxx 

vtkPointDataToCellData.cxx 

vtkPolyDataNormals.cxx 

vtkProbeFilter.cxx 

vtkQuadricClustering.cxx 

vtkRectilinearSynchronizedTemplates.cxx 

vtkSynchronizedTemplates2D.cxx 

vtkSynchronizedTemplates3D.cxx 

vtkSynchronizedTemplatesCutter3D.cxx 

vtkThreshold.cxx 

vtkAppendCompositeDataLeaves.cxx 

vtkAppendFilter.cxx 

vtkAppendPolyData.cxx 

vtkImageAppend.cxx 

) 

  

set_source_files_properties( 

  vtkContourHelper 

  WRAP_EXCLUDE 

  ) 

  

vtk_module_library(vtkFiltersCore ${Module_SRCS}) 
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Note that this CMakeLists.txt file does two things. Firstly it specifies which files to be compiled in 

the source directory. Next, it specifies properties of the source files. In the above example, 

vtkContourHelper is given a property specifying that it should not be wrapped. Another property 

which is commonly set indicates that a class is an abstract class (i.e. it has pure virtual 

functions). An example of how to do this is shown below. 

 

set_source_files_properties( 

  vtkXMLPStructuredDataWriter 

  vtkXMLStructuredDataWriter 

  ABSTRACT 

  ) 
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Examples 

There are a wide variety of VTK examples at http://www.vtk.org/Wiki/VTK/Examples. This site 

includes both C++ and Python examples but is targeted for general VTK development. 

Examples specific to Catalyst can be found at 

https://github.com/acbauer/CatalystExampleCode.  

Appendix 

vtkWeakPointer, vtkSmartPointer and vtkNew 

To simplify reference counting, vtkWeakPointer, vtkSmartPointer and vtkNew can be used. 

vtkWeakPointer stores a pointer to an object but doesn’t change the reference count. When the 

object gets deleted vtkWeakPointer will get initialized to NULL avoiding any dangling 

http://www.vtk.org/Wiki/VTK/Examples
https://github.com/acbauer/CatalystExampleCode
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references. The latter two classes keep track of other vtkObjects by managing the object’s 

reference count. When these objects are created, they increment the reference count of the 

object they are referring to and when they go out of scope, they decrement the reference count 

of the object they are referring to. The following example demonstrates this. 

 

{ 

vtkNew<vtkDoubleArray) a;                // a’s ref count = 1 

a->Setame(“an array”); 

vtkSmartPointer<vtkPointData> pd = 

  vtkSmartPointer<vtkPointData>::New();  // pd’s ref count = 1 

pd->AddArray(a.GetPointer());            // a’s ref count = 2 

vtkSmartPointer<vtkDoubleArray> a2 = 

  vtkSmartPointer<vtkDoubleArray>::New(); // a2’s ref count = 1 

pd->AddArray(a2);                         // a2’s ref count = 2 

vtkWeakPointer<vtkPointData> pd2; 

pd2 = pd;                                 // pd’s ref count = 1 

vtkPointData* pd3 = vtkPointData::New(); 

pd2 = pd3; 

pd3->Delete();                            // pd3 is deleted 

pd2->GetClassName();                      // bug! 

} // don’t need to call Delete on any object 

 

Note that when passing a pointer returned from vtkNew as a parameter to a method that the 

GetPointer() method must be used. Other than this caveat, vtkSmartPointer and vtkNew objects 

can be treated as pointers. 


