
IN4151 – 3D Computer Graphics and Virtual Reality

 Harry Seip – 1015729, Andy Man - 1047612

Page 1 of 4

Using Hardware Shaders in VTK:
A small tutorial

By: Harry Seip, Andy Man
Delft University of Technology, The Netherlands

1 Introduction
This small tutorial provides a step-by step introduction of the use of hardware shaders in combination with VTK.

It was written as a part of a B.Sc. project at the Delft University of Technology. We have chosen Cg as the

shading language and C++ as the developing for our tutorial since we have the most experience with this

combination. VTK also supports GLSL as a shading language but the results of this tutorial should be easily

extended to GLSL and to the other languages that VTK supports. The version of VTK that we used was a CVS

checkout of November 11, 2005, built with Cg support. Finally we tested our shaders with a Nvidia Geforce

5200FX.

In the next section we will take a quick look at our shading language. Then we will shortly discuss linking a Cg

program with a vtk object. In section four we will discuss the core subject of this tutorial, the xmlMaterialfile.

Finally we will give some reccomendations in section five.

2 Cg in combination of VTK
Our shaders are written in the language Cg which offers a high-level programming environment of developing

shaders. The shaders in Cg are then linked with the object being shaded via the XMLMaterial file which will be

discussed in the next section.

In our version of VTK there were several shaders included for testing and demonstration. We also reviewed Cg

shaders discussed in tutorials of the Cg user manual. For excellent resources concerning Cg programming we

refer to Nvidia’s developers website: developer.nvidia.com.

3 Linking VTK with Cg
In this section we will look at the XMLMaterial file that is used to load shaders from within the VTK pipeline. We

will discuss the syntax and its semantics. The xml file which we will call the material file from now on is the

bridge between the VTK environment and the hardware shaders, in our case written in Cg. The main function of

the material file is to locate the shader code, initialize and pass on required parameters and arguments. The code

in a C++ program using VTK could be as follows:

vtkProperty *prop = anActor->GetProperty();

prop->LoadMaterial("F:\\My Documents\\Vakken\\MsC C G\\minivtk\\Shaders.xml");

prop->ShadingOn();

prop->AddShaderVariable(“Rate”,1, 1.0);

We see that vtkProperty is first linked with the shader through the ‘LoadMaterial’ function and only loads the

shader through the ‘ShadingOn’ function. We can pass on user-defined variables to the shader using

“AddShaderVariable”. The instantiation and binding of the shader is handled by the vtkShader class and read

from the XML file.

4 XML Materialfile Format
The material file is written in standard xml 1.0 format. The material file is accessed by an actor property, so

properties and therefore indirectly actors are associated with a given shader. The different tags in the material

file are subsequently interpreted by the vtkShader class that acts as a wrapper class for the language specific

shader instantiating classes. In our experiment this will be the vtkCgShader class. This class will load, compile and

bind the shader to the target actor and uses the information from the material file for all shader specific context.

Multiple material files can exist for multiple shaders and/or properties, the only constraint is that only one vertex

shader and one fragment shader can be active at the same time due to hardware limitations. We will now

IN4151 – 3D Computer Graphics and Virtual Reality

 Harry Seip – 1015729, Andy Man - 1047612

Page 2 of 4

examine the syntax and functions of the different parts within the xml file. We have reverse engineered each

attribute from the sample material files and the snippets of documentation found on the internet.

Figure 5.5 XMLMaterial file

For each tag we found we have listed its function and the attributes of the tag that are possible. For each

attribute we have discovered its function, the required input type and if the attribute is optional or not. Optional

attributes can be omitted without generating errors. We have compiled this information to the best of our

knowledge and have tested its workings where possible but we must note here that these results must be used

with reservation since we did not have access to any specifications. We have also seen inconsistencies between

various material files, probably caused by the fact that shader functionality for VTK is still in the development

phase that could invalidate some results. Lastly we note that the final release version of the specification may still

be modified from our working copy.

All shader parameters reside in the material tag, <Material>, this tag has some attributes that are listed in the

table. Its main function is to structure the material file itself.

<Material> Defines the material we are loading

Name: InputType: Function: Optional:

name String No apparent function, Identification Yes

NumberOfProperties Integer Sets the number of Properties defined Yes

NumberOfVertexShaders Integer Sets the number of VertexShaders defined Yes

NumberOfFragmentShaders Integer
Sets the number of FragmentShaders
defined Yes

The VTK developers have provided a property tag, <Property> that can be used to set some elements

(members) of the current vtkProperty that has loaded the material file. We can use this to set the ambient,

diffuse and specular colours for instance. Note that this can also be done in the vtkpipeline by using the

appropriate vtkProperty functions. The semantics here are completely transparent with that method and the only

difference is that we are sure of the settings of the property since we are setting them ourselves. The elements

of the vtkProperty are accessed with the <Member> tag.

IN4151 – 3D Computer Graphics and Virtual Reality

 Harry Seip – 1015729, Andy Man - 1047612

Page 3 of 4

The <Shader> tag defines a shader and depending on its scope attribute this will be either a vertex shader or a

fragment shader. The shader tag also provides a pointer to the Cg file (or GLSL depending on the language used)

and acts as a wrapper tag for the various shader parameters. The attributes can be found in the following table:

<Shader> Defines a Shader
Name: InputType: Function: Optional:

scope Enumeration:
To distinguish between Fragment and Vertex
shaders No

name String ID's the shader Yes
location Enumeration: Defines the location of the file No
language String Defines shader language (cg or GLSL) No
entry String Defines the entry routine of the shader No
args String specifies command line arguments for the compiler No

Let’s look at some of the attributes used with the <Shader> tag. Scope has two possible values: “vertex” or

“fragment”. The location attribute stores the location of the (Cg) code and has three modes: Library, Repository

and Pathname. When “Library” or “Repository” is specified as the value this means that the shader code has been

compiled with VTK and can then be retrieved using the name attribute. This is useful for basic shaders that are

used by many applications. Alternatively a pathname can be supplied that points to the Cg file. We have used the

latter option for our shaders.

The remaining tags are used to provide the shader with the parameters it needs. We have found the following

parameter tags: <Uniform> for constant parameters, <ApplicationUniform> for runtime parameters,

<CameraUniform> for parameters coming from a vtkCamera instance like Eyeposition, <PropertyUniform> for

parameters stemming from a vtkProperty instance like Specularcolor, <LightUniform> for parameters stemming

from a vtkLight instance like Lightposition, <MatrixUniform> for matrix parameters like ModelviewIT and

<SamplerUniform> for texture parameters. We will discuss one of these tags, <MatrixUniform> the other tags

follow a similar format and have similar attributes.

The <MatrixUniform> tag is used to pass on matrices, mainly OpenGL state matrices that are used to transform

coordinates from one set to another but arbitrary matrices can be constructed. A matter of importance is the

value of the ‘name’ attribute since that value must be exactly the same as the value that is used in the Cg code.

This mechanism is then used to bind the input variables.

<MatrixUniform> Defines an uniform Matrix parameter for the shader
Name: InputType: Function:

name String
variable name for the matrix, must be the same
as used in shader program

type Enumeration: Describes the type: can be float, double or state
number_of_elements Integer Number of matrix elements
value String Origin of matrices(state) or matrix entries

5 Conclusions & Recommendations
Our goals of our initial project were to investigate and document the use of real-time shaders in VTK, construct a

realistic surface rendering of a bone model and to learn to use 3D graphics techniques in general and VTK plus

Cg specifically. In order to do this we have reverse engineered parts of VTK, learned Cg programming and

basically hacked until we got a working proof of concept. A by-product of our work is this report that contains a

introduction to hardware shaders in VTK. When we started there was no material on how to link hardware

shaders with VTK since this is a fairly new feature. We distilled this tutorial so that other developers can benefit

from our work. At this point we have shown how to link HW shaders into the VTK pipeline using the XMLMaterial

file.

IN4151 – 3D Computer Graphics and Virtual Reality

 Harry Seip – 1015729, Andy Man - 1047612

Page 4 of 4

Future steps that can be taken in the development of hardware shaders in VTK are:

• Streamline and finalize the material file

• Built in extended texture support

• Add support for HLSL

• Provide documentation

Streamline the material file: At this point the VTK developers allow the parameters to be passed on to the

shaders through multiple tags and paths. We could for instance pass on the Lightvector via the LightUniform tag,

a normal Uniform tag or by setting the PropertyUniform tag. This ambiguity only introduces unnecessary errors

and probably stems from the fact that the developers provided tags for all vtk objects like Light, Property and

Camera but also provide tags for all Cg parameters like float3, matrix3x3 etc. We believe that a uniform choice

should be made so that parameters are passed to the shader in a transparent manner. At this point we have a

slight preference for the solution where all parameters will be passed on using their VTK object tags since this is

easier for VTK developers. The addition of texture support and ample documentation is evident. As

recommendations for the medical imaging groups we can advice to start with building real-time Cg or GLSL

shaders based on the offline render programs already in use such as Renderman. This will allow for fast

development without sacrificing quality. When fragment shaders and especially bump mapping is satisfactorily

implemented, we recommend augmenting the bone models (vtp file) with normal maps, Tangent space vectors

or other information that can be computed during generation so that we can utilize this information when

performing real-time rendering. HLSL should be added to unlock the vast developing community that works with

HLSL, one of the most popular shading languages out there. Regarding our last goal, we can honestly say that

we have come along way from never having heard of VTK and from knowing pixel shaders only trough video

game literature, to have built an hardware shaded humerus using VTK and Cg. We would like to thank Dr. Charl

Botha for the help and enthusiasm and the visualisation group for their assistance and the use of their

computers.

6 References

[1] W. J. Schroeder, K. M. Martin, W. E. Lorensen. The Design and Implementation Of An Object-Oriented

Toolkit For 3D Graphics And Visualization. GE research.

[2] J. Neider, T. Davis, Mason Woo. OpenGL Programming Guide. Addison-Wesley, 1993.

[3] J.F. Blinn, Simulation of wrinkled surfaces, Caltech/ JPL, 1979

[4] Søren Dreijer, Bump Mapping Using CG (2nd Edition), Blacksmith Studios, 2005

[5] NVidia, Cg user manual/ Cg Tutorial, NVIDIA Corporation, 2005

[6] M.J. Kilgard, Cg in Two pages, NVIDIA Corporation 2003

[7] P. Shirley, Fundamentals of Computer Graphics, A.K. Peters, 2005.

[8] W. Scroeder, K. Martin, B. Lorensen. The Visualisation Toolkit 2nd edition, Prentice Hall, 1997

