Git && Gerrit

Distributed Version Control && Review

November 10, 2010
ITK Meeting, lowa City, |A

Dr. Marcus D. Hanwell

R&D Engineer

Kitware, Inc.
marcus.hanwell@kitware.com

Why Git?

* Open up the development process.
Improve stability of development branches.
Improve release process and granularity.
Facilitate code reviews.

Develop independently and in parallel.

Vr Kitware

Introduction

» Git is one of a new generation of distributed
version control systems.

* Everyone gets a complete copy of history.
* |nitially developed for Linux kernel development.
* Now used in many small and large projects.

* Very different to earlier version control systems:

 Need to learn new techniques.
* Makes entirely new workflows possible.

Vr Kitware

Development Process
» Create topics: develop locally.

» Share topics: code review with Gerrit.
* Integrate topics: merge using topic stage.

* Rinse and repeat...

Vr Kitware

What Does That Look Like?

./Utilities/SetupForDevelopment.sh

glt fetch

git checkout -b my-topic oriSElEan: siss
vim myFilile.cxx

gilt commit -v myFile.cxx

glt prepush
glt gerrit-push

glt gerrit-merge

Vr Kitware

VWe are done!

Vr Kitware

Now For Some More Detall

* \What is distributed version control?
* Where Gerrit fits In.

» Gerrit and CDash@Home.

» Git tutorial.

» Detail about ITK’s use of Git.

* Tips and tricks.

Vr Kitware

(Un)Learning

* You need to start from the beginning.

* Avoid CVS/SVN to Git tutorials.
* There is no one-to-one mapping.
 New concepts must be learned.

* Think in terms of how to do things, not
how to do cvs up in Git.

Vr Kitware

Centralized Versus Distributed

» Centralized:
* One repository with history.
* Developers just have a working tree.
* Versioning needs network access.
 Commits are always public.

 Distributed:
* Developers have a repository with history.
» Versioning is available locally.

 Commits are private until published.
VY Kitware

Distributed Version Control

* New concepts must be understood.
 Commits and publication now separate.
* Branching and merging are easy.

» Real concept of merges:

« Records where a branch is made.
* Merge commits record parents of merge.

» Allows much richer history.
« Same commits in multiple branches.

Vr Kitware

Local, Pull and Push

* Local operations:
* Only visible locally until published.
 Branch creation, removal, commits.

« Communicating with the outside:
* Push your changes out to the world.
» Pull/fetch changes from the outside.

* In CVS/Subversion — no separation.
« Can now compose/edit before sharing!

Vr Kitware

Multiple Remotes

* There is no central repository.
* Everyone has the entire history.
* Anyone can push this to a new place.

» Called a remote, many can be defined.
 Traditional single central repository — origin.
« Experimental repositories possible.
» Code review repositories such as Gerrit.
» Staging repositories...

Vr Kitware

Why Gerrit”?

* Provides some centralization for Git workflow.
* Improve stability of development branches.
* Improve release process and granularity.

Facilitate code reviews.
Develop independently and in parallel.
Very tight integration with Git.

* An extra remote and some special refs.
* Access control lists, account management.

Vr Kitware

Introduction

* Gerrit was developed mainly by Shawn Pearce.

Initially to provide code review for Android.
Used to manage hundreds of projects.

Commits can be pushed to Gerrit for review.

Gerrit provides,
 Web interface.

« SSH server.
« Command line tools.
« Git server/implementation.

Vr Kitware

Workflow

» At the point where you have a topic branch
that is ready to be integrated — Gerrit.

* Push your topic branch to Gerrit.
* Open up commits for review.
* Build testing of commits.

glt prepush
git gerrit-push

Vr Kitware

View in Gerrit

 Each commit shown in prepush will have
its own page.

* What you push will be reviewed.
* Provides code review before merge.

 Code review works best for small commits.
e |Inline comments in diffs.
« Review of entire commits.

Vr Kitware

Change-ld: Immutability
* The first try is not always perfect.
« Commit edits change their hash.

* The Change-ld line is unique.
* The hash of the original commit, preceded by |I.

* Allows Gerrit to recognize updated patches.
It must be the last line of the commit.
Automatically added by the local hooks.

git config hooks.GerritId true

Vr Kitware

Adding in Change-ld Lines

* If you forgot to enable the local hooks...

* You can add the line:

* Must be the final line of the commit message.

» Cut and paste from Gerrit.

* Only necessary if changing a commit.
* If you merge a commit, and its hash

matches, Gerrit “sees” it and can mark a
commit as merged — avoid rebasing.

Vr Kitware

Commit Review States

* Review in progress:
* Review is actively in progress.
* Merged:
 Commit was merged into codebase.

« Abandoned:

 Commit was abandoned.
» Can be brought back through interface.
» ‘Restore Change’ button — bring it back.

Vr Kitware

Current Topic Merge Sequence

« Stage merges go into main repository.
* Robot pulls every ten minutes.

* Robot pushes into Gerrit:
* This results in merged commits being marked.
» Gerrit will spot matching commit hashes.
* |t can also spot matching Change-Id lines.

 There are other models — this is the one
we currently employ.

 Up to ten minute delay.
‘W(fKitwareE) Y

Git and Cloud based testing

SETI at home model for testin

CTest
Git clone

CTest
Git clone

Il

CTest CTest

Git clone Git clone
CTest

Git clone

Y kitware

e g yen oy godews ok b

@a»-euae [-[o) (G [
) Kotware wia @ pell € coash Dishuold vk Cosshubic [23 v caendr (G tnare nc. N O.com -Eresking .. AL Chake Cross Pltfor.

Cocgle [spvams ———v] (G sown -+ @ B - 0 o o = % 1) o o s 5 L oy B O sewna
¢5.. | Mston.. | Gamavise.. | © cossho G | 0 canamyon.. | ® Conmnc... | (| racagein.. | [JReiposth.. | @ Lockero... | i hipidoes | [0)qtaza.. | @romine.

CMAKE
Dashboard

ste Buid tame Updas | ciy
Ervor | Wan | Min | Notun | Fait | Pass [| tin
Insignt oumaliotiare Kssiye BB z Jeie el o 20080221 022833 £5T
Buid Test
ste Buid ame Updae [ci
Eror | Wom | Win | Notun | Fai | Pass | na | min
Tianium MTS us Linué-Rocksicc-rel BB o7 |laie e 07| \N0n R0 N Nea | o | 51| 20080221 102300 EST
wondor kivare Danincs: BB o falo | o |1 o 1| |o| sm2fomeozznosmooest
dashs kivare Lowigess BE o falo | o sl oo |em | 0| 163[2000221080200EsT
B3 1 e fie e o1 Ston o a0 | o | 254 |z0080221 051500 EST
o B8 1 felie e ol e e [Re0 | o | 230[200802:21 0428 00EST
@ e et @ o 9 e L) el C ahaoe

CDash@Home and Gerrit

« Simple daemon monitors Gerrit stream.
 Responds to events such as new patches.

» Schedules builds with CDash@Home:
» Uses web API.
» Schedules for Windows & Linux
 |nserts link in Gerrit commit review for build.

* Provides instant feedback on patches.
» Could run other post push checks.

Vr Kitware

i\ -
W Kitware

marcusglondinium: master$ python2 gerrit-cdash-broker.py
Event Type: patchset-created
Project: ITK

‘uploader': {'name’
'Marcus D. Hanwell', 'email': 'marcus.hanwell@kitware.com'}, 'revision': 'alQ3
67baldbe2edc2d28dccb021b2ell2c7ed4fb5';, 'type': 'patchset-created', 'uploader':
1'name': 'Marcus D. Hanwell', 'email': 'marcus.hanwell@kitware.com'}, 'change’:
1'topic': 'TestGerritBuild', 'url': 'http://review.source.kitware.com/310', 'num
ber': '310', 'project': 'ITK', 'branch': 'master', 'owner': {'name': 'Marcus D.
Hanwell', 'email': 'marcus.hanwell@kitware.com'}, 'i1d': 'I04f907d3e21986dffceaab
1742c¢f33a3f41b0B42', 'subject': 'ENH: Removed the option of an i1n-source build f
rom ITK.'}}

Request URI: '/CDash/api/?method=buildé&task=schedule&project=Insight&repository=
efs/changes/10/310/1&module=Gerrit&tag=TestGerritBulildéuserid=364"
1'scheduled': 1, 'scheduleid': 38}
1'scheduled': 1, 'scheduleid': 38}
Event Type: comment-added
Project: ITK
Event output...
{'comment': 'Build submitted: http://www.cdash.orq/CDash/index.php?project=Insig
ht&filtercount=1&fieldl=buildname/string&comparel=63&valuel=TestGerritBuild’, 'p
atchSet': {'ref': 'refs/changes/10/310/1', 'number': 'l', ‘'uploader': {'name': '
Marcus D. Hanwell', ‘'email': ‘'marcus.hanwell@kitware.com'}, 'revision': 'al@367b
aldbeZedc2d29dccb021b2ell2c7edfbS';, 'type': 'comment-added', 'change': {'topic’
'TestGerritBuild', 'url': 'http://review.source.kitware.com/310', 'number': '3
10', 'project': 'ITK', 'branch': 'master', 'owner': {'name': 'Marcus D. Hanwell'
‘email': 'marcus.hanwell@kitware.com'}, 'i1d': 'I04f907d3e21986dffceaabl742c¢f3a
: '‘subject': 'ENH: Removed the option of an in-source build from ITK,
‘author': {'name': 'Marcus D. Hanwell', ‘'email': ‘'marcus.hanwell@kitware.com

Gerrit Scheduled Builds

» Build triggered by patch creation.
* Requests CDash@Home builds.
 Run on CDash@Home clients.

My Build Schedules

Project Status Last run Actions
Insight Running (arrakis.kitware) 2010-11-06 16:10:59 op O
Insight Running {londinium. kitware) 2010-11-06 16:10:49 op O
Insight Finished 2010-11-05 13:23:45 op O
Insight Finished 2010-11-05 13:37:18 o [
Insight Finished 2010-11-05 12:03:43 o

Vr Kitware

V Kitware

sz Change 104f807d3: E... ~

€« C i O reviewsource kitware.comj#change,310 kI §
All | My | Admin | Marcus D. Hanwell <marcus.hanwell@kitware.com> | MI Sigh Out
Changes Drafts Watched Changes — Starred Changes |'3h3“9°- #. SHA1, trid, owner:email or reviewer:emil ‘Search|
Change 104f907d3: ENH: Removed the option of an in-source build from ITK.

Change-Id: 1041907 d3e21988dffceaab17420132a3f41b0842 ENH: Removed the option of an in-source build from ITK.

Owner Marcus D. Hanwell This is a test commit to werify the Gerrit build broker is working.

Project EK Changing even the commit message without a Change-Id changes the hash
Branch master and so creates a new object as far as Gerrit is concerned.
Topic TestGerritBuild Change-Id: I04f907d3e2l986dffceaabl?42cf3aa3£41b0842
Uploaded MNovB, 2010 16:10
Updated MNov B, 2010 16:10
Status Review in Progress

Permalink

o Need Verified +1 (Verified)
e Need Code Review +2 (Looks good to me, approved)

MName or Email Add Reviewer

» Dependencies

V¥ Patch Set1 a10367baldhe2edc2d29dech021b2e112c7edths (gitvweb)

Author Marcus D. Hanwell <marcus. hanwell@kitware.com> Nov 5, 2010 11:08

Committer Marcus D. Hanwell <marcus. hanwell@kitware.com> Nov 6, 2010 16:09
checkout | pull | cherry-pick | patch | Anonymous HTTP | SSH | HTTP |

Dowinload git fetch http://review.source.kitware.comn/p/ITK refs/changes/10/310/1 && git checkout FETCH _HEAD (@]
Review Abandon Change | Diff All Side-by-Side | Diff All Unified ‘
File Path Comments Size Diff Reviewed
> Commit Message Side-by-Side Unified
M Chakelists. txt +1,-7 Side-by-Side Unified
+1,-7

Comments
Marcus D. Hanwell 16:10
Patch Set 1:

Build submitted: http:/Awww. cdash. org/CDashfindesx. php?project=Insight&filtercount=12&field1=buildname/string&compare1=638&value1=TestGerritBuild

board shortcuts
Powered by Genit Cade Review (2.1 5-85-gc054a2b) | Repart Bug

Vr Kitware

:: Change 104f907d3: E... ¥,/ € CDash - Insight € CDash - My Profile

No ITKv4 Modularization Builds

No Nightly Expected Builds

No Style Builds

No Nightly Expected NoTesting Builds
No Nightly Applications Builds

No Nightly Builds

No Continuous Builds

No Nightly Releases Builds

Experimental

Configure
Build Name

Error | Warn | Min

Windows-XP-32-
cl-visual Studio
arrakis kitware 71- o 0 125 0 0
TestGerritBuild B
B>

Linux-Unknown-
64-gcc-4.5.1-
TestGerritBuid &
B3

Totals 2 Builds 0 o) o 0 135 0 8

=
=
=
=
(a]
%

londinium Kitware

No Nightly External Builds

No Coverage

No Dynamic Analysis

7 Kitware

12.6

U2

19.8

NotRun

=

1490

=

Dash 1.8.1 © 2010 Kitware Inc.

C
gl

> C N ® wwwcdash.org/CDash/index.php?project=Insight&filtercount=1&field1=buildnare/string&compare 1=638xz

2010-11-
06T16:13:38 EDT

2010-11-
06T16:11:01 EDT

<

Cloning — Getting the Code

 First thing you need to do is clone.
* Given a remote we can download a full copy.

« Several things happen when you do this.
git clone --recursive git://itk.org/ITK.git

 Remote called origin created.

* Local branch set up to track remote branch.
* Normally called master, tracking origin/master.

Vr Kitware

Anatomy of a Git Command

Shell command - git

Subcommand switch - recursive

!

git clone --recursive git://itk.org/ITK.git
A

Git subcommand - clone Argument to subcommand — full
checkout URL — git:// specifies
git protocol, hosthame and path.

Y Kitware

Getting Help

* Help is always close at hand.

* To get a list of common subcommands
git help

* To get help with a specific subcommand:

git help <subcommand>
glt help clone

- The ‘man pages’ are quite extensive.

Vr Kitware

Getting Updates — Fetch

 Git is distributed — still need to share!

* Can use the fetch command.
* Fetches changes from other remotes.
* Does not update any of your branches.
git fetch origin

git merge origin/master

* This will fetch updates from origin, then
merge them into your master.

Vr Kitware

Getting Updates — Pull

* Most of us do not want to type so much...

* The pull command combines these.

* Equivalenttoa fetch and amerge of
REMOTE-TRACKING-BRANCH.

* Only works if there Is a tracking branch.
git pull
* You can tell pull what branch to merge.

glit pull origin master

Vr Kitware

Revision Names

* Distributed — revision numbers don’t cut it.

* Git uses SHA-1 hashes.
* Globally unique identifiers for a commit.
* These are not very human readable.
* WWe can copy and paste them though...

* Several ways to refer to revisions.
e "'n — the nt" parent.
e ~n —the n" ancestor. e+«—e+—e“—e

V¢ Kitware

Visualizing History — The Graph!

* No longer a linear history — a graph!

SIS bRt

 Commit IDs — hash of content and history.

* Repositories store:
 Named references (“refs”) to commits.
 History subgraph reachable from its refs.

 Some refs are branches, others are tags.

Y kitware

New Concepts — Local Workflow

* “Work tree” — local working tree.
* These are the files on disk that you see/edit.

* “Index” — local staging area for commits.
» Stage things in the index using git add.
* This content is stored in an index.

* “History” — local history.

* Once the staged changes have been
committed they are put into the local history.

Vr Kitware

Local Workflow Diagram

* Important new commits to move between
the work tree, index and history.

/W\ Stored content and history
reset commit
>m< Staged content

add

checkout
\m Visible content

Y kitware

Making History

* The ref master is a local branch.

 The symref HEAD always points to the
current branch.

* The add and checkout commands go
from work tree to index, and back again.

* The commit and reset commands go
from index to history, and back again.

e These commands create new nodes.

Vr Kitware

Making History

HEAD The current branch’s ref
moves to new commit

New content
%tored in commit
S New content
Ea————

staged in index
Work tree starts with Developer edits
content from HEAD content in work tree

master

Y kitware

Sharing History with the World

* The push, pull and fetch commands
copy refs from one repository to another.

* The history is carried along by these refs.

 Many commands attempt to use sane

defaults for normal situations.
glt push

glt push origiln master

Vr Kitware

Branchy Development

» Use topic branches for development.
 Named locally by each developer.
* All the real work happens on topics.
* Branch from master, merge when ready.

* Integration branches.

* Merge topics together when ready.
« Several, e.g. master, release, next.
 Named and published in “official” repository.

Vr Kitware

Branchy Development — Merges

m trunk

« All topics are independent. w
release

........... —Q«—© reoeeeeee - —@—@ feature 2

.......... @<«—@« ®<—0
» History of each topic is separate.

* Release branch gets real history.

f ‘\ This was merged!
.......... @< @< release

Y kitware

Starting a New Topic

« Update your remote references.
git fetch origin

» Create your topic branch, from master.

git checkout -b my-topic origin/master

Vr Kitware

New Topic — The Long Way

* The previous slide uses a few shortcuts.

glt checkout master

glt fetch

git merge origin/master
glt branch my-topic

git checkout my=topiks

* | prefer the shorter method.
* There is some value in knowing the detalils.

Vr Kitware

Making Commits

« Edit files in your work tree.
vim 1tkFilter.h 1tkFilter.cxx

 Inspect the status of the tree, changes.
gLt Siartils

git diff
* Once ready, stage the changes.
git add 1tkFilter J6ESIrt SO ciareh S

Vr Kitware

Making Commits

* Inspect the staged changes.
glit diff —--cached

 Commit the changes to your local history.
gl @omme

* View the commit log.
git log

* View the commits with diffs in your topic.

git log -p origin/master..

Vr Kitware

Publishing Your Topics

* See what will be published.

git log --graph --stat origin/master..
* This shows a summary of commits in the topic
* Publish those commits to a remote.
git push origin HEAD
* This will push the ref my-topic to origin.

* A named topic branch, my-topic, will be
pushed.

Vr Kitware

Aliases — Making Things Simpler

» Git aliases can help a lot.
* Provide shortcuts for common commands.
* A set of useful aliases is available for ITK.

git log --graph --stat origin/master..

glt prepush

Vr Kitware

Git Bash Completion

* Provides tab completion of commands.
 Completed common commands.
* Extends to common command switches.
* Installed by most Linux distributions.
» Often needs to be enabled.

/etc/bash completion

/opt/local/etc/bash completion

* Installed by default for msysgit bash shell.

Vr Kitware

Shell Prompt Customization

* New concepts — switching branches a lot.
« Constant path, changing branch...

« Can be confused about current branch.

* Have Git tell you in your prompt!

marcus@londinium:~/src/titan$s

marcus@londinium:~/src/titan my-topic$

PS1="\[\033[01;32m\]\u@\h\ [\033[00m\]:\[\033[01;34m\]\w\ [\033[00m\]J\[\033
[01;33m\] "git branch 2>/dev/nuilEiEit —SE28=Eiy™ =R SUEENED Omaui .

Vr Kitware

ITK Development Setup Script

* Need to clone the repository.

* Set up an authenticated pushurl.

* Add a topic stage remote.

* Add a Gerrit code review remote.

* Download and install local git hooks.
* Add useful Git aliases.

Vr Kitware

ITK Development Setup

 This can all be done in three lines.

* First, clone the ITK repository.
git clone git://itk.org/ITK.git
cd ITK

 Now run the setup script

./Utilities/SetupForDevelopment.sh

Vr Kitware

ITK Development Setup

* You will be asked a few questions.
* Do you have push access?
* Do you have a Gerrit username?

* There is also a one page PDF guide.
 Summarizes setup of a new clone.
* Lifecycle of a typical topic branch.

Vr Kitware

Code Review, Topic Merge

« Assuming you have a topic ready to go.

 Push it to Gerrit for code review.
glt prepush
galie gEEralic—oblE

 Assuming it is approved, push and merge.

glt gerrit-merge

Vr Kitware

Editing Commits in a Topic

« Editing the last commit in a topic.

« Edit the files in your work tree, stage them.

vim 1tkMyClass.txx
gale cleel el CIEgE s ree

 Now amend the previous commit.

glt commit —--amend -v

Vr Kitware

Editing Commits in a Topic

« \What if it wasn’t the last commit?!?

* |nteractive rebase to the rescue:

* Go back 3 commits
glt rebase -1 HEAD~3

* Now decide which commit(s) to edit.

» Save and clone the editor — git will guide you.

vim 1tkMyOtherClass.cxx
git add 1tkMyOtherClass.cxx

glt rebase —--continue

Vr Kitware

Editing Commits in a Topic

® OO0 Terminal — vim — 80x24

Bick 1146954 Turn of Floating Point Exceptions while calling nrrdlLoad

pick 1d@fc67 BUGBRR1@725: VTKImageIO does not support TENSORS dataset attribute.

pick 8076703 Stream read/write the tensors in VTKImageIO2.

=
=
#

Pl R R RR

Rebase ebdcbea..B8076703 onto ebdcbea

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x <cmd>, exec <cmd> = Run a shell command <cmd>, and stop if it fails

If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.

<c/ITK/.git/rebase-merge/git-rebase-todo" 17L, 709C 1,1

“\W'Kitware

Publishing An Edited Topic

* You rewrote history...
* You need to be a little more forceful.

* For Gerrit, with the Change-Id lines.
glt gerrit-push
* |t will show up as patch set 2, 3, etc.

* For the topic stage — force push.

glt fetch stage —--prune
glt push stage +HEAD

Vr Kitware

Resolving Conflict

* |t will happen from time to time.
 All auto-merged files will be put in index.

* You can always abandon a confict.

glt reset —--merge

* Normal <<<, === and >>> markers.

 Fix In an editor, once resolved:
glt add fileYouFixed.h otherFile.cxx

glit commit

Vr Kitware

Resolving Conflict

* The files are marked both modified.
« Start from common ancestor of two parents.
« Same style as “merge” from RCS.

* For conflicts the changes from both sides.
» <<< down to === is typically yours.
» === down to >>> is typically theirs.

* Look at originals. 1 iIs common ancestor, 2
is HEAD and 3 is MERGE_HEAD

git show :2:fileName.cxx
V7 Kitware

Ending A Topic

* Once your topic is merged it is finished.
* You can now safely delete it.

glt checkout master
glit pull
glt branch -d my-topic

* If it was not merged Git this will falil.

 You can force the deletion.
git branch -D my-topic

Vr Kitware

Branches — Tips & Tricks

* Fetching staged topics.

glt fetch stage —--prune

* Viewing commits on staged topics.
« Assuming the topic name is topic.

git log origin/master..stage/topic

* Viewing the full diff of a topic.

git diff origin/master..stage/topic

Vr Kitware

Branches — Tips & Tricks

* You can also view the patch for commits.
git log -p origin/master..stage/topic

* To view the commit graph in a terminal.

git log ——-oneline ——-gASISKY O SSREEE / (EICENENS

e Or, use --stat to summarize.

git log —--oneline —--stat master

« Show all commits in local branches.

git log --branches --not —--remotes=origin

Vr Kitware

Branches — Tips & Tricks

* Log of current branch, no merge commits.
glit log —--no-merges
* To view a list of merged branches.

git branch —--—-merged mzisISEs"

* Or, a list of unmerged branches.

glt branch —--no-merged master

Vr Kitware

Branches — Rebase master

* All work should take place in topic
branches.

* This means rebase of master by default is the
preferred behavior.

» Default is merge, but it is configurable.
git config branch.master.rebase true

* The git pull command will now rebase.
* |If you miss the change summary...

git config rebase.stat true

Vr Kitware

Branches — Resurrection

» \What if you deleted your branch...
» Later, someone finds a bug in your code.
* OK...so long as you know the hash.
* Branches are just named refs.
glt checkout -b my-old-topic 4ef987d
* If you give it the same name it is the same.

» Should be the last commit in the topic.
» Parent of the merge commit.
» Continue working, and merge as normal.

Vr Kitware

Other Resources

* Many free online resources for Git.
* Pro Git book, http://progit.org/book/
» |TK wiki, http://www.itk.org/Wiki/ITK/Git

* GUI integration:
* Viewers such as gitk, gqgit, gitx.
» Qt Creator has good Git integration.

 All operating systems supported,

* Widely packaged on Linux, macports, msysgit
for Windows.
VY Kitware

Questions

* \We covered a lot.

* You only really need the first few slides.
» General Git usage.

* Gerrit and code review.

* Automated patch testing.

» Setting up ITK for development.

* Merging your changes in.

* Tips and tricks.

Vr Kitware

