

ParaView

Statistics

Philippe Pébay

David Thompson

Janine Bennett

Diana Roe

Nathan Fabian

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000

Outline

- Statistics in General
- Statistics in VTK
- Statistics in ParaView
- Algorithm Details

Tasks

- **Learn** from input data. Also called **Train** in the machine learning/classification community.
- **Derive** further (related and/or more useraccessible) information from minimal statistics.
- Appraise the model; detect
 - problems with assumptions (independence, goodness of fit); and
 - stability problems (numerical & sensitivity).
- Assess some data using what was learned.

Design Pattern

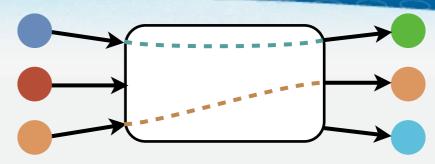
With distributed data, most statistics algorithms look like trendy applications of

- Learn Map-Reduce
- Derive Embarrassingly Parallel Reduce
- Appraise Map-Reduce
- Assess Embarrassingly Parallel Map

VTK Filters

VTK Statistics

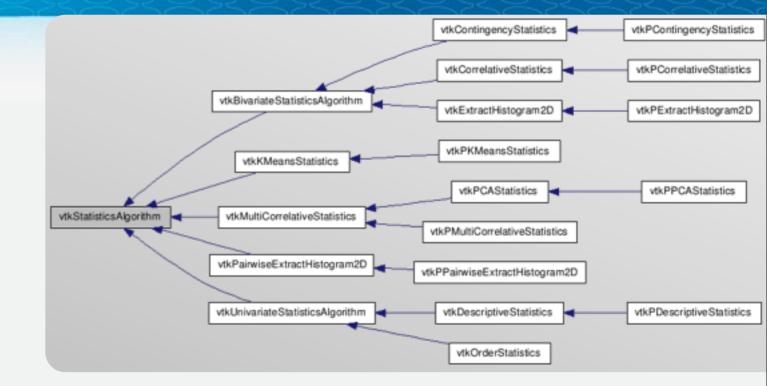
• Filters have inputs for



- Data to learn or assess
- Model parameters (e.g., k-means start points)
- Pre-existing model for assessment
- Filters have outputs for
 - Possibly-assessed data
 - Model output
 - Assessment summary information

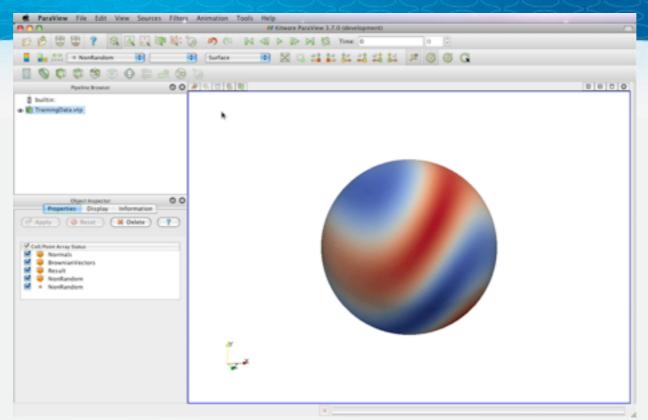
VTK Statistics

- Filters include
 - Contingency tables
 - Descriptive statistics
 - k-means clustering
 - Multicorrelative
 - Order statistics (quantiles)
 - Principal component analysis
 - Bivariate histogram (for parallel coords)
- Currently no filters implement Appraise but all implement Learn, Derive, & Assess.
- ★ Filters in blue have parallel implementations.



ParaView Interface

ParaView Statistics



- This slide contained a video demonstrating
 - the default task (fit+assess) and then
 - a model being created with one dataset and used to assess a second
- with 4-dimensional k-means statistics.

ParaView Statistics

- Filters have **inputs** for
 - Data to learn or assess
 - Pre-existing model for assessment
- Filters have outputs for
 - Model output
 - Possibly-assessed data
- Notice reversed output order (for ease of use)!

Statistics Caveats

- In data-parallel mode, **point** arrays will have **distorted** statistics: shared points are counted once per process instead of just once.
- Distortion may be introduced by your mesh (spatially varying sampling frequency).
- Tasks that perform random sampling will choose a **different** random sample each time the filter is re-executed.

Algorithm Details

Learn + Derive

- Counts number of occurrences of all combinations of values
- Marginalizes with respect to each array component
- Computes information entropies

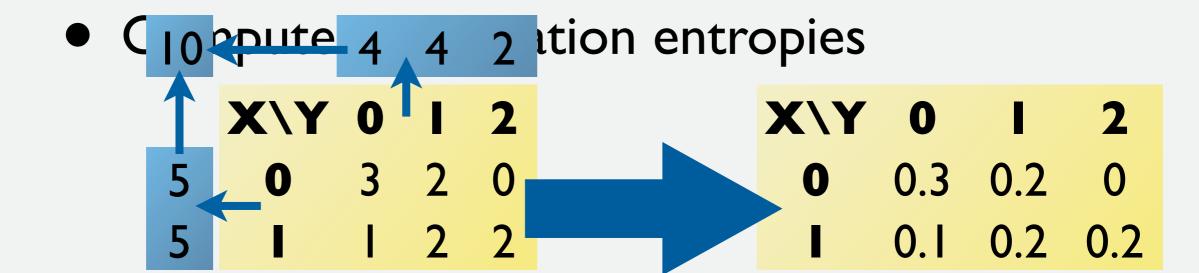
Learn + Derive

- Counts number of occurrences of all combinations of values
- Marginalizes with respect to each array component
- Computes information entropies

```
X\Y 0 I 2
0 3 2 0
I I 2 2
```

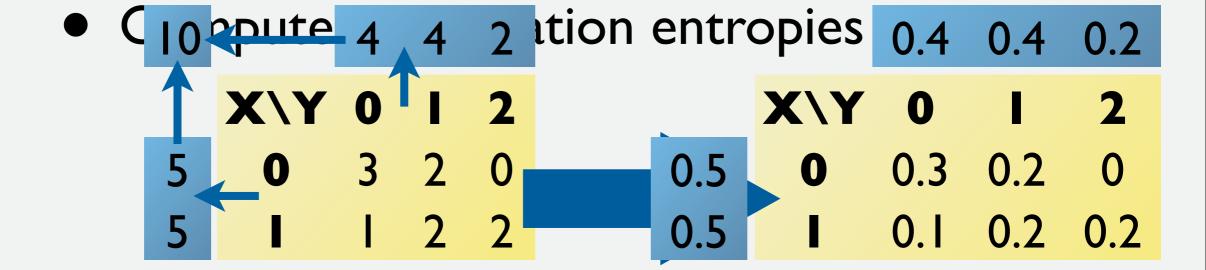

Learn + Derive

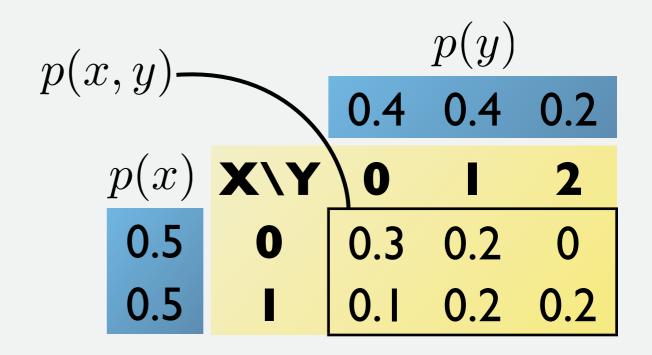
- Counts number of occurrences of all combinations of values
- Marginalizes with respect to each array component



Learn + Derive

- Counts number of occurrences of all combinations of values
- Marginalizes with respect to each array component

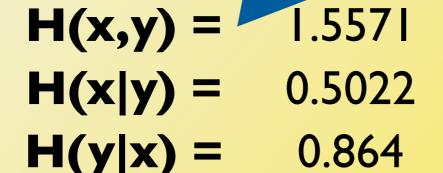


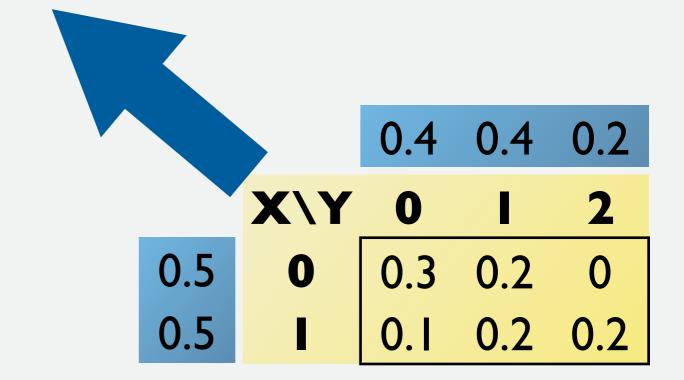


$$H(X,Y) = -\sum_{d \in D} p(x_d, y_d) \log p(x_d, y_d)$$

$$H(X|Y) = -\sum_{d \in D} p(x_d, y_d) \log p(x_d|y_d)$$

$$H(Y|X) = -\sum_{d \in D} p(x_d, y_d) \log p(y_d|x_d)$$





Assess

- Assigns probability from contingency table to each observation.
- Computes Pointwise Mutual Information (PMI) of each observation.
- Note that when you Learn from a different dataset or a subset of the data, any values not encountered during Learn will be assessed with 0 probability. This can make the output look noisy.

Details: Descriptive

Learn

 Computes the min, max, mean, and M2–M4 centered sums.

Derive

 Adds columns for standard deviation, variance, and estimators for skewness and kurtosis.

Assess

 Tags each observation with signed (or unsigned) number of deviations from the mean.

Details: k-means

Learn

- Iteratively updates k cluster centers x_i until maximum count or relative tolerance met.
- Initial x_i are taken from a uniform random distribution over each array's bounds **or** a third input table for model parameters.

Derive

• Compares total error of each (k,x_i) set to determine lowest-error fit. (Not useful in ParaView: only a single value of k is allowed.)

Details: k-means

Derive, cont.

 Use in VTK allows comparisons between multiple k values and initial cluster centers.

Assess

- Tags each observation with 2 values:
 - Integer ID of nearest cluster center
 - Distance to cluster center (Euclidean)

Learn

 Computes means of arrays and covariances of array pairs

Derive

 Computes Cholesky decomposition of the covariance matrix (used in **Assess**).

Assess

 Uses the inverse of the covariance matrix to tag each observation with its Mahalanobis distance.

Details: Multicorrelative

- Output table is densely packed with multiple matrices and vectors.
- Covariance matrix is symmetric; only the top half is stored.
- Cholesky decomposition is lower-triangular.
- Overall: N+1 × N+1 table for N arrays.

	Column	Mean	BrownianVectors_0	BrownianVectors_1	BrownianVectors_2	Result
0	BrownianVectors_0	0.0130061	0.0903729	-0.00155543	0.00117395	0.000430427
1	BrownianVectors_1	0.0202801	0.300621	0.0863474	0.00163257	-0.00264618
2	BrownianVectors_2	-0.00266763	-0.00517405	0.293804	0.0905124	-0.0040427
3	Result	0.00479249	0.00390508	0.00562544	0.300775	0.0898239
4	Cholesky	1587	0.00143179	-0.00898141	-0.0132915	0.299273

Details: Multicorrelative

- Output table is densely packed with multiple matrices and vectors.
- Covariance matrix is symmetric; only the top half is stored.
- Cholesky decomposition is lower-triangular.
- Overall: N+1 × N+1 table for N arrays.

	Column	Mean	BrownianVectors_0	BrownianVectors_1	BrownianVectors_2	Result
0	BrownianVectors_0	0.0130061	0.0903729	-0.00155543	0.00117395	0.000430427
1	BrownianVectors_1	Mean	0.300621	0.0863474	Covariar	-0.00264618
2	BrownianVectors_2	-0.00266763	-0.00517405	0.293804	0.0905124	-0.0040427
3	Result	0.00479249	0.00390508 Choles	0.00562544	0.300775 Docition	0.0898239
4	Cholesky	□#Vals	0.00143179	-0.00898141	-0.0132915	0.299273

Details: PCA

Learn

Identical to multicorrelative statistics

Derive

 Optionally normalizes covariance matrix, then computes SVD to get eigenanalysis.

Assess

 Projects each observation into the new basis, which may be truncated to a fixed dimension or a fixed "energy."

Details: PCA

- Output table is densely packed with multiple matrices and vectors.
- Multicorrelative output is identical but without the final N+1 rows.

	Colun	nn	Mean	BrownianVectors_0	BrownianVectors_1	BrownianVectors_2	Result
0	BrownianVectors_	_0	0.0130061	0.0903729	-0.00155543	0.00117395	0.000430427
1	BrownianVectors_	.1	0.0202801	0.300621	0.0863474	0.00163257	-0.00264618
2	BrownianVectors_	_2	-0.00266763	-0.00517405	0.293804	0.0905124	-0.0040427
3	Result		0.00479249	0.00390508	0.00562544	0.300775	0.0898239
4	Cholesky		1587	0.00143179	-0.00898141	-0.0132915	0.299273
5	PCA	0	1.06379	-0.0652366	0.490468	0.582203	-0.645156
6	PCA	1	1.01444	0.826499	-0.411326	0.380697	-0.052727
7	PCA	2	0.970223	-0.518189	-0.76089	0.262885	-0.288821
8	PCA	3	0.951554	-0.210058	0.106293	0.668581	0.705391
9	PCA	Cov	0	0.0903729	0.0863474	0.0905124	0.0898239

Details: PCA

- Output table is densely packed with multiple matrices and vectors.
- Multicorrelative output is identical but without the final N+1 rows.

	Column	Mean	BrownianVectors_0	BrownianVectors_1	BrownianVectors_2	Result
0	BrownianVectors_0	0.0130061	0.0903729	-0.00155543	0.00117395	0.000430427
1	BrownianVectors_1	Mean	0.300621	0.0863474	Covariar	-0.00264618
2	BrownianVectors_2	-0.00266763	-0.00517405	0.293804	0.0905124	-0.0040427
3	Result	0.00479249	0.00390508 Choles	0.00562544	0.300775 DOCITION	0.0898239
4	Cholesky	1#Vals	0.00143179	-0.00898141	-0.0132915	0.299273
5	PCA 0	1.06379	-0.0652366	0.490468	0.582203	-0.645156
6	PCA 1	Eigen-	0.826499	Eigenve	0,380697 Ctors	-0.052727
7	PCA 2	values	-0.518189	(row vec		-0.288821
8	PCA 3	0.951554	-0.210058	0.106293	0.668581	0.705391
9	PCA Cov	Unused	o.o9o37 : Eigei	nvector n	ormalizati	ON 98239