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Outline

® Statistics in General
® Statistics inVTK
® Statistics in ParaView

® Algorithm Details
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Tasks

® Learn from input data. Also called Train in
the machine learning/classification community.

® Derive further (related and/or more user-
accessible) information from minimal statistics.

® Appraise the model; detect

® problems with assumptions (independence,
goodness of fit); and

® stability problems (numerical & sensitivity).

® Assess some data using what was learned.
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Design Pattern

With distributed data, most statistics
algorithms look like trendy applications of

® Learn — Map-Reduce
® Derive — Embarrassingly Parallel Reduce
® Appraise — Map-Reduce

® Assess — Embarrassingly Parallel Map

Wednesday, October 14, 2009



V1K Filters




® Data to learn or assess O

® Model parameters (e.g., k-means start points) ®
® Pre-existing model for assessment

® Filters have outputs for
® Possibly-assessed data O
® Model output

® Assessment summary information
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VTK Statistics
[xCortingencyStaitics |———r] vikPContingercySatisics |
® Filters include .é e )

I vikBivarate StatisticsAlgorithm
VIKE stractHistogram 20 }4—[ VIRPE dtractHstogram2D ]

Contingency tables [ o ,
VikPCAStatistics }q_{ VikPPCAStatistics
Descriptive statistics . oS
rwise€ xtractHstogram20 T r———— "‘DI
Ek-means clusterin g [ B e [ o
. . T VIKOrderStatistes ]
Multicorrelative

Order statistics (quantiles)
Principal component analysis

Bivariate histogram (for parallel coords)

® Currently no filters implement Appraise but all
implement Learn, Derive, & Assess.

% Filters in blue have parallel implementations.
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ParaView Interface
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® This slide contained a video demonstrating
® the default task (fit+assess) and then

® a model being created with one dataset and
used to assess a second

® with 4-dimensional k-means statistics.
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\)‘

® Filters have inputs for
® Data to learn or assess O
® Pre-existing model for assessment
® Filters have outputs for
® Model output
® Possibly-assessed data ©

® Notice reversed output order (for ease of use)!
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Statistics Caveats

/\ In data-parallel mode, point arrays will
have distorted statistics: shared points
are counted once per process instead of
just once.

/\ Distortion may be introduced by your
mesh (spatially varying sampling frequency).

/\ Tasks that perform random sampling will
choose a different random sample each
time the filter is re-executed.
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Algorithm Details




#= Details: Contingency

Learn + Derive

® Counts number of occurrences of all
combinations of values

® Marginalizes with respect to each array
component

® Computes information entropies
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Details: Contingency

Learn + Derive

® Counts number of occurrences of all
combinations of values

® Marginalizes with respect to each array
component

® Computes information entropies
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Details: Contingency

Learn + Derive

® Counts number of occurrences of all
combinations of values

® Marginalizes with respect to each array
component

tion entropies

X\Y 0 | 2
O 03 02 O
1 0.1 0.2 0.2
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= Details: Contingency

Learn + Derive

® Counts number of occurrences of all
combinations of values

® Marginalizes with respect to each array
component

tion entropies 04 04 0.2

X\Y 0 | 2
O 03 02 O
1 0.1 0.2 0.2
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-+ Details: Contingency

p(y)

W’y)\—
p(z) X\Y\0 1 2

O |03 02 O
1 (0.1 0.2 0.2




#= Details: Contingency

H(X7 Y) — Zp(xdayd) lng(fEd,yd)
deD

H(X[Y) = =) p(xa,yq)logp(zalya)
deD

H(Y|X) = = p(za,ya)logpyalra)
deD

f W, oo
H(x,y) = » 1.5571 X\Y 0

H(x|]y) = 0.5022 0.3 02 O
H(y|x) = 0.864 I 0.1 0.2 0.2
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2 Details: Contingency

AssessS

® Assigns probability from contingency
table to each observation.

® Computes Pointwise Mutual Information
(PMI) of each observation.

® Note that when you Learn from a
different dataset or a subset of the data,
any values not encountered during Learn
will be assessed with O probability. This
can make the output look noisy.
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Details: Descriptive

Learn

® Computes the min, max, mean, and M2—-M4
centered sums.

Derive

® Adds columns for standard deviation, variance,
and estimators for skewness and kurtosis.

Assess

® Tags each observation with signed (or unsigned)
number of deviations from the mean.
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Details: k-means

Learn

® |teratively updates k cluster centers x; until
maximum count or relative tolerance met.

® |nitial x; are taken from a uniform random
distribution over each array’s bounds or a
third input table for model parameters.

Derive

® Compares total error of each (k,x;) set to
determine lowest-error fit. (Not useful in
ParaView: only a single value of k is allowed.)
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Details: k-means

Derive, cont.

® Use in VTK allows comparisons between
multiple k£ values and initial cluster
centers.

Assess
® Tags each observation with 2 values:
® |nteger ID of nearest cluster center

® Distance to cluster center (Euclidean)
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2 Details;: Multicorrelative

Learn

® Computes means of arrays and
covariances of array pairs

Derive

® Computes Cholesky decomposition of
the covariance matrix (used in Assess).

Assess

® Uses the inverse of the covariance matrix
to tag each observation with its
Mahalanobis distance.
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Details: Multicorrelative

® Output table is densely packed with
multiple matrices and vectors.

® Covariance matrix is symmetric; only the
top half is stored.

® Cholesky decomposition is lower-triangular.

® Overall: N+1 x N+1 table for N arrays.

Column Mean BrownianVectors_0 | BrownianVectors_1 BrownianVectors_2 Result
0 BrownianVectors_0 0.0130061 0.0903729 -0.00155543 0.00117395 0.000430427
1 BrownianVectors_1 0.0202801 0.300621 0.0863474 0.00163257 -0.00264618
2 BrownianVectors_2 -0.00266763  -0.00517405 0.293804 0.0905124 -0.0040427
3 Result 0.00479249  0.00390508 0.00562544 0.300775 0.0898239
4 Cholesky 1587 0.00143179 -0.00898141 -0.0132915 0.299273
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2 Details; Multicorrelative

® Output table is densely packed with
multiple matrices and vectors.

® Covariance matrix is symmetric; only the
top half is stored.

® Cholesky decomposition is lower-triangular.

® Overall: N+1 x N+1 table for N arrays.

Column Mean BrownianVectors_0 BrownianVectors_1  BrownianVec
0 BrownianVectors 0 0.0903/729 0.00155543 0.0011/7395 0.00043042/
1 BrownianVectors 1 0.300621 0.08634/4 'l'(;l?y_'asrlancl'enl;»,,.-l»,,.l'~;
Mean
2 BrownianVectors 2 -0.00517405 0.293804 0.0905124 0.0040427
3 Res o_oosqoﬁos I%005((32544 0.3007.75, 0.089823
| Choles ecomposition
4 Che 1f#Va|s 0.00143179 ~1.00898141 20.0132915 0.299273
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Details: PCA

Learn
® |dentical to multicorrelative statistics
Derive

® Optionally normalizes covariance matrix,
then computes SVD to get eigenanalysis.

Assess

® Projects each observation into the new
basis, which may be truncated to a fixed
dimension or a fixed “energy.”
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Details: PCA

® Output table is densely packed with
multiple matrices and vectors.

® Multicorrelative output is identical but
without the final N+1 rows.

Column Mean BrownianVectors_0 | BrownianVectors_1 BrownianVectors_2 Result
0 BrownianVectors_0 0.0130061 0.0903729 -0.00155543 0.00117395 0.000430427
'1 BrownianVectors_1 0.0202801 0.300621 0.0863474 0.00163257 -0.00264618
2 BrownianVectors_2 -0.00266763  -0.00517405 0.293804 0.0905124 -0.0040427
'3 Result 0.00479249  0.00390508 0.00562544 0.300775 0.0898239
4 Cholesky 1587 0.00143179 -0.00898141 -0.0132915 0.299273
5 PCA 0 1.06379 -0.0652366 0.490468 0.582203 -0.645156
6 PCA 1 1.01444 0.826499 -0.411326 0.380697 -0.052727
7 PCA 2 0.970223 -0.518189 -0.76089 0.262885 -0.288821
'8 PCA 3 0.951554 -0.210058 0.106293 0.668581 0.705391
9 PCA Cov 0 0.0903729 0.0863474 0.0905124 0.0898239
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Details: PCA

® Output table is densely packed with
multiple matrices and vectors.

® Multicorrelative output is identical but
without the final N+1 rows.

Column Mean BrownianVectors_0 BrownianVectors_1 BrownianVectors_2 Result
0 BrownianVectors 0 0.0903729 0.00155543 0.00117395 0.000430427
1 BrownianVectors_1 0.300621 0.08634/74 'H(l;l?_y_-awrlan(':l'enlJ;--l».nl'r;
Mean
2  BrownianVectors_2 -0.00517405 0.293804 0.0905124 0.0040427
3 Result 0.00390508 ﬁ.OOS 2544 0.3007/5, 0.0898239
. Choles ecomposition
4 Cholesky 1% =) als 0.00143179 -0.00898141 =0.0132915 0.299273
5 PCA 0 1.06379 -0.0652366 0.490468 0.582203 -0.645156
6 PCA 1 1.01444 0.826499 ~-Qshl 1326 0,380697 -0.052727

Eigen- lgenvectors

7 PCA 7. [ 707223 -0.518189 -(}. 76089 E.Z(JZS 5 -0.288821
values (row vectors
8 PCA 0.951554 -0.210058 0.106293 0.668581 0.705391

9 PCA Cov Unused "o Eigenvector normalization
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