
DARM-2

IAR C/C++ Development
Guide

Compiling and linking

for Advanced RISC Machines Ltd’s
ARM® Cores

DARM-2

COPYRIGHT NOTICE
Copyright © 1999–2008 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

ARM, Thumb, and Cortex are registered trademarks of Advanced RISC Machines Ltd.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: June 2008

Part number: DARM-2

This guide applies to version 5.2x of IAR Embedded Workbench® for ARM.

The IAR C/C++ Development Guide for ARM® replaces all versions of the ARM® IAR
C/C++ Compiler Reference Guide and the IAR Linker and Library Tools Reference
Guide.

Internal reference: ISUD, T7, 5.3.0.

Brief contents
Tables .. xxv

Preface .. xxvii

Part 1. Using the build tools ... 1

Introduction to the IAR build tools .. 3

Developing embedded applications ... 9

Data storage .. 25

Functions ... 29

Linking using ILINK .. 37

Linking your application .. 45

The DLIB runtime environment .. 59

Assembler language interface ... 89

Using C++ .. 103

Application-related considerations ... 111

Efficient coding for embedded applications 121

Part 2. Reference information ... 139

External interface details .. 141

Compiler options ... 149

Linker options .. 181

Data representation .. 199

Compiler extensions .. 211

Extended keywords ... 221
DARM-2

iii

iv
Pragma directives .. 233

Intrinsic functions ... 247

The preprocessor ... 265

Library functions ... 271

The linker configuration file .. 279

Section reference .. 299

IAR utilities .. 303

Implementation-defined behavior .. 321

Glossary .. 333

Index ... 355
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Contents
Tables .. xxv

Preface .. xxvii

Who should read this guide ...xxvii

How to use this guide ..xxvii

What this guide contains ..xxviii

Other documentation ..xxix

Further reading ... xxx

Document conventions ...xxxi

Typographic conventions ..xxxi

Naming conventions ..xxxii

 Part 1. Using the build tools .. 1

Introduction to the IAR build tools .. 3

The IAR build tools—an overview ... 3

IAR C/C++ Compiler ... 3

IAR Assembler ... 4

The IAR ILINK Linker .. 4

Specific ELF tools .. 4

External tools ... 5

IAR language overview ... 5

Device support ... 6

Supported ARM devices .. 6

Preconfigured support files .. 6

Examples for getting started .. 6

Special support for embedded systems .. 7

Extended keywords .. 7

Pragma directives ... 7

Predefined symbols .. 7

Special function types .. 7

Accessing low-level features ... 8
DARM-2

v

vi
Developing embedded applications ... 9

Developing embedded software using IAR build tools 9

Mapping of internal and external memory ... 9

Communication with peripheral units .. 10

Event handling ... 10

System startup .. 10

Real-time operating systems .. 10

Interoperability with other build tools ... 11

The build process—an overview .. 11

The translation process ... 11

The linking process .. 12

After linking ... 14

Application execution—an overview ... 14

The initialization phase .. 15

The execution phase ... 19

The termination phase .. 19

Basic project configuration ... 19

Processor configuration .. 20

Optimization for speed and size ... 21

Runtime environment ... 22

Data storage .. 25

Introduction ... 25

Different ways to store data ... 25

Auto variables—on the stack .. 26

The stack .. 26

Dynamic memory on the heap .. 27

Functions ... 29

Function-related extensions .. 29

ARM and Thumb code .. 29

Execution in RAM ... 30
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Contents
Primitives for interrupts, concurrency, and OS-related
programming .. 30

Interrupt functions ... 31

Installing exception functions .. 31

Interrupts and fast interrupts .. 32

Nested interrupts .. 33

Software interrupts ... 34

Interrupt operations .. 35

Interrupts for ARM Cortex-M .. 36

C++ and special function types ... 36

Linking using ILINK .. 37

Linking—an overview .. 37

Modules and sections .. 38

The linking process .. 39

Placing code and data—the linker configuration file 40

A simple example of a configuration file ... 41

Initialization at system startup ... 43

The initialization process ... 44

Linking your application .. 45

Linking considerations .. 45

Choosing a linker configuration file .. 45

Defining your own memory areas .. 46

Placing sections .. 47

Reserving space in RAM ... 49

Keeping modules .. 49

Keeping symbols and sections ... 49

Application startup ... 50

Setting up the stack .. 50

Setting up the heap ... 50

Setting up the atexit limit ... 50

Changing the default initialization ... 51

Interaction between ILINK and the application 54

Standard library handling ... 55
DARM-2

vii

viii
Producing other output formats than ELF/DWARF 55

Veneers ... 55

Hints for troubleshooting .. 55

Relocation errors .. 56

The DLIB runtime environment .. 59

Introduction to the runtime environment 59

Runtime environment functionality ... 59

Library selection .. 60

Situations that require library building .. 61

Library configurations ... 61

Low-level interface for debug support ... 62

Using a prebuilt library .. 62

Library filename syntax ... 63

Customizing a prebuilt library without rebuilding 64

Choosing formatters for printf and scanf 65

Choosing printf formatter ... 65

Choosing scanf formatter .. 66

Overriding library modules ... 67

Building and using a customized library 69

Setting up a library project ... 69

Modifying the library functionality .. 69

Using a customized library .. 70

System startup and termination .. 70

System startup .. 71

System termination .. 73

Customizing system initialization ... 74

__low_level_init ... 74

Modifying the file cstartup.s ... 75

Standard streams for input and output .. 75

Implementing low-level character input and output 75

Configuration symbols for printf and scanf 77

Customizing formatting capabilities .. 78

File input and output ... 78
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Contents
Locale ... 79

Locale support in prebuilt libraries .. 79

Customizing the locale support .. 80

Changing locales at runtime .. 81

Environment interaction ... 81

Signal and raise .. 82

Time ... 83

Strtod ... 83

Assert ... 83

Atexit ... 84

C-SPY runtime interface .. 84

Low-level debugger runtime interface ... 84

The debugger terminal I/O window ... 85

Checking module consistency ... 85

Runtime model attributes ... 86

Using runtime model attributes .. 86

Assembler language interface ... 89

Mixing C and assembler ... 89

Intrinsic functions .. 89

Mixing C and assembler modules .. 90

Inline assembler .. 91

Calling assembler routines from C ... 92

Creating skeleton code ... 92

Compiling the code .. 93

Calling assembler routines from C++ .. 94

Calling convention .. 95

Function declarations .. 96

Using C linkage in C++ source code ... 96

Preserved versus scratch registers .. 96

Function entrance .. 97

Function exit ... 99

Examples .. 100

Call frame information ... 101
DARM-2

ix

x

Using C++ .. 103

Overview .. 103

Standard Embedded C++ ... 103

Extended Embedded C++ .. 104

Enabling C++ support .. 104

Feature descriptions .. 105

Classes .. 105

Functions .. 106

Templates .. 106

Variants of casts ... 106

Mutable .. 106

Namespace .. 106

The STD namespace .. 107

Pointer to member functions .. 107

Using interrupts and EC++ destructors .. 107

C++ language extensions ... 108

Application-related considerations ... 111

Output format considerations .. 111

Stack considerations ... 111

Exception stacks ... 112

Heap considerations .. 113

Interaction between the tools and your application 113

Checksum calculation ... 115

Calculating a checksum ... 115

Adding a checksum function to your source code 117

Things to remember ... 118

AEABI compliance ... 118

Linking AEABI compliant modules using the IAR ILINK Linker . 119

Linking AEABI compliant modules using a linker from a

different vendor .. 120

Enabling AEABI compliance in the compiler 120
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Contents
Efficient coding for embedded applications 121

Selecting data types ... 121

Using efficient data types ... 121

Floating-point types ... 122

Alignment of elements in a structure ... 122

Anonymous structs and unions .. 123

Controlling data and function placement in memory 124

Data placement at an absolute location .. 125

Data and function placement in sections .. 127

Controlling compiler optimizations ... 128

Scope for performed optimizations .. 128

Optimization levels .. 129

Speed versus size ... 130

Fine-tuning enabled transformations ... 130

Writing efficient code ... 132

Saving stack space and RAM memory .. 133

Function prototypes .. 133

Integer types and bit negation .. 134

Protecting simultaneously accessed variables 135

Accessing special function registers .. 135

Passing values between C and assembler objects 136

Non-initialized variables .. 137

Part 2. Reference information ... 139

External interface details .. 141

Invocation syntax .. 141

Compiler invocation syntax ... 141

ILINK invocation syntax ... 141

Passing options ... 142

Environment variables ... 143

Include file search procedure .. 143

Compiler output ... 144
DARM-2

xi

xii
ILINK output .. 145

Diagnostics .. 146

Message format for the compiler ... 146

Message format for the linker .. 147

Severity levels .. 147

Setting the severity level .. 148

Internal error .. 148

Compiler options ... 149

Options syntax ... 149

Types of options ... 149

Rules for specifying parameters ... 149

Summary of compiler options .. 152

Descriptions of options .. 154

--aapcs .. 155

--aeabi ... 155

--arm ... 155

--char_is_signed ... 156

--cpu ... 156

--cpu_mode .. 157

-D ... 157

--debug, -r ... 158

--dependencies ... 158

--diag_error .. 159

--diag_remark ... 160

--diag_suppress .. 160

--diag_warning ... 160

--diagnostics_tables .. 161

--discard_unused_publics ... 161

 --dlib_config .. 162

-e .. 162

--ec++ ... 163

--eec++ ... 163

--enable_multibytes .. 163
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Contents
--endian .. 163

--enum_is_int ... 164

--error_limit .. 164

-f ... 164

--fpu .. 165

--header_context ... 165

-I ... 166

--interwork ... 166

-l ... 166

--legacy ... 167

--mfc ... 168

--migration_preprocessor_extensions .. 168

--no_clustering ... 169

--no_code_motion .. 169

--no_cse .. 169

--no_fragments ... 170

--no_guard_calls ... 170

--no_inline .. 170

--no_path_in_file_macros .. 171

--no_scheduling .. 171

--no_tbaa .. 171

--no_typedefs_in_diagnostics .. 172

--no_unaligned_access ... 172

--no_unroll ... 173

--no_warnings .. 173

--no_wrap_diagnostics ... 173

-O ... 174

-o, --output ... 174

--only_stdout .. 175

--output, -o ... 175

--predef_macros ... 175

--preinclude .. 176

--preprocess .. 176

--public_equ ... 176
DARM-2

xiii

xiv
-r, --debug ... 177

--remarks .. 177

--require_prototypes ... 177

--section .. 178

--separate_cluster_for_initialized_variables 178

--silent .. 179

--strict_ansi ... 179

--thumb ... 179

--warnings_affect_exit_code .. 180

--warnings_are_errors .. 180

Linker options .. 181

Summary of linker options ... 181

Descriptions of options .. 183

--BE8 .. 183

--BE32 .. 183

--config ... 184

--config_def .. 184

--cpp_init_routine ... 184

--cpu ... 185

--define_symbol ... 185

--diag_error .. 186

--diag_remark ... 186

--diag_suppress .. 186

--diag_warning ... 187

--diagnostics_tables .. 187

--entry ... 187

--error_limit .. 188

--export_builtin_config .. 188

-f ... 188

--force_output ... 189

--image_input ... 189

--keep ... 190

--log .. 190
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Contents
--log_file ... 191

--mangled_names_in_messages ... 191

--map .. 191

--no_fragments ... 192

--no_library_search .. 192

--no_locals .. 193

--no_remove ... 193

--no_veneers ... 193

--no_warnings .. 193

--no_wrap_diagnostics ... 194

-o, --output ... 194

--only_stdout .. 194

--ose_load_module ... 195

--output, -o ... 195

--pi_veneers .. 195

 --place_holder ... 195

--redirect ... 196

--remarks .. 196

--semihosting .. 197

--silent .. 197

--strip .. 197

--warnings_affect_exit_code .. 198

--warnings_are_errors .. 198

Data representation .. 199

Alignment .. 199

Alignment on the ARM core ... 199

Byte order .. 200

Basic data types .. 200

Integer types ... 200

Floating-point types .. 203

Pointer types .. 205

Function pointers .. 205

Data pointers .. 205
DARM-2

xv

xvi
Casting ... 205

Structure types ... 206

Alignment ... 206

General layout ... 206

Packed structure types ... 207

Type qualifiers .. 208

Declaring objects volatile .. 208

Declaring objects const .. 209

Data types in C++ ... 209

Compiler extensions .. 211

Compiler extensions overview ... 211

Enabling language extensions .. 212

C language extensions .. 212

Important language extensions ... 212

Useful language extensions .. 214

Minor language extensions .. 217

Extended keywords ... 221

General syntax rules for extended keywords 221

Type attributes .. 221

Object attributes .. 223

Summary of extended keywords ... 224

Descriptions of extended keywords ... 225

__arm ... 225

__big_endian .. 225

__fiq ... 225

__interwork .. 226

__intrinsic .. 226

__irq ... 226

__little_endian ... 226

__nested ... 227

__no_init .. 227

__ramfunc .. 227

__noreturn .. 228
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Contents
__packed .. 228

__root ... 229

__swi .. 229

__thumb ... 230

__weak ... 231

Pragma directives .. 233

Summary of pragma directives .. 233

Descriptions of pragma directives .. 234

bitfields ... 234

data_alignment ... 235

diag_default .. 235

diag_error ... 236

diag_remark ... 236

diag_suppress ... 236

diag_warning .. 237

include_alias ... 237

inline ... 238

language ... 238

location ... 239

message .. 239

object_attribute ... 240

optimize .. 240

pack ... 241

__printf_args .. 242

required .. 242

rtmodel ... 243

__scanf_args .. 243

section .. 244

swi_number .. 244

type_attribute ... 245
DARM-2

xvii

xvi
Intrinsic functions ... 247

Summary of intrinsic functions ... 247

Descriptions of intrinsic functions ... 250

__CLZ .. 250

__disable_fiq .. 250

__disable_interrupt .. 250

__disable_irq .. 250

__DMB .. 251

__DSB .. 251

__enable_fiq .. 251

__enable_interrupt ... 251

__enable_irq .. 252

__get_BASEPRI .. 252

__get_CONTROL .. 252

__get_CPSR ... 252

__get_FAULTMASK .. 252

__get_interrupt_state ... 253

__get_PRIMASK ... 253

__ISB ... 253

__LDREX .. 253

__MCR .. 254

__MRC .. 254

__no_operation .. 255

__QADD .. 255

__QADD8 .. 255

__QADD16 .. 255

__QASX .. 255

__QDADD ... 255

__QDSUB .. 256

__QFlag ... 256

__QSUB ... 256

__QSUB8 ... 256

__QSUB16 ... 256
DARM-2

ii
IAR C/C++ Development Guide
Compiling and linking

Contents
__QSAX .. 256

__reset_Q_flag ... 257

__REV ... 257

__REVSH .. 257

__SADD8 .. 257

__SADD16 .. 257

__SASX ... 258

__SEL .. 258

__set_BASEPRI .. 258

__set_CONTROL .. 258

__set_CPSR ... 258

__set_FAULTMASK .. 259

__set_interrupt_state .. 259

__set_PRIMASK ... 259

__SHADD8 .. 259

__SHADD16 .. 259

__SHASX .. 260

__SHSUB8 .. 260

__SHSUB16 .. 260

__SHSAX .. 260

__SMUL .. 260

__SSUB8 ... 261

__SSUB16 ... 261

__SSAX ... 261

__STREX ... 261

__UADD8 .. 261

__UADD16 .. 262

__UASX .. 262

__UHADD8 ... 262

__UHADD16 ... 262

__UHASX .. 262

__UQADD8 ... 263

__UQADD16 ... 263

__UQASX .. 263
DARM-2

xix

xx
__UQSUB8 .. 263

__UQSUB16 .. 263

__UQSAX .. 264

__USAX .. 264

__USUB8 ... 264

__USUB16 ... 264

The preprocessor ... 265

Overview of the preprocessor .. 265

Descriptions of predefined preprocessor symbols 266

__TID__ .. 268

Descriptions of miscellaneous preprocessor extensions 269

NDEBUG ... 269

_Pragma() ... 269

#warning message .. 270

__VA_ARGS__ ... 270

Library functions ... 271

Introduction .. 271

Header files .. 271

Library object files ... 271

Reentrancy ... 272

IAR DLIB Library .. 272

C header files ... 273

C++ header files ... 274

Library functions as intrinsic functions ... 276

Added C functionality .. 276

The linker configuration file .. 279

Overview .. 279

Defining memories and regions ... 280

Define memory directive ... 280

Define region directive ... 281

Regions .. 281

Region literal .. 281
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Contents
Region expression .. 283

Empty region .. 284

Section handling .. 284

Define block directive .. 285

Define overlay directive ... 286

Initialize directive .. 287

Do not initialize directive ... 289

Keep directive .. 290

Place at directive .. 290

Place in directive .. 291

Section selection ... 291

Section-selectors .. 292

Extended-selectors ... 293

Using symbols, expressions, and numbers 294

Define symbol directive ... 294

Export directive .. 295

Expressions .. 295

Numbers ... 296

Structural configuration .. 297

If directive .. 297

Include directive ... 298

Section reference .. 299

Summary of sections ... 299

Descriptions of sections and blocks .. 300

.bss .. 300

CSTACK .. 300

.cstart .. 300

.data .. 300

.data_init ... 301

.difunct ... 301

HEAP ... 301

.iar.dynexit ... 301

.intvec ... 301
DARM-2

xxi

xxi
IRQ_STACK .. 302

.noinit ... 302

.rodata ... 302

.text ... 302

IAR utilities .. 303

The IAR Archive Builder—iarchive .. 303

Invocation syntax ... 303

Summary of iarchive options ... 304

Descriptions of options .. 304

-o .. 304

-f ... 305

--verbose, -V .. 305

Diagnostic messages .. 305

The IAR ELF Tool—ielftool .. 306

Invocation syntax ... 306

Summary of ielftool options .. 307

Descriptions of options .. 308

--bin .. 308

--checksum ... 308

--fill .. 309

--ihex .. 310

--silent .. 310

--simple .. 310

--srec ... 310

--srec-len .. 311

--srec-s3only ... 311

--strip .. 311

--verbose ... 311

The IAR ELF Dumper for ARM—ielfdumparm 312

Invocation syntax ... 312

Summary of ielfdumparm options ... 312

Descriptions of options .. 313

--all ... 313
DARM-2

i
IAR C/C++ Development Guide
Compiling and linking

Contents
-o, --output ... 313

--section, -s ... 314

--raw ... 314

The IAR Absolute Symbol Exporter—isymexport 314

Invocation syntax ... 315

Summary of isymexport options .. 315

Descriptions of options .. 315

--edit ... 315

Steering files .. 316

Show directive .. 316

Hide directive ... 317

Rename directive .. 317

Diagnostic messages .. 318

Implementation-defined behavior .. 321

Descriptions of implementation-defined behavior 321

Translation ... 321

Environment ... 322

Identifiers ... 322

Characters ... 322

Integers ... 324

Floating point ... 324

Arrays and pointers .. 325

Registers ... 325

Structures, unions, enumerations, and bitfields 325

Qualifiers .. 326

Declarators ... 326

Statements .. 326

Preprocessing directives ... 326

IAR DLIB Library functions .. 328

Glossary .. 333

Index ... 355
DARM-2

xxiii

xxi
DARM-2

v
IAR C/C++ Development Guide
Compiling and linking

Tables
1: Typographic conventions used in this guide .. xxxi

2: Naming conventions used in this guide .. xxxii

3: Command line options for specifying library and dependency files 23

4: Sections holding initialized data ... 43

5: Description of a relocation error ... 56

6: Library configurations ... 61

7: Customizable items ... 64

8: Formatters for printf .. 66

9: Formatters for scanf .. 67

10: Descriptions of printf configuration symbols ... 77

11: Descriptions of scanf configuration symbols .. 78

12: Low-level I/O files .. 79

13: Functions with special meanings when linked with debug info 84

14: Example of runtime model attributes .. 86

15: Registers used for passing parameters .. 98

16: Registers used for returning values ... 99

17: Call frame information resources defined in a names block 102

18: Exception stacks .. 112

19: Compiler optimization levels .. 129

20: Compiler environment variables ... 143

21: ILINK environment variables ... 143

22: Error return codes .. 145

23: Compiler options summary ... 152

24: Linker options summary ... 181

25: Integer types .. 200

26: Floating-point types .. 203

27: Extended keywords summary ... 224

28: Pragma directives summary .. 233

29: Intrinsic functions summary .. 247

30: Predefined symbols ... 266

31: Values for specifying different CPU core families in __TID__ 268
DARM-2

xxv

xxv
32: Traditional standard C header files—DLIB .. 273

33: Embedded C++ header files .. 274

34: Additional Embedded C++ header files—DLIB ... 274

35: Standard template library header files ... 275

36: New standard C header files—DLIB .. 275

37: Section summary ... 299

38: iarchive parameters ... 303

39: iarchive options summary ... 304

40: ielftool parameters ... 307

41: ielftool options summary ... 307

42: ielfdumparm parameters .. 312

43: ielfdumparm options summary ... 312

44: ielftool parameters ... 315

45: isymexport options summary .. 315

46: Message returned by strerror()—IAR DLIB library ... 331
DARM-2

i
IAR C/C++ Development Guide
Compiling and linking

Preface
Welcome to the IAR C/C++ Development Guide for ARM®. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the build tools to best suit your application requirements. This guide
also gives you suggestions on coding techniques so that you can develop
applications with maximum efficiency.

Who should read this guide
You should read this guide if you plan to develop an application using the C or C++
language for the ARM core and need to get detailed reference information on how to use
the build tools. In addition, you should have a working knowledge of the following:

● The architecture and instruction set of the ARM core. Refer to the documentation
from Advanced RISC Machines Ltd for information about the ARM core

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

How to use this guide
When you start using the IAR C/C++ compiler and linker for ARM, you should read
Part 1. Using the build tools in this guide.

When you are familiar with the compiler and linker and have already configured your
project, you can focus more on Part 2. Reference information.

If you are new to using the IAR Systems build tools, we recommend that you first study
the IAR Embedded Workbench® IDE User Guide for ARM®. This guide contains a
product overview, tutorials that can help you get started, conceptual and user
information about the IDE and the IAR C-SPY® Debugger, and corresponding
reference information.
DARM-2

xxvii

xxv

What this guide contains
What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Part 1. Using the build tools

● Introduction to the IAR build tools gives an introduction to the IAR build tools,
which includes an overview of the tools, the programming languages, the available
device support, and extensions provided for supporting specific features of the
ARM core.

● Developing embedded applications gives the information you need to get started
developing your embedded software using the IAR build tools.

● Data storage describes how data can be stored in memory.

● Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

● Linking using ILINK describes the linking process using the IAR ILINK Linker and
the related concepts.

● Linking your application lists a number of aspects that you must consider when
linking your application, including using ILINK options and tailoring the linker
configuration file configuration file.

● The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization and introduces the file cstartup, as well as how to
use modules for locale, and file I/O.

● Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

● Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

● Application-related considerations discusses a selected range of application issues
related to using the compiler and linker.

● Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

Part 2. Reference information

● External interface details provides reference information about how the compiler
and linker interact with their environment—the invocation syntax, methods for
passing options to the compiler and linker, environment variables, the include file
search procedure, and the different types of compiler and linker output. The chapter
also describes how the diagnostic system works.
DARM-2

iii
IAR C/C++ Development Guide
Compiling and linking

Preface
● Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

● Linker options gives a summary of the options, and contains detailed reference
information for each linker option.

● Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

● Compiler extensions gives a brief overview of the compiler extensions to the
ISO/ANSI C standard. More specifically the chapter describes the available C
language extensions.

● Extended keywords gives reference information about each of the ARM-specific
keywords that are extensions to the standard C/C++ language.

● Pragma directives gives reference information about the pragma directives.

● Intrinsic functions gives reference information about the functions that can be used
for accessing ARM-specific low-level features.

● The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

● Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

● The linker configuration file describes the purpose of the linker configuration file
and describes its contents.

● Section reference gives reference information about the use of sections.

● IAR utilities describes the IAR utilities iarchive and ichecksum.

● Implementation-defined behavior describes how the compiler handles the
implementation-defined areas of the C language standard.

Glossary

The glossary contains definitions of programming terms.

Other documentation
The complete set of IAR Systems development tools for the ARM core is described in
a series of guides. For information about:

● Using the IDE and the IAR C-SPY Debugger®, refer to the IAR Embedded
Workbench® IDE User Guide for ARM®

● Programming for the ARM IAR Assembler, refer to the ARM® IAR Assembler
Reference Guide
DARM-2

xxix

xxx

Other documentation
● Using the IAR DLIB Library functions, refer to the online help system

● Porting application code and projects created with a previous IAR Embedded
Workbench for ARM, refer to the ARM® IAR Embedded Workbench® Migration
Guide

● Using the MISRA-C rules, refer to the IAR Embedded Workbench® MISRA C
Reference Guide.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

FURTHER READING

The following books may be of interest to you when using the IAR Systems
development tools:

● Seal, David, and David Jagger. ARM Architecture Reference Manual.
Addison-Wesley.

● Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++ . O’Reilly & Associates.

● Furber, Steve, ARM System-on-Chip Architecture. Addison-Wesley.

● Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

● Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall. [The later editions describe the ANSI C standard.]

● Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

● Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.

● Mann, Bernhard. C für Mikrocontroller. Franzis-Verlag. [Written in German.]

● Sloss, Andrew N. et al, ARM System Developer's Guide: Designing and Optimizing
System Software. Morgan Kaufmann.

● Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

We recommend that you visit the following web sites:

● The Advanced RISC Machines Ltd web site, www.arm.com, contains information
and news about the ARM core, as well as information about the ARM Embedded
Application Binary Interface (AEABI).

● The IAR Systems web site, www.iar.com, holds application notes and other
product information.

● The web site www.SevensAndNines.com, maintained by IAR Systems, provides
an online user community and resource site for ARM developers.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Preface
● Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions
When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example arm\doc, the full
path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench 5.0\arm\doc.

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a command, where [] is part of the described
syntax.

{option} A mandatory part of a command, where {} is part of the described
syntax.

[option] An optional part of a command.

{option} A mandatory part of a command.

a|b|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Table 1: Typographic conventions used in this guide
DARM-2

xxxi

xxx

Document conventions
NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Identifies helpful tips and programming hints.

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® for ARM IAR Embedded Workbench®

IAR Embedded Workbench® IDE for ARM the IDE

IAR C-SPY® Debugger for ARM C-SPY, the debugger

IAR C/C++ Compiler™ for ARM the compiler

IAR Assembler™ for ARM the assembler

IAR ILINK™ Linker ILINK, the linker

IAR DLIB Library™ the DLIB library

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)
DARM-2

ii
IAR C/C++ Development Guide
Compiling and linking

Part 1. Using the build
tools
This part of the IAR C/C++ Development Guide for ARM® includes the
following chapters:

● Introduction to the IAR build tools

● Developing embedded applications

● Data storage

● Functions

● Linking using ILINK

● Linking your application

● The DLIB runtime environment

● Assembler language interface

● Using C++

● Application-related considerations

● Efficient coding for embedded applications.
DARM-2

1

2

DARM-2

Introduction to the IAR
build tools
This chapter gives an introduction to the IAR build tools for the ARM cores,
which means you will get an overview of:

● The IAR build tools—the build interfaces, compiler, assembler, and linker

● The programming languages

● The available device support

● The extensions provided by the IAR C/C++ Compiler for ARM to support
specific features of the ARM cores.

The IAR build tools—an overview
In the IAR product installation you can find a set of tools, code examples, and user
documentation, all suitable for developing software for ARM-based embedded
applications. The tools allow you to develop your application in C, C++, or in assembler
language.

For a more detailed product overview, see the IAR Embedded Workbench® IDE User
Guide for ARM®. There you can also read about the debugger.

IAR Embedded Workbench® is a very powerful Integrated Development Environment
(IDE) that allows you to develop and manage complete embedded application projects.
It provides an easy-to-learn and highly efficient development environment with
maximum code inheritance capabilities, comprehensive and specific target support. IAR
Embedded Workbench promotes a useful working methodology, and thus a significant
reduction of the development time.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

IAR C/C++ COMPILER

The IAR C/C++ Compiler for ARM is a state-of-the-art compiler that offers the
standard features of the C and C++ languages, plus extensions designed to take
advantage of the ARM-specific facilities.
DARM-2

Part 1. Using the build tools 3

4

The IAR build tools—an overview
IAR ASSEMBLER

The IAR Assembler for ARM is a powerful relocating macro assembler with a
versatile set of directives and expression operators. The assembler features a built-in
C language preprocessor and supports conditional assembly.

The IAR Assembler for ARM uses the same mnemonics and operand syntax as the
Advanced RISC Machines Ltd ARM Assembler, which simplifies the migration of
existing code. For detailed information, see the ARM® IAR Assembler Reference Guide.

THE IAR ILINK LINKER

The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded controller applications. It is equally well suited for linking small,
single-file, absolute assembler programs as it is for linking large, relocatable input,
multi-module, C/C++, or mixed C/C++ and assembler programs.

SPECIFIC ELF TOOLS

Because ILINK both uses and produces industry-standard ELF and DWARF as object
format, additional IAR utilities that handle these formats can be used:

● The IAR Archive Builder—iarchive—creates a library (archive) from a number
of ELF object files

● The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as, fill, checksum, format conversion etc)

● The IAR ARM ELF Dumper—ielfdumparm—creates a text representation of the
contents of an ELF relocatable or executable image

● The IAR Absolute Symbol Exporter—isymexport—exports absolute symbols
from a ROM image file, so that they can be used when linking an add-on
application.

For information about the IAR utilities, see IAR utilities, page 303.

In addition, the following GNU binary utilities are distributed with your product
version:

● ar: Creates, modifies, and extracts from archives, that is, libraries

● nm: Lists symbols from object files

● objcopy: Copies and translates object files, specifically from ELF to the Intel-hex
or Motorola S-record formats; see also The IAR ELF Tool—ielftool, page 306

● objdump: Displays information from absolute IAR ELF files; see also The IAR ELF
Dumper for ARM—ielfdumparm, page 312

● readelf: Displays the contents of absolute IAR ELF files; see also The IAR ELF
Dumper for ARM—ielfdumparm, page 312
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Introduction to the IAR build tools
● size: Lists section sizes and total size

● c++filt: Filter to demangle encoded C++ symbols.

Note: The GNU binary utilities do not always work with standard AEABI ELF 2.0
object files.

For information about these utilities, see GNU binutils manual available from the Help
menu alternatively in the arm\doc\binutils directory.

EXTERNAL TOOLS

For information about how to extend the tool chain in the IDE, see the IAR Embedded
Workbench® IDE User Guide for ARM®.

IAR language overview
There are two high-level programming languages you can use with the IAR C/C++
Compiler for ARM:

● C, the most widely used high-level programming language in the embedded
systems industry. Using the IAR C/C++ Compiler for ARM, you can build
freestanding applications that follow the standard ISO 9899:1990. This standard is
commonly known as ANSI C.

● C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. IAR Systems supports two levels of the
C++ language:

● Embedded C++ (EC++), a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

● IAR Extended Embedded C++, with additional features such as full template
support, multiple inheritance, namespace support, the new cast operators, as well
as the Standard Template Library (STL).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some deviations from the standard. For more details, see the chapter
Compiler extensions.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the ARM® IAR Assembler Reference Guide.

For more information about the Embedded C++ language and Extended Embedded
C++, see the chapter Using C++.
DARM-2

Part 1. Using the build tools 5

6

Device support
Device support
To get a smooth start with your product development, the IAR product installation
comes with wide range of device-specific support.

SUPPORTED ARM DEVICES

The IAR C/C++ Compiler for ARM supports several different ARM cores and devices
based on the instruction sets version 4, 5, 6, 6M, and 7. The object code that the compiler
generates is not always binary compatible between the cores. Therefore it is crucial to
specify a processor option to the compiler. The default core is ARM7TDMI.

PRECONFIGURED SUPPORT FILES

The IAR product installation contains a vast amount of preconfigured files for
supporting different devices.

Header files for I/O

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. The product package supplies I/O files for all devices that are
available at the time of the product release. You can find these files in the
arm\inc\<vendor> directory. Make sure to include the appropriate include file in your
application source files. If you need additional I/O header files, they can be created using
one of the provided ones as a template. For detailed information about the header file
format, see EWARM_HeaderFormat.pdf located in the arm\doc\ directory.

Device description files

The debugger handles several of the device-specific requirements, such as definitions of
peripheral registers and groups of these, by using device description files. These files are
located in the arm\inc directory and they have the filename extension ddf. To read
more about these files, see the IAR Embedded Workbench® IDE User Guide for ARM®
and EWARM_DDFFormat.pdf located in the arm\doc\ directory.

EXAMPLES FOR GETTING STARTED

The arm\examples directory contains several hundreds of examples of working
applications to give you a smooth start with your development. The complexity of the
examples ranges from simple LED blink to USB mass storage controllers. There are
examples provided for most of the supported devices.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Introduction to the IAR build tools
Special support for embedded systems
This section briefly describes the extensions provided by the compiler to support
specific features of the ARM cores.

EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for declaring special function types.

By default, language extensions are enabled in the IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -e, page 162 for additional
information.

For detailed descriptions of the extended keywords, see the chapter Extended keywords.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
ISO/ANSI C, and are very useful when you want to make sure that the source code is
portable.

For detailed descriptions of the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example the CPU mode and time of compilation.

For detailed descriptions of the predefined symbols, see the chapter The preprocessor.

SPECIAL FUNCTION TYPES

The special hardware features of the ARM core are supported by the compiler’s special
function types: software interrupts, interrupts, and fast interrupts. You can write a
complete application without having to write any of these functions in assembler
language.

For detailed information, see Primitives for interrupts, concurrency, and OS-related
programming, page 30.
DARM-2

Part 1. Using the build tools 7

8

Special support for embedded systems
ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 89.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Developing embedded
applications
This chapter provides the information you need to get started developing your
embedded software for the ARM core using the IAR build tools.

First, you will get an overview of the tasks related to embedded software
development, followed by an overview of the build process, including the steps
involved for compiling and linking an application.

Next, the program flow of an executing application is described.

Finally, you will get an overview of the basic settings needed for a project.

Developing embedded software using IAR build tools
Typically, embedded software written for a dedicated microcontroller is designed as an
endless loop waiting for some external events to happen. The software is located in
ROM and executes on reset. There are a number of hardware and software factors that
you must consider when writing this kind of software.

MAPPING OF INTERNAL AND EXTERNAL MEMORY

Embedded systems typically contain various types of memory, such as on-chip RAM,
external DRAM or SRAM, ROM, EEPROM, or flash memory.

As an embedded software developer, you must understand the features of the different
memory types. For example, on-chip RAM is often faster than other types of memories,
and variables that are accessed often would in time-critical applications benefit from
being placed here. Conversely, some configuration data may be accessed seldom but
must maintain their value after power off, so they should be saved in EEPROM or flash
memory.

For efficient memory usage, the compiler provides several mechanisms for controlling
placement of functions and data objects in memory. For an overview see Controlling
data and function placement in memory, page 124. The linker places sections of code in
memory according to the directives you specify in the linker configuration file, see
Placing code and data—the linker configuration file, page 40.
DARM-2

Part 1. Using the build tools 9

10

Developing embedded software using IAR build tools
COMMUNICATION WITH PERIPHERAL UNITS

If external devices are connected to the microcontroller, you may need to initialize and
control the signalling interface, for example by using chip select pins, and detect and
handle external interrupt signals. Typically, this must be initialized and controlled at
runtime. The normal way to do this is to use special function registers, or SFRs. These
are typically available at dedicated addresses, containing bits that control the chip
configuration.

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. See Device support, page 6. For an example, see Accessing special
function registers, page 135.

EVENT HANDLING

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button has been pressed. In general, when an
interrupt occurs in the code, the core simply stops executing the code it runs, and starts
executing an interrupt routine instead.

The compiler supports the following processor exception types: interrupts, software
interrupts, and fast interrupts, which means that you can write your interrupt routines in
C, see Interrupt functions, page 31.

SYSTEM STARTUP

In all embedded systems, system startup code is executed to initialize the system—both
the hardware and the software system—before the main function of the application is
called. The CPU imposes this by starting execution from a fixed memory address.

As an embedded software developer, you must ensure that the startup code is located at
the dedicated memory addresses, or can be accessed using a pointer from the vector
table. This means that startup code and the initial vector table must be placed in
non-volatile memory, such as ROM, EPROM, or flash.

A C/C++ application further needs to initialize all global variables. This initialization is
handled by the linker and the system startup code in conjunction. For more information,
see Application execution—an overview, page 14.

REAL-TIME OPERATING SYSTEMS

In many cases, the embedded application is the only software running in the system.
However, there are some advantages of using an RTOS.

For example, the timing of high-priority tasks is not affected by other parts of the
program which are executed in lower priority tasks. This typically makes a program
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Developing embedded applications
more deterministic and can reduce power consumption by using the CPU efficiently and
putting the CPU in a lower-power state when idle.

Using an RTOS can make your program easier to read and maintain, as well as smaller
in many cases. Application code can be cleanly separated in tasks which are truly
independent of each other. This makes teamwork easier, as the development work can
be easily split into separate tasks which are handled by one developer or a group of
developers.

Finally, using an RTOS reduces the hardware dependence and creates a clean interface
to the application, making it easier to port the program to different target hardware.

INTEROPERABILITY WITH OTHER BUILD TOOLS

The IAR compiler and linker provide support for AEABI, the Embedded Application
Binary Interface for ARM. For more information about this interface specification,
see the www.arm.com web site.

The advantage of this interface is the interoperability between vendors supporting it;
an application can be built up of libraries of object files produced by different vendors
and linked with a linker from any vendor, as long as they adhere to the AEABI
standard.

AEABI specifies full compatibility for C and C++ object code, and for the C library. The
AEABI does not include specifications for the C++ library.

For more information about the AEABI support in the IAR build tools, see AEABI
compliance, page 118.

The ARM IAR build tools version 5.xx are not fully compatible with earlier versions of
the product, see the ARM® IAR Embedded Workbench® Migration Guide for more
information.

The build process—an overview
This section gives an overview of the build process; how the various build
tools—compiler, assembler, and linker—fit together, going from source code to an
executable image.

To get familiar with the process in practice, you should run one or more of the tutorials
available in the IAR Embedded Workbench® IDE User Guide for ARM®.

THE TRANSLATION PROCESS

There are two tools in the IDE that translate application source files to intermediary
object files. The IAR C/C++ Compiler and the IAR relocatable assembler. Both produce
DARM-2

Part 1. Using the build tools 11

12

The build process—an overview
relocatable object files in the industry-standard format ELF, including the DWARF
format for debug information.

Note: The compiler can also be used for translating C/C++ source code into assembler
source code. If required, you can modify the assembler source code which then can be
assembled into object code. For more information about the IAR Assembler, see the
ARM® IAR Assembler Reference Guide.

The following illustration shows the translation process:

Figure 1: The build process before linking

After the translation, you can choose to pack any number of modules into an archive, or
in other words, a library. The important reason you should use libraries is that each
module in a library is conditionally linked in the application, or in other words, is only
included in the application if the module is used directly or indirectly by a module
supplied as an object file. Optionally, you can create a library; then use the IAR utility
iarchive alternatively the GNU binary utility ar.

THE LINKING PROCESS

The relocatable modules, in object files and libraries, produced by the IAR compiler and
assembler cannot be executed as is. To become an executable application, they need to
be linked.

Note: Modules produced by a toolset from another vendor can be included in the build
as well. Be aware that this also might require a compiler utility library from the same
vendor.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Developing embedded applications
The IAR ILINK Linker (ilinkarm.exe) is used for building the final application.
Normally, ILINK requires the following information as input:

● A number of object files and possibly certain libraries

● A program start label (set by default)

● The linker configuration file that describes placement of code and data in the
memory of the target system.

The following illustration shows the linking process:

Figure 2: The linking process

Note: The standard C/C++ library contains support routines for the compiler as well as
the implementation of the C/C++ standard library functions.

During the linking, ILINK might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked the way it was, for example, why a module was included or a section
removed.

For an in-depth description of the procedure performed by ILINK, see The linking
process, page 39.
DARM-2

Part 1. Using the build tools 13

14

Application execution—an overview
AFTER LINKING

The IAR ILINK Linker produces an absolute object file in ELF format that contains the
executable image. After linking, the produced absolute executable image can be used
for:

● Loading into the IAR C-SPY Debugger or any other external debugger that reads
ELF and DWARF.

● Programming to a flash/PROM using a flash/PROM programmer. Before this is
possible, the actual bytes in the image need to be converted into the standard
Motorola 32-bit S-record format or the Intel Hex-32 format. For this, use
ielftool, see The IAR ELF Tool—ielftool, page 306.

The following illustration shows the possible uses of the absolute output ELF/DWARF
file:

Figure 3: Possible uses of the absolute output ELF/DWARF file

Application execution—an overview
This section gives an overview of the execution of an embedded application divided into
three phases, the:

● Initialization phase

● Execution phase
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Developing embedded applications
● Termination phase.

THE INITIALIZATION PHASE

Initialization is executed when an application is started (the CPU is reset) but before the
main function has been entered. The initialization phase can for simplicity be divided
into:

● Hardware initialization, which generally at least initializes the stack pointer.

The hardware initialization is typically performed in the system startup code
cstartup.s and if required, by an extra low-level routine that you provide. It might
include resetting/starting the rest of the hardware, setting up the CPU, etc, in
preparation for the software C/C++ system initialization.

● Software C/C++ system initialization

Typically, this includes assuring that every global (statically linked) C/C++ symbol
receives its proper initialization value before the main function is called.

● Application initialization

This depends entirely on your application. Typically, it can include setting up an
RTOS kernel and starting initial tasks for an RTOS-driven application. For a
bare-bone application, it can include setting up various interrupts, initializing
communication, initializing devices, etc.

For a ROM/flash-based system, constants and functions are already placed in ROM. All
symbols placed in RAM have to be initialized before the main function is called. The
linker has already divided available RAM into different areas for variables, stack, heap,
etc.
DARM-2

Part 1. Using the build tools 15

16

Application execution—an overview
The following sequence of illustrations gives a simplified overview of the different
stages of the initialization.

1 When an application is started, the system startup code first performs hardware
initialization, such as initialization of the stack pointer to point at the predefined stack
area:

Figure 4: Initializing hardware
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Developing embedded applications
2 Then, memories that should be zero-initialized are cleared, in other words, filled with
zeros:

Figure 5: Zero-initializing variables

Typically, this is data referred to as zero-initialized data; variables declared as, for
example, int i = 0;
DARM-2

Part 1. Using the build tools 17

18

Application execution—an overview
3 For initialized data, data declared, for example, like int i = 6; the initializers are
copied from ROM to RAM:

Figure 6: Initializing variables

4 Finally, the main function is called:

Figure 7: Calling main
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Developing embedded applications
For a detailed description about each stage, see System startup and termination, page 70.
For more details about initialization of data, see Initialization at system startup, page 43.

THE EXECUTION PHASE

The software of an embedded application is typically implemented as a loop which is
either interrupt-driven or uses polling for controlling external interaction or internal
events. For an interrupt-driven system, the interrupts are typically initialized at the
beginning of the main function.

In a system with real-time behavior and where responsiveness is critical, a multi-task
system might be required. This means that your application software should be
complemented with a real-time operating system. In this case, the RTOS and the
different tasks must also be initialized at the beginning of the main function.

THE TERMINATION PHASE

Typically, an embedded application should never end. If it does, you must have defined
a proper end behavior.

To terminate an application in a controlled way, either call one of the standard C library
functions exit, _Exit, or abort, or return from main. If you return from main, the
exit function is executed, which means that C++ destructors for static and global
variables are called (C++ only) and all open files are closed.

Of course, in case of incorrect program logic, the application might terminate in an
uncontrolled and abnormal way—a system crash.

To read more about this, see System termination, page 73.

Basic project configuration
In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.o using the default settings:

iccarm myfile.c

On the command line, the following line can be used for starting ILINK:

ilinkarm myfile.o myfile2.o -o a.out --config my_configfile.icf

In this example, myfile.o and myfile2.o are object files, and my_configfile.icf
is the linker configuration file. The option -o specifies the name of the output file.

Note: By default, the label where the application starts is __iar_program_start.
You can change this by using the --entry command line option.
DARM-2

Part 1. Using the build tools 19

20

Basic project configuration
However, you need to specify some additional options. This section gives an overview
of the basic settings for the project setup that are needed to make the compiler and linker
generate the best code for the ARM device you are using. You can specify the options
either from the command line interface or in the IDE.

You need settings for:

● Processor configuration, that is, processor variant, CPU mode, interworking, VFP
and floating-point arithmetic, and byte order

● Optimization settings

● Runtime environment

● Customizing the ILINK configuration, see the chapter Linking your application
● AEABI compliance, see AEABI compliance, page 118.

In addition to these settings, there are many other options and settings available for
fine-tuning the result even further. For details about how to set options and for a list of
all available options, see the chapters Compiler options, Linker options, and the IAR
Embedded Workbench® IDE User Guide for ARM®, respectively.

PROCESSOR CONFIGURATION

To make the compiler generate optimum code, you should configure it for the ARM core
you are using.

Processor variant

The IAR C/C++ Compiler for ARM supports several different ARM cores and devices
based on the instruction sets version 4, 5, 6, and 7. All supported cores support Thumb
instructions and 64-bit multiply instructions. The object code that the compiler
generates is not always binary compatible between the cores. Therefore it is crucial to
specify a processor option to the compiler. The default core is ARM7TDMI.

See the IAR Embedded Workbench® IDE User Guide for ARM® for information about
setting the Processor variant option in the IDE.

Use the --cpu option to specify the ARM core; see --cpu, page 156 for syntax
information.

CPU mode

The IAR C/C++ Compiler for ARM supports two CPU modes: ARM and Thumb.

All functions and function pointers will compile in the mode that you specify, except
those explicitly declared __arm or __thumb.

See the IAR Embedded Workbench® IDE User Guide for ARM® for information about
setting the Processor variant or Chip option in the IDE.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Developing embedded applications
Use the --arm or --thumb option to specify the CPU mode for your project; see --arm,
page 155 and --thumb, page 179, for syntax information.

Interworking

When code is compiled with the --interwork option, ARM and Thumb code can be
freely mixed. Interworking functions can be called from both ARM and Thumb code.
Interworking is default for devices based on the instruction sets version 5, 6, and 7, or
when using the --aeabi compiler option.

See the IAR Embedded Workbench® IDE User Guide for ARM® for information about
setting the Generate interwork code option in the IDE.

Use the --interwork option to specify interworking capabilities for your project; see
--interwork, page 166, for syntax information.

VFP and floating-point arithmetic

If you are using an ARM core that contains a Vector Floating Point (VFP) coprocessor,
you can use the --fpu option to generate code that carries out floating-point operations
utilizing the coprocessor, instead of using the software floating-point library routines.

See the IAR Embedded Workbench® IDE User Guide for ARM® for information about
setting the FPU option in the IDE.

Use the --fpu option to use the coprocessor for floating-point operations; see --fpu,
page 165, for syntax information.

Byte order

The IAR C/EC++ Compiler for ARM supports the big-endian and little-endian byte
order. All user and library modules in your application must use the same byte order.

See the IAR Embedded Workbench® IDE User Guide for ARM® for information about
setting the Endian mode option in the IDE.

Use the --endian option to specify the byte order for your project; see --endian, page
163, for syntax information.

OPTIMIZATION FOR SPEED AND SIZE

The compiler is a state-of-the-art compiler with an optimizer that performs, among other
things, dead-code elimination, constant propagation, inlining, common subexpression
elimination, static clustering, instruction scheduling, and precision reduction. It also
performs loop optimizations, such as unrolling and induction variable elimination.

You can decide between several optimization levels and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
DARM-2

Part 1. Using the build tools 21

22

Basic project configuration
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For details about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You may also need to override certain library modules with your own
customized versions.

There runtime library provided is the IAR DLIB Library, which supports ISO/ANSI C
and C++. This library also supports floating-point numbers in IEEE 754 format and it
can be configured to include different levels of support for locale, file descriptors,
multibyte characters, etc.

The runtime library you choose can be one of the prebuilt libraries, or a library that you
have customized and built yourself. The IDE provides a library project template that you
can use for building your own library version. This gives you full control of the runtime
environment. If your project only contains assembler source code, there is no need to
choose a runtime library.

Note: Some tailoring might be required, for example to meet hardware requirements.

For detailed information about the runtime environment, see the chapter The DLIB
runtime environment.

The way you set up a runtime environment and locate all the related files differs
depending on which build interface you are using—the IDE or the command line.

Setting up for the runtime environment in the IDE

The library is automatically chosen by the linker according to the settings you have
made in Project>Options>General Options, on the pages Library Configuration,
Library Options, and Library Usage.

Note that for the DLIB library there are different configurations—Normal and
Full—which include different levels of support for locale, file descriptors, multibyte
characters, et cetera. See Library configurations, page 61, for more information.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Developing embedded applications
Based on which library configuration you choose and your other project settings, the
correct library file is used automatically. For the device-specific include files, a correct
include path is set up.

Setting up for the runtime environment from the command line

Use the following command line options to explicitly specify the library and the
dependency files:

Normally, it is not needed to specify a library file explicitly, as ILINK automatically uses
the correct library file.

For a list of all prebuilt library object files for the IAR DLIB Library, see Using a
prebuilt library, page 62. Here you also get information about how the object files
correspond to the dependent project options, and the corresponding configuration files.
Make sure to use the object file that matches your other project options.

Setting library and runtime environment options

You can set certain options to reduce the library and runtime environment size:

● The formatters used by the functions printf, scanf, and their variants, see
Choosing formatters for printf and scanf, page 65.

● The size of the stack and the heap, see Setting up the stack, page 50, and Setting up
the heap, page 50, respectively.

Command line Description

-I arm\inc Specifies the include path to device-specific I/O definition
files.

--dlib_config

C:\...\configfile.h

Specifies the library configuration file, either
DLIb_Config_Normal.h or
DLib_Config_Full.h

Table 3: Command line options for specifying library and dependency files
DARM-2

Part 1. Using the build tools 23

24

Basic project configuration
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Data storage
This chapter gives a brief introduction to the memory layout of the ARM core
and the fundamental ways data can be stored in memory: on the stack, in static
(global) memory, or in heap memory. Finally, detailed information about data
storage on the stack and the heap is provided.

Introduction
An ARM core can address 4 Gbytes of continuous memory, ranging from 0x00000000
to 0xFFFFFFFF. Different types of physical memory can be placed in the memory range.
A typical application will have both read-only memory (ROM) and read/write memory
(RAM). In addition, some parts of the memory range contain processor control registers
and peripheral units.

DIFFERENT WAYS TO STORE DATA

In a typical application, data can be stored in memory in three different ways:

● Auto variables.

All variables that are local to a function, except those declared static, are stored on
the stack. These variables can be used as long as the function executes. When the
function returns to its caller, the memory space is no longer valid.

● Global variables and local variables declared static.

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. The ARM core has one single address space and the
compiler supports full memory addressing.

● Dynamically allocated data.

An application can allocate data on the heap, where the data it remains valid until it
is explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 27.
DARM-2

Part 1. Using the build tools 25

26

Auto variables—on the stack
Auto variables—on the stack
Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A small number of these variables are placed in processor
registers; the rest are placed on the stack. From a semantic point of view, this is
equivalent. The main differences are that accessing registers is faster, and that less
memory is required compared to when variables are located on the stack.

Auto variables can only live as long as the function executes; when the function returns,
the memory allocated on the stack is released.

THE STACK

The stack can contain:

● Local variables and parameters not stored in registers

● Temporary results of expressions

● The return value of a function (unless it is passed in registers)

● Processor state during interrupts

● Processor registers that should be restored before the function returns (callee-save
registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself—a so-called recursive function—and each
invocation can store its own data on the stack.

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function has returned. The following function demonstrates a common
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Data storage
programming mistake. It returns a pointer to the variable x, a variable that ceases to exist
when the function returns.

int * MyFunction()
{
 int x;
 ... do something ...
 return &x;
}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions—functions that call themselves either
directly or indirectly—are used.

Dynamic memory on the heap
Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, there is a special keyword, new, designed to allocate memory and run
constructors. Memory allocated with new must be released using the keyword delete.

Potential problems

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use has not been released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate
a new object if there is no piece of free memory that is large enough for the object, even
though the sum of the sizes of the free memory exceeds the size of the object.
DARM-2

Part 1. Using the build tools 27

28

Dynamic memory on the heap
Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Functions
This chapter contains information about functions. It gives a brief overview of
function-related extensions—mechanisms for controlling functions—and
describes some of these mechanisms in more detail.

Function-related extensions
In addition to the ISO/ANSI C standard, the compiler provides several extensions for
writing functions in C. Using these, you can:

● Generate code for the different CPU modes ARM and Thumb

● Make functions execute in RAM

● Use primitives for interrupts, concurrency, and OS-related programming

● Facilitate function optimization

● Access hardware features.

The compiler supports this by means of compiler options, extended keywords, pragma
directives, and intrinsic functions.

For more information about optimizations, see Writing efficient code, page 132. For
information about the available intrinsic functions for accessing hardware operations,
see the chapter Intrinsic functions.

ARM and Thumb code
The IAR C/C++ Compiler for ARM can generate code for either the 32-bit ARM, or the
16-bit Thumb or Thumb2 instruction set. Use the --cpu_mode option, alternatively the
--arm or --thumb options, to specify which instruction set should be used for your
project. For individual functions, it is possible to override the project setting by using
the extended keywords __arm and __thumb. You can freely mix ARM and thumb code
in the same application, as long as the code is interworking.

When performing function calls, the compiler always attempts to generate the most
efficient assembler language instruction or instruction sequence available. As a result, 4
Gbytes of continuous memory in the range 0x0-0xFFFFFFFF can be used for placing
code. There is a limit of 4 Mbytes per code module.

The size of all code pointers is 4 bytes. There are restrictions to implicit and explicit
casts from code pointers to data pointers or integer types or vice versa. For further
information about the restrictions, see Pointer types, page 205.
DARM-2

Part 1. Using the build tools 29

30

Execution in RAM
In the chapter Assembler language interface, the generated code is studied in more detail
in the description of calling C functions from assembler language and vice versa.

Execution in RAM
The __ramfunc keyword makes a function execute in RAM, or in other words places
the function in a section that has read/write attributes. The function is copied from ROM
to RAM at system startup just like any initialized variable, see System startup and
termination, page 70.

The keyword is specified before the return type:

__ramfunc void foo(void);

If a function declared __ramfunc tries to access ROM, the compiler will issue a
warning.

If the whole memory area used for code and constants is disabled—for example, when
the whole flash memory is being erased—only functions and data stored in RAM may
be used. Interrupts must be disabled unless the interrupt vector and the interrupt service
routines are also stored in RAM.

String literals and other constants can be avoided by using initialized variables. For
example, the following lines:

const int myc[] = { 10, 20 }; // myc initializer in
 // DATA_C (ROM)
msg("Hello"); // String literal in
 // DATA_C (ROM)
may be rewritten to:
static int myc[] = { 10, 20 }; // Initialized by cstartup
static char hello[] = "Hello"; // Initialized by cstartup
msg(hello); // hello stored in DATA_I
 // (RAM)

For more details, see Initializing code—copying ROM to RAM, page 53.

Primitives for interrupts, concurrency, and OS-related programming
The IAR C/C++ Compiler for ARM provides the following primitives related to writing
interrupt functions, concurrent functions, and OS-related functions:

● The extended keywords __irq, __fiq, __swi, and __nested

● The intrinsic functions __enable_interrupt, __disable_interrupt,
__get_interrupt_state, and __set_interrupt_state.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Functions
Note: ARM Cortex-M has a different interrupt mechanism than other ARM devices,
and for these devices a different set of primitives is available. For more details, see
Interrupts for ARM Cortex-M, page 36.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button has been pressed.

In general, when an interrupt occurs in the code, the processor simply stops executing
the code it runs and starts executing an interrupt routine instead. The processor state
prior to the interrupt is stored so that it can be restored at the end of the interrupt routine.
This enables the execution of the original code to continue.

The compiler supports interrupts, software interrupts, and fast interrupts. For each
interrupt type, an interrupt routine can be written.

All interrupt functions must be compiled in ARM mode; if you are using Thumb mode,
use the __arm extended keyword or the #pragma type_attribute=__arm directive
to override the default behavior.

Each interrupt routine is associated with a vector address/instruction in the exception
vector table, which is specified in the ARM cores documentation. The interrupt vector
is the address in the exception vector table. For the ARM cores, the exception vector
table starts at address 0x0.

To define an interrupt function, the __irq or the __fiq keyword can be used. For
example:

__irq __arm void IRQ_Handler(void)
{
 /* Do something */
}

See the ARM cores documentation for more information about the interrupt vector
table.

INSTALLING EXCEPTION FUNCTIONS

All interrupt functions and software interrupt handlers must be installed in the vector
table. This is done in assembler language in the system startup file cstartup.s.

The default implementation of the ARM exception vector table in the standard runtime
library jumps to predefined functions that implement an infinite loop. Any exception
that occurs for an event not handled by your application will therefore be catched in the
infinite loop (B.).
DARM-2

Part 1. Using the build tools 31

32

Primitives for interrupts, concurrency, and OS-related programming
The predefined functions are defined as weak symbols. A weak symbol is only included
by the linker as long as no duplicate symbol is found. If another symbol is defined with
the same name, it will take precedence. Your application can therefore simply define its
own exception function by just defining it using the correct name.

The following exception function names are defined in cstartup.s and referred to by
the library exception vector code:

Undefined_Handler
SWI_Handler
Prefetch_Handler
Abort_Handler
IRQ_Handler
FIQ_Handler

To implement your own exception handler, define a function using the appropriate
exception function name from the list above.

For example to add an interrupt function in C, it is sufficient to define an interrupt
function named IRQ_Handler:

__irq __arm void IRQ_Handler()
{
}

An interrupt function must have C linkage, read more in Calling convention, page 95.

If you use C++, an interrupt function could look, for example, like this:

extern "C"
{
__irq __arm void IRQ_Handler(void);
}

__irq __arm void IRQ_Handler()
{
}

 No other changes are needed.

INTERRUPTS AND FAST INTERRUPTS

The interrupt and fast interrupt functions are easy to handle as they do not accept
parameters or have a return value.

● To declare an interrupt function, use the __irq extended keyword or the #pragma
type_attribute=__irq directive. For syntax information, see __irq, page 226,
and type_attribute, page 245, respectively.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Functions
● To declare a fast interrupt function, use the __fiq extended keyword or the
#pragma type_attribute=__fiq directive. For syntax information, see __fiq,
page 225, and type_attribute, page 245, respectively.

Note: An interrupt function (irq) and a fast interrupt function (fiq) must have a return
type of void and cannot have any parameters. A software interrupt function (swi) may
have parameters and return values. By default, only four registers, R0–R3, can be used
for parameters and only the registers R0–R1 can be used for return values.

NESTED INTERRUPTS

Interrupts are automatically disabled by the ARM core prior to entering an interrupt
handler. If an interrupt handler re-enables interrupts, calls functions, and another
interrupt occurs, then the return address of the interrupted function—stored in LR—is
overwritten when the second IRQ is taken. In addition, the contents of SPSR will be
destroyed when the second interrupt occurs. The __irq keyword itself does not save
and restore LR and SPSR. To make an interrupt handler perform the necessary steps
needed when handling nested interrupts, the keyword __nested must be used in
addition to __irq. The function prolog—function entrance sequence—that the
compiler generates for nested interrupt handlers will switch from IRQ mode to system
mode. Make sure that both the IRQ stack and system stack is set up. If you use the
default cstartup.s file, both stacks are correctly set up.

Compiler-generated interrupt handlers that allow nested interrupts are supported for
IRQ interrupts only. The FIQ interrupts are designed to be serviced quickly, which in
most cases mean that the overhead of nested interrupts would be too high.

This example shows how to use nested interrupts with the ARM vectored interrupt
controller (VIC):

__irq __nested __arm void interrupt_handler(void)
{
 void (*interrupt_task)();
 unsigned int vector;

 vector = VICVectAddr; // Get interrupt vector.
 VICVectAddr = 0; // Acknowledge interrupt in VIC.
 interrupt_task = (void(*)())vector;

 __enable_interrupt(); // Allow other IRQ interrupts
 to be serviced from this
 point.
 (*interrupt_task)(); // Execute the task associated
 with this interrupt.
}

DARM-2

Part 1. Using the build tools 33

34

Primitives for interrupts, concurrency, and OS-related programming
Note: The __nested keyword requires the processor mode to be in either User or
System mode.

SOFTWARE INTERRUPTS

Software interrupt functions are slightly more complex than other interrupt functions, in
the way that they need a software interrupt handler (a dispatcher), are invoked (called)
from running application software, and that they accept arguments and have return
values. The mechanisms for calling a software interrupt function and how the software
interrupt handler dispatches the call to the actual software interrupt function is described
here.

Calling a software interrupt function

To call a software interrupt function from your application source code, the assembler
instruction SVC #immed is used, where immed is an integer value that is referred to as
the software interrupt number—or swi_number—in this guide. The compiler provides
an easy way to implicitly generate this instruction from C/C++ source code, by using the
__swi keyword and the #pragma swi_number directive when declaring the function.

A __swi function can for example be declared like this:

#pragma swi_number=0x23
__swi int swi_function(int a, int b);

In this case, the assembler instruction SVC 0x23 will be generated where the function is
called.

Software interrupt functions follow the same calling convention regarding parameters
and return values as an ordinary function, except for the stack usage, see Calling
convention, page 95.

For more information, see __swi, page 229, and swi_number, page 244, respectively.

The software interrupt handler and functions

The interrupt handler, for example SWI_Handler works as a dispatcher for software
interrupt functions. It is invoked from the interrupt vector and is responsible for
retrieving the software interrupt number and then calling the proper software interrupt
function. The SWI_Handler must be written in assembler as there is no way to retrieve
the software interrupt number from C/C++ source code.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Functions
The software interrupt functions

The software interrupt functions can be written in C or C++. Use the __swi keyword in
a function definition to make the compiler generate a return sequence suited for a
specific software interrupt function. The #pragma swi_number directive is not needed
in the interrupt function definition.

For more information, see __swi, page 229.

Setting up the software interrupt stack pointer

If software interrupts will be used in your application, then the software interrupt stack
pointer (SVC_STACK) must be set up and some space must be allocated for the stack. The
SVC_STACK pointer can be setup together with the other stacks in the cstartup.s file.
As an example, see the set up of the interrupt stack pointer. Relevant space for the
SVC_STACK pointer is set up in the linker configuration file, see Setting up the stack,
page 50.

INTERRUPT OPERATIONS

An interrupt function is called when an external event occurs. Normally it is called
immediately while another function is executing. When the interrupt function has
finished executing, it returns to the original function. It is imperative that the
environment of the interrupted function is restored; this includes the value of processor
registers and the processor status register.

When an interrupt occurs, the following actions are performed:

● The operating mode is changed corresponding to the particular exception
● The address of the instruction following the exception entry instruction is saved in

R14 of the new mode
● The old value of the CPSR is saved in the SPSR of the new mode
● Interrupt requests are disabled by setting bit 7 of the CPSR and, if the exception is a

fast interrupt, further fast interrupts are disabled by setting bit 6 of the CPSR
● The PC is forced to begin executing at the relevant vector address.

For example, if an interrupt for vector 0x18 occurs, the processor will start to execute
code at address 0x18. The memory area that is used as start location for interrupts is
called the interrupt vector table. The content of the interrupt vector is normally a branch
instruction jumping to the interrupt routine.

Note: If the interrupt function enables interrupts, the special processor registers needed
to return from the interrupt routine must be assumed to be destroyed. For this reason
they must be stored by the interrupt routine to be restored before it returns. This is
handled automatically if the __nested keyword is used.
DARM-2

Part 1. Using the build tools 35

36

Primitives for interrupts, concurrency, and OS-related programming
INTERRUPTS FOR ARM CORTEX-M

ARM Cortex-M has a different interrupt mechanism than previous ARM architectures,
which means the primitives provided by the compiler are also different.

On ARM Cortex-M, an interrupt service routine enters and returns in the same way as a
normal function, which means no special keywords are required. Thus, the keywords
__irq, __fiq, and __nested are not available when compiling for ARM Cortex-M.

If you need interrupt or other exception handlers, you need to make a copy of the
cstartup_M.c file and modify the vector table. The vector table is implemented as an
array. It should have the name __vector_table, because cmain refers to that symbol
and C-SPY looks for that symbol when determining where the vector table is located.

The intrinsic functions __get_CPSR and __set_CPSR are not available when
compiling for ARM Cortex-M. Instead, if you need to get or set values of these or other
registers, you can use inline assembler. For more information, see Passing values
between C and assembler objects, page 136.

C++ AND SPECIAL FUNCTION TYPES

C++ member functions can be declared using special function types, with the restriction
that interrupt functions must be static. When calling a non-static member function, it
must be applied to an object. When an interrupt occurs and the interrupt function is
called, there is no such object available.

Special function types can be used for static member functions. For example, in the
following example, the function handler is declared as an interrupt function:

class Device
{
 static __irq void handler();
};
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking using ILINK
This chapter describes the linking process using the IAR ILINK Linker and the
related concepts—first with an overview and then in more detail.

Linking—an overview
The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded applications. It is equally well suited for linking small, single-file, absolute
assembler programs as it is for linking large, relocatable, multi-module, C/C++, or
mixed C/C++ and assembler programs.

ILINK combines one or more relocatable object files—produced by the IAR Systems
compiler or assembler—with selected parts of one or more object libraries to produce
an executable image in the industry-standard format Executable and Linking Format
(ELF).

ILINK will automatically load only those library modules—user libraries and standard
C or C++ library variants—that are actually needed by the application you are linking.
Further, ILINK eliminates duplicate sections and sections that are not required.

ILINK can link both ARM and Thumb code, as well as a combination of them. By
automatically inserting additional instructions (veneers), ILINK will assure that the
destination will be reached for any calls and branches, and that the processor state is
switched when required. For more details about how to generate veneers, see Veneers,
page 55.

ILINK uses a configuration file where you can specify separate locations for code and
data areas of your target system memory map. This file also supports automatic handling
of the application’s initialization phase, which means initializing global variable areas
and code areas by copying initializers and possibly decompressing them as well.

The final output produced by ILINK is an absolute object file containing the executable
image in the ELF (including DWARF for debug information) format. The file can be
downloaded to C-SPY or any other debugger that supports ELF/DWARF, or it can be
programmed into EPROM.

To handle ELF files, there are various tools included. For a list of included utilities, see
Specific ELF tools, page 4.
DARM-2

Part 1. Using the build tools 37

38

Modules and sections
Modules and sections
Each relocatable object file contains one module, which consists of:

● Several sections of code or data

● Runtime attributes specifying various types of information, for example the used
device

● Optionally, debug information in DWARF format

● A symbol table of all global symbols and all external symbols used.

A section is a logical entity containing a piece of data or code that should be placed at a
physical location in memory. A section can consist of several section fragments,
typically one for each variable or function (symbols). A section can be placed either in
RAM or in ROM. In a normal embedded application, sections that are placed in RAM
do not have any content, they only occupy space.

Each section has a name and a type attribute that determines the content. The type
attribute is used (together with the name) for selecting sections for the ILINK
configuration. The most commonly used attributes are:

Note: In addition to these section types—sections that contain the code and data that
are part of your application—a final object file will contain many other types of
sections, for example sections that contain debugging information or other type of meta
information.

A section is the smallest linkable unit; but if possible, ILINK can exclude smaller
units—section fragments—from the final application. For more information, see
Keeping modules, page 49, and Keeping symbols and sections, page 49

At compile time, data and functions are placed in different sections. At link time, one of
the most important functions of the linker is to assign execute addresses to the various
sections used by the application.

The IAR build tools have many predefined section names. See the chapter Section
reference for more details about each section.

code Executable code

readonly Constant variables

readwrite Initialized variables

zeroinit Zero-initialized variables
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking using ILINK
The linking process
The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler, cannot be executed as is. To become an executable application, they need to
be linked.

Note: Modules produced by a toolset from another vendor can be included in the build
as well, as long as the module is AEABI (ARM Embedded Application Binary
Interface) compliant. Be aware that this also might require a compiler utility library
from the same vendor.

The IAR ILINK Linker is used for the link process. It normally performs the following
procedure (note that some of the steps can be turned off by command line options or by
directives in the linker configuration file):

● Determine which modules to include in the application. Modules provided in object
files are always included. A module in a library file is only included if it provides a
definition for a global symbol that is referenced from an included module.

● Select which standard library files to use. The selection is based on attributes of the
included modules. These libraries are then used for satisfying any still outstanding
undefined symbols.

● Determine which sections/section fragments from the included modules to include
in the application. Only those sections/section fragments that are actually needed by
the application are included. There are several ways to determine which
sections/section fragments that are needed, for example, the __root object
attribute, the #pragma required directive, and the keep linker directive. In case
of duplicate sections, only one is included.

● Where appropriate, arrange for the initialization of initialized variables and code in
RAM. The initialize directive causes the linker to create extra sections to
enable copying from ROM to RAM. Each section that is to be initialized by copying
is divided into two sections, one for the ROM part and one for the RAM part. If
manual initialization is not used, the linker also arranges for the startup code to
perform the initialization.

● Determine where to place each section according to the section placement directives
in the linker configuration file. Sections that are to be initialized by copying appear
twice in the matching against placement directives, once for the ROM part and once
for the RAM part, with different attributes. During the placement, the linker also
adds any required veneers to make a code reference reach its destination or to
switch CPU modes.

● Produce an absolute object file that contains the executable image and any debug
information provided. This involves resolving symbolic references between
sections, and locating relocatable values.
DARM-2

Part 1. Using the build tools 39

40

Placing code and data—the linker configuration file
● Optionally, produce a map file that lists the result of the section placement, the
address of each global symbol, and finally, a summary of memory usage for each
module and library.

The following illustration shows the linking process:

Figure 8: The linking process

During the linking, ILINK might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked as it was. For example, why a module or section (or section fragment) was
included.

Note: To see the actual content of an ELF object file, use ielfdumparm. See The IAR
ELF Dumper for ARM—ielfdumparm, page 312.

Placing code and data—the linker configuration file
The placement of sections in memory is performed by the IAR ILINK Linker. It uses the
linker configuration file where you can define how ILINK should treat each section and
how they should be placed into the available memories.

A typical linker configuration file contains definitions of:

● Available addressable memories
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking using ILINK
● Populated regions of those memories

● How to treat input sections

● Created sections

● How to place sections into the available regions.

The file consists of a sequence of declarative directives. This means that the linking
process will be governed by all directives at the same time.

You can use the same source code with different derivatives just by rebuilding the code
with the appropriate configuration file.

A SIMPLE EXAMPLE OF A CONFIGURATION FILE

A simple configuration file can look like this:

/* The memory space denoting the maximum possible amount
 of addressable memory */
define memory Mem with size = 4G;

/* Memory regions in an address space */
define region ROM = Mem:[from 0x00000 size 0x10000];
define region RAM = Mem:[from 0x20000 size 0x10000];

/* Create a stack */
define block STACK with size = 0x1000, alignment = 8 { };

/* Handle initialization */
do not initialize { section .noinit };
initialize by copy { readwrite }; /* Initialize RW sections,
 exlude zero-initialized
 sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in
 ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
 block STACK }; /* and STACK */

This configuration file defines one addressable memory Mem with the maximum of
4 Gbytes of memory. Further, it defines a ROM region and a RAM region in Mem,
namely ROM and RAM. Each region has the size of 64 Kbytes.

The file then creates an empty block called STACK with a size of 4 Kbytes in which the
application stack will reside. To create a block is the basic method which you can use to
DARM-2

Part 1. Using the build tools 41

42

Placing code and data—the linker configuration file
get detailed control of placement, size, etc. It can be used for grouping sections, but also
as in this example, to specify the size and placement of an area of memory.

Next, the file defines how to handle the initialization of variables, read/write type
(readwrite) sections. In this example, the initializers will be placed in ROM and
copied at startup of the application to the RAM area. By default, ILINK may compress
the initializers if this appears to be advantageous.

The last part of the configuration file handles the actual placement of all the sections into
the available regions. First, the startup code—defined to reside in the read-only
(readonly) section .cstartup—is placed at the start of the ROM region, that is at
address 0x10000. Note that the part within {} is referred to as section selection and it
selects the sections for which the directive should be applied to. Then the rest of the
read-only sections are placed in the ROM region. Note that the section selection
{ readonly section .cstartup } takes precedence over the more generic section
selection { readonly }.

Finally, the read/write (readwrite) sections and the STACK block are placed in the RAM
region.

This illustration gives a schematic overview of how the application is placed in memory:

Figure 9: Application in memory
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking using ILINK
In addition to these standard directives, a configuration file can contain directives that
define how to:

● Map a memory that can be addressed in multiple ways

● Handle conditional directives

● Create symbols with values that can be used in the application

● More in detail, select the sections a directive should be applied to

● More in detail, initialize code and data.

For more details and examples about customizing the linker configuration file, see the
chapter Linking your application.

For reference information about the linker configuration file, see the chapter The linker
configuration file.

Initialization at system startup
In ISO/ANSI C, all static variables—variables that are allocated at a fixed memory
address—have to be initialized by the runtime system to a known value at application
startup. This value is either an explicit value assigned to the variable, or if no value is
given, it is cleared to zero. In the compiler, there is one exception to this rule and that is
variables declared __no_init which are not initialized at all.

The compiler generates a specific type of section for each type of variable initialization:

Note: Clustering of static variables might group zero-initialized variables together with
initialized data in .data.

Categories of

declared data
Source Section type

Section

name
Section content

Zero-initialized
data

int i; Read/write data,
zero-init

.bss None

Zero-initialized
data

int i = 0; Read/write data,
zero-init

.bss None

Initialized data
(non-zero)

int i = 6; Read/write data .data The initializer

Non-initialized
data

__no_init int i; Read/write data,
zero-init

.noinit None

Constants const int i = 6; Read-only data .rodata The constant

Code __ramfuc void
 myfunc() {}

Read/write code .textrw The code

Table 4: Sections holding initialized data
DARM-2

Part 1. Using the build tools 43

44

Initialization at system startup
For a summary of all supported sections, see the chapter Section reference.

THE INITIALIZATION PROCESS

Initialization of data is handled by ILINK and the system startup code in conjunction.

To configure the initialization of variables, you have to consider the following issues:

● Sections that should be zero-initialized are handled automatically by ILINK; they
should only be placed in RAM

● Sections that should be initialized, except for zero-initialized sections, should be
listed in an initialize directive

Normally during linking, a section that should be initialized is split in two sections,
where the original initialized section will keep the name. The contents are placed in
the new initializer section, which will keep the original name suffixed with _init.
The initializers should be placed in ROM and the initialized sections in RAM, by
means of placement directives. The most common example is the .data section that
the linker splits in .data and .data_init.

● Sections that contains constants should not be initialized; they should only be
placed in flash/ROM

● Sections holding __no_init declared variables should not be initialized and thus
should be listed in a do not initialize directive. They should also be placed in
RAM.

In the linker configuration file, it can look like this:

/* Handle initialization */
do not initialize { section .noinit };
initialize by copy { readwrite }; /* Initialize RW sections,
 exlude zero-initialized
 sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in
 ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
 block STACK }; /* and STACK */

For detailed information and examples about how to configure the initialization, see
Linking considerations, page 45.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking your application
This chapter lists a number of aspects that you must consider when linking
your application. This includes using ILINK options and tailoring the linker
configuration file.

Finally, this chapter provides some hints for troubleshooting.

Linking considerations
Before you can link your application, you must set up the configuration required by
ILINK. Typically, you need to consider:

● Defining your own memory areas

● Placing sections

● Keeping modules in the application

● Keeping symbols and sections in the application

● Application startup

● Setting up the stack and heap

● Setting up the atexit limit

● Changing the default initialization

● Symbols for controlling the application

● Standard library handling

● Other output formats than ELF/DWARF

● Veneers.

CHOOSING A LINKER CONFIGURATION FILE

The config directory contains a ready-made template for the linker configuration file,
with the name generic.icf. This file contains the information required by ILINK. The
only change you will normally have to make to the supplied configuration file is to
customize the start and end addresses of each region so they fit the target system
memory map. In addition, if for example your application uses additional external
RAM, you need to add details about the external RAM memory area.

To edit the file, use the editor in the IDE, or any other suitable editor. Alternatively,
choose Project>Options>Linker and click the Edit button on the Config page to open
the dedicated linker configuration file editor.
DARM-2

Part 1. Using the build tools 45

46

Linking considerations
Remember not to change the original template file. We recommend that you make a
copy in the working directory, and modify the copy instead. If you are using the linker
configuration file editor in the IDE, the IDE will make a copy for you.

Each project in the IDE should have a reference to a one, and only one, linker
configuration file. This file can be edited, but for the majority of all projects it will be
sufficient to configure the vital parameters in Project>Options>Linker>Config.

DEFINING YOUR OWN MEMORY AREAS

The default configuration file that you have selected has predefined ROM and RAM
regions. The following example will be used as a starting-point for all further examples
in this chapter:

/* Define the addressable memory */
define memory Mem with size = 4G;

/* Define a region named ROM with start address 0 and to be 64
Kbytes large */
define region ROM = Mem:[from 0 size 0x10000];

/* Define a region named RAM with start address 0x20000 and to be
64 Kbytes large */
define region RAM = Mem:[from 0x20000 size 0x10000];

Each region definition must be tailored for the actual hardware.

To find out how much of each memory that has been filled with code and data after
linking, inspect the memory summary in the map file (command line option --map).

Adding an additional region

To add an additional region, use the define region directive, for example:

/* Define a 2nd ROM region to start at address 0x80000 and to be
128 Kbytes large */
define region ROM2 = Mem:[from 0x80000 size 0x20000];

Merging different areas into one region

If the region is comprised of several areas, use a region expression to merge the different
areas into one region, for example:

/* Define the 2nd ROM region to have two areas. The first with
the start address 0x80000 and 128 Kbytes large, and the 2nd with
the start address 0xC0000 and 32 Kbytes large */
define region ROM2 = Mem:[from 0x80000 size 0x20000]
 | Mem:[from 0xC0000 size 0x08000];
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking your application
or equivalently

define region ROM2 = Mem:[from 0x80000 to 0xC7FFF]
 –Mem:[from 0xA0000 to 0xBFFFF];

Adding a region in a new memory

To add a region in a new memory, write:

/* Define a 2nd addressable memory */
define memory Mem2 with size = 64k;
/* Define a region for constants with start address 0 and 64
Kbytes large */
define region CONSTANT = Mem2:[from 0 size 0x10000];

Defining the unit size for a new memory

If the new memory is not byte-oriented (8-bits per byte) you should define what unit size
to use:

/* Define the bit addressable memory */
define memory Bit with size = 256, unitbitsize = 1;

Sharing memories

If your core can address a physical memory either by:

● Several different addressing modes; addresses in different defined memories are
actually the same physical entity

● Using different addresses in the same memory, for example some bits in the address
are not connected to the physical memory

the define sharing directive has to be used. For example:

/* First 32 Kbytes of Mem2 are mirrored in the last 32 Kbytes */
define sharing Mem2:[from 0 size 0x8000] <=>
 Mem2:[from 0x8000 size 0x8000];
/* Bit memory is mapped in the first 32 bytes of Mem2 */
define sharing Bit:[from 0 size 256] <=> Mem2:[from 0 size 32];

The sharing directive instructs ILINK to allocate contents in all connected memories if
any content is placed in one memory.

PLACING SECTIONS

The default configuration file that you have selected places all predefined sections in
memory, but there are situations when you might want to modify this. For example, if
DARM-2

Part 1. Using the build tools 47

48

Linking considerations
you want to place the section that holds constant symbols in the CONSTANT region
instead of in the default place. In this case, use the place in directive, for example:

/* Place sections with readonly content in the ROM region */
place in ROM {readonly};
/* Place the constant symbols in the CONSTANT region */
place in CONSTANT {readonly section .rodata};

Note: Placing a section—used by the IAR build tools—in a different memory which
use a different way of referring to its content, will fail.

For the result of each placement directive after linking, inspect the placement summary
in the map file (the command line option --map).

Placing a section at a specific address in memory

To place a section at a specific address in memory, use the place at directive, for
example:

/* Place section .vectors at address 0 */
place at address Mem:[0] {readonly section .vectors};

Placing a section first or last in a region

To place a section first or last in a region is similar, for example:

/* Place section .vectors at start of ROM */
place at start of ROM {readonly section .vectors};

Define and place your own sections

To create new sections—in addition to the ones used by the IAR build tools—to hold
specific parts of your code or data, use mechanisms in the compiler and assembler. For
example:

/* Create section in compiler */
#pragma section = "MyOwnSection";
const int MyVariable @ "MyOwnSection" = 5;

/* Create section in assembler */
SECTION MyOwnSection:CONST
DCB 5,6,7,8
END
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking your application
To place your new section, the original place in ROM {readonly}; directive is
sufficient.

However, to place the section MyOwnSection explicitly, update the linker configuration
file with a place in directive, for example:

/* Place MyOwnSection in the ROM region */
place in ROM {readonly section MyOwnSection};

RESERVING SPACE IN RAM

Often, an application needs to have an empty uninitialized memory area to be used for
temporary storage, for example a heap or a stack. It is easiest to achieve this at link time.
You need to create a block with a specified size and then place it in a memory.

In the linker configuration file, it can look like this:

define block TempStorage with size = 0x1000, alignment = 4 { };
place in RAM { block TempStorage };

To retrieve the start of the allocated memory from the application, the source code could
look like this:

#pragma section = "TempStorage"
char * temp_storage()
{
 return __section_begin("TempStorage");
}

KEEPING MODULES

If a module is linked as an object file, it is always kept. That is, it will contribute to the
linked application. However, if a module is part of a library, it is included only if it is
symbolically referred to from other parts of the application. This is true, even if the
library module contains a root symbol. To assure that such a library module is always
included, use the GNU binary utility ar to extract the module from the library.

For information about included and excluded modules, inspect the log file (the
command line option --log modules).

For more information about modules, see Modules and sections, page 38.

KEEPING SYMBOLS AND SECTIONS

By default, ILINK removes any sections, section fragments, and global symbols that are
not needed by the application. To retain a symbol that does not appear to be needed—or
actually, the section fragment it is defined in—you can either use the root attribute on
the symbol in your C/C++ or assembler source code, or use the ILINK option --keep.
DARM-2

Part 1. Using the build tools 49

50

Linking considerations
To retain sections based on attribute names or object names, use the directive keep in
the linker configuration file.

To prevent ILINK from excluding sections and section fragments, use the command line
options --no_remove or --no_fragments, respectively.

For information about included and excluded symbols and sections, inspect the log file
(the command line option --log sections).

For more information about the linking procedure for keeping symbols and sections, see
The linking process, page 39.

APPLICATION STARTUP

By default, the point where the application starts execution is defined by the
__iar_program_start label, which is defined to point at the start of the cstartup.s
file. The label is also communicated via ELF to any debugger that is used.

To change the start point of the application to another label, use the ILINK option
--entry; see --entry, page 187.

SETTING UP THE STACK

The size of the CSTACK block is defined in the linker configuration file. To change the
allocated amount of memory, change the block definition for CSTACK:

define block CSTACK with size = 0x2000, alignment = 8{ };
define block IRQ_STACK with size = 64, alignment = 8{ };

Specify an appropriate size for your application.

To read more about the stack, see Stack considerations, page 111.

SETTING UP THE HEAP

The size of the heap is defined in the linker configuration file as a block:

define block HEAP with size = 0x1000, alignment = 8{ };
place in RAM {block HEAP};

Specify the appropriate size for your application.

SETTING UP THE ATEXIT LIMIT

By default, the atexit function can be called a maximum of 32 times from your
application. To either increase or decrease this number, add a line to your configuration
file. For example, to reserve room for 10 calls instead, write:

define symbol __iar_maximum_atexit_calls = 10;
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking your application
CHANGING THE DEFAULT INITIALIZATION

By default, memory initialization is performed during application startup. ILINK sets
up the initialization process as well as chooses a suitable packing method. If the default
initialization process does not suit your application and you want more precise control
over the initialization process, the following alternatives are available:

● Choosing the packing algorithm

● Overriding the default copy-initialize function

● Manual initialization

● Initializing code—copying ROM to RAM.

For information about the performed initializations, inspect the log file (the command
line option --log initialization).

Choosing packing algorithm

To override the default packing algorithm, write for example:

initialize by copy with packing = zeros { readwrite };

To read more about the available packing algorithms, see Initialize directive, page 287.

Overriding default copy-initialize function

You can override the default function that copies the initializers to the RAM memory by
supplying the copy routine parameter to the initialize by copy directive. Your
function will be called at program start as many times as needed. This can be useful
when special code is required for the copy.

The following example shows how it can look in the linker configuration file:

/* Initialize special sections */
initialize by copy with packing = none, copy routine =
 my_initializers { section .special };
place in RAM { section .special };
place in ROM { section .special_init };

Your routine should look like this:

void copy_routine(char *dst,
 char const *src,
 unsigned long size);

See the system startup code for an exact type definition.
DARM-2

Part 1. Using the build tools 51

52

Linking considerations
Manual initialization

The initialize manually directive lets you take complete control over initialization.
For each involved section, ILINK creates an extra section that contains the initialization
data, but makes no arrangements for the actual copying. This directive is, for example,
useful for overlays:

/* Sections MYOVERLAY1 and MYOVERLAY2 will be overlaid in
MyOverlay */
define overlay MyOverlay { section MYOVERLAY1 };
define overlay MyOverlay { section MYOVERLAY2 };

/* Split the overlay sections but without initialization during
system startup */
initialize manually { section MYOVERLAY* };

/* Place the initializer sections in a block each */
define block MyOverlay1InRom { section MYOVERLAY1_init };
define block MyOverlay2InRom { section MYOVERLAY2_init };

/* Place the overlay and the initializers for it */
place in RAM { overlay MyOverlay };
place in ROM { block MyOverlay1InRom, block MyOverlay2InRom };

/* Split the RAMCODE section into a readonly and a readwrite
section */
initialize by copy { section RAMCODE };
/* Place both in a block */
define block RamCode { section RAMCODE };
define block RamCodeInit { section RAMCODE_init };
/* Place them in ROM and RAM */
place in ROM { block RamCodeInit };
place in RAM { block RamCode };
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking your application
The application can then start a specific overlay by copying, as in this case, ROM to
RAM:

#include <string.h>
#pragma section = "MyOverlay"
#pragma section = "MyOverlay1InRom"

void SwitchToOverlay1()
{
 char *target = __section_begin("MyOverlay");
 char *source = __section_begin("MyOverlay1InRom");
 char *source_end = __section_end("MyOverlay1InRom");

 memcpy(target, source, source_end - source);
}

Initializing code—copying ROM to RAM

Sometimes, an application copies pieces of code from flash/ROM to RAM. This can be
easily achieved by ILINK for whole code regions. However, for individual functions, the
__ramfunc keyword can be used, see Execution in RAM, page 30

List the code sections that should be initialized in an initialize directive and then
place the initializer and initialized sections in ROM and RAM, respectively.

In the linker configuration file, it can look like this:

/* Split the RAMCODE section into a readonly and a readwrite
section */
initialize by copy { section RAMCODE };

/* Place both in a block */
define block RamCode { section RAMCODE }
define block RamCodeInit { section RAMCODE_init };

/* Place them in ROM and RAM */
place in ROM { block RamCodeInit };
place in RAM { block RamCode };

The block definitions makes it possible to refer to the start and end of the blocks from
the application.

For more examples, see Interaction between the tools and your application, page 113.
DARM-2

Part 1. Using the build tools 53

54

Linking considerations
Running all code from RAM

If you want to copy the entire application from ROM to RAM at program startup, use
the initilize by copy directive, for example:

initialize by copy { readonly, readwrite }

The readwrite pattern will match all statically initialized variables and arrange for
them to be initialized at startup. The readonly pattern will do the same for all read-only
code and data, except for code and data needed for the initialization.

Because the function __low_level_init, if present, is called before initialization, it,
and anything it needs, will not be copied from ROM to RAM either. In some
circumstances—for example, if the ROM contents are no longer available to the
program after startup—you might need to avoid using the same functions during startup
and in the rest of the code.

If there is anything else that should not be copied, include it in an except clause. This
can apply to, for example, the interrupt vector table.

It is also recommended to exclude the C++ dynamic initialization table from being
copied to RAM, as it is typically only read once and then never referenced again. For
example, like this:

initialize by copy { readonly, readwrite }
 except { section .intvec, /* Don’t copy
 interrupt table */
 section .init_array } /* Don’t copy
 C++ init table */

INTERACTION BETWEEN ILINK AND THE APPLICATION

ILINK provides the command line options --config_def and --define_symbol to
define symbols which can be used for controlling the application. You can also use
symbols to represent the start and end of a continuous memory area that is defined in the
linker configuration file. For more details, see Interaction between the tools and your
application, page 113.

To change a reference to one symbol to another symbol, use the ILINK command line
option --redirect. This is useful, for example, to redirect a reference from a
non-implemented function to a stub function, or to choose one of several different
implementations of a certain function, for example, how to choose the DLIB formatter
for the standard library functions printf and scanf.

The compiler generates mangled names to represent complex C/C++ symbols. If you
want to refer to these symbols from assembler source code, you must use the mangled
names.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking your application
For information about the addresses and sizes of all global (statically linked) symbols,
inspect the entry list in the map file (the command line option --map).

For more information, see Interaction between the tools and your application, page 113.

STANDARD LIBRARY HANDLING

By default, ILINK determines automatically which variant of the standard library to
include during linking. The decision is based on the sum of the runtime attributes
available in each object file and the library options passed to ILINK.

To disable the automatic inclusion of the library, use the option
--no_library_search. In this case, you must explicitly specify every library file to
be included. For information about available library files, see Using a prebuilt library,
page 62.

PRODUCING OTHER OUTPUT FORMATS THAN ELF/DWARF

ILINK can only produce an output file in the ELF/DWARF format. To convert that
format into a format suitable for programming PROM/flash, use ielftool.

VENEERS

The ARM cores need to use veneers on two occasions:

● When calling an ARM function from Thumb mode or vice versa; the veneer then
changes the state of the microprocessor. If the core supports the BLX instruction, a
veneer is not needed for changing modes.

● When calling a function that it cannot normally reach; the veneer introduces code
which makes the call successfully reach the destination.

Code for veneers can be inserted between any caller and called function. As a result, the
R12 register must be treated as a scratch register at function calls, including functions
written in assembler. This also applies to jumps.

Hints for troubleshooting
ILINK has several features that can help you manage code and data placement correctly,
for example:

● Messages at link time, for examples when there is a relocation error

● The --log option that makes ILINK log information to stdout, which can be
useful to understand why an executable image became the way it is, see --log, page
190
DARM-2

Part 1. Using the build tools 55

56

Hints for troubleshooting
● The --map option that makes ILINK produce a memory map file, which contains
the result of the linker configuration file, see --map, page 191.

RELOCATION ERRORS

For each instruction that cannot be relocated correctly, ILINK will generate a relocation
error. This can occur for instructions where the target is out of reach or is of an
incompatible type, or for many other reasons.

A relocation error produced by ILINK can look like this:

Error[Lp002]: relocation failed: out of range or illegal value
 Kind : R_XXX_YYY[0x1]
 Location : 0x40000448
 "myfunc" + 0x2c
 Module: somecode.o
 Section: 7 (.text)
 Offset: 0x2c
 Destination: 0x9000000c
 "read"
 Module: read.o(iolib.a)
 Section: 6 (.text)
 Offset: 0x0

The message entries are described in the following table:

Message entry Description

Kind The relocation directive that failed. The directive depends on the
instruction used.

Location The location where the problem occurred, described with the following
details:
• The instruction address, expressed both as a hexadecimal value and as
 a label with an offset. In this example, 0x40000448 and
 "myfunc" + 0x2c.
• The module, and the file. In this example, the
 module somecode.o.
• The section number and section name. In this example, section number
 7 with the name .text.
• The offset, specified in number of bytes, in the section. In this example,
 0x2c.

Table 5: Description of a relocation error
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linking your application
Possible solutions

In this case, the distance from the instruction in getchar to __read is too long for the
branch instruction.

Possible solutions include ensuring that the two .text sections are allocated closer to
each other or using some other calling mechanism that can reach the required distance.
It is also possible that the referring function tried to refer to the wrong target and that
this caused the range error.

Different range errors have different solutions. Usually, the solution is a variant of the
ones presented above, in other words modifying either the code or the section
placement.

Destination The target of the instruction, described with the following details:
• The instruction address, expressed both as a hexadecimal value and as
 a label with an offset. In this example, 0x9000000c and
 "read" (thus, no offset).
• The module, and when applicable the library. In this example, the
 module read.o and the library iolib.a.
• The section number and section name. In this example, section number
 6 with the name .text.
• The offset, specified in number of bytes, in the section. In this example,
 0x0.

Message entry Description

Table 5: Description of a relocation error (Continued)
DARM-2

Part 1. Using the build tools 57

58

Hints for troubleshooting
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime
environment
This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can modify it—setting options, overriding default library modules, or
building your own library—to optimize it for your application.

The chapter also covers system initialization and termination; how an
application can control what happens before the function main is called, and
how you can customize the initialization.

The chapter then describes how to configure functionality like locale and file
I/O, how to get C-SPY® runtime support, and how to prevent incompatible
modules from being linked together.

Introduction to the runtime environment
The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code. The IAR DLIB runtime environment can be used as is together with
the debugger. However, to be able to run the application on hardware, you must adapt
the runtime environment.

This section gives an overview of:

● The runtime environment and its components

● Library selection.

For information about AEABI compliance, see AEABI compliance, page 118.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment supports ISO/ANSI C and C++ including the standard
template library. The runtime environment consists of the runtime library, which
contains the functions defined by these standards, and include files that define the library
interface.
DARM-2

Part 1. Using the build tools 59

60

Introduction to the runtime environment
The runtime library is delivered both as prebuilt libraries and as source files, and you
can find them in the product subdirectories arm\lib and arm\src\lib, respectively.

The runtime environment also consists of a part with specific support for the target
system, which includes:

● Support for hardware features:

● Direct access to low-level processor operations by means of intrinsic functions,
such as functions for register handling

● Peripheral unit registers and interrupt definitions in include files

● The Vector Floating Point (VFP) coprocessor.

● Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.

● Special compiler support for some functions, for instance functions for
floating-point arithmetics.

The runtime environment support as well as the size of the heap must be tailored for the
specific hardware and application requirements.

For further information about the library, see the chapter Library functions.

LIBRARY SELECTION

To configure the most code-efficient runtime environment, you must determine your
application and hardware requirements. The more functionality you need, the larger
your code will become.

IAR Embedded Workbench comes with a set of prebuilt runtime libraries. To get the
required runtime environment, you can customize it by:

● Setting library options, for example, for choosing scanf input and printf output
formatters, and for specifying the size of the stack and the heap

● Overriding certain library functions, for example cstartup.s, with your own
customized versions

● Choosing the level of support for certain standard library functionality, for example,
locale, file descriptors, and multibyte characters, by choosing a library
configuration: normal or full.

In addition, you can also make your own library configuration, but that requires that you
rebuild the library. This allows you to get full control of the runtime environment.

Note: Your application project must be able to locate the library, include files, and the
library configuration file. ILINK will automatically choose a prebuilt library suitable for
the application.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
SITUATIONS THAT REQUIRE LIBRARY BUILDING

Building a customized library is complex. You should therefore carefully consider
whether it is really necessary.

You must build your own library when:

● There is no prebuilt library for the required combination of compiler options or
hardware support

● You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, et cetera.

For information about how to build a customized library, see Building and using a
customized library, page 69.

LIBRARY CONFIGURATIONS

It is possible to configure the level of support for, for example, locale, file descriptors,
multibyte characters. The runtime library configuration is defined in the library
configuration file. It contains information about what functionality is part of the runtime
environment. The configuration file is used for tailoring a build of a runtime library, as
well as tailoring the system header files used when compiling your application. The less
functionality you need in the runtime environment, the smaller it is.

The following DLIB library configurations are available:

In addition to these configurations, you can define your own configurations, which
means that you must modify the configuration file. Note that the library configuration
file describes how a library was built and thus cannot be changed unless you rebuild the
library. For further information, see Building and using a customized library, page 69.

The prebuilt libraries are based on the default configurations, see Using a prebuilt
library, page 62. There is also a ready-made library project template that you can use if
you want to rebuild the runtime library.

Library configuration Description

Normal DLIB No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hex floats in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte
characters in printf and scanf, and hex floats in strtod.

Table 6: Library configurations
DARM-2

Part 1. Using the build tools 61

62

Using a prebuilt library
LOW-LEVEL INTERFACE FOR DEBUG SUPPORT

If your application uses the DLIB low-level interface (see C-SPY runtime interface,
page 84, you must implement support for the parts used by the application. However, if
you need to debug your application before this is implemented, you can temporarily use
the semihosted debug support also provided as a library.

The low-level debugger runtime interface provided by DLIB is compatible with the
semihosting interface provided by ARM Limited. The interface is implemented by a set
of SVC (SuperVisor Call) instructions that generate exceptions from program control.
The application invokes the appropriate semihosting call and the debugger then handles
the exception. The debugger provides the required communication with the host
computer.

If you build your application project with the ILINK option Semihosted
(--semihosting) or IAR breakpoint (--semihosting=iar_breakpoint), certain
functions in the library will be replaced by functions that communicate with the
debugger. For further information, see C-SPY runtime interface, page 84.

To set linker options for debug support in the IDE, choose Project>Options and select
the General Options category. On the Library configuration page, select the
Semihosted option or the IAR breakpoint option.

Using a prebuilt library
The prebuilt runtime libraries are delivered in three groups of library functions:

● C/C++ standard library functions

Contains all functions defined by the ISO/ANSI C/C++ standard, for example
functions like printf and scanf.

● Runtime support functions

These are functions for system startup, initialization, floating-point arithmetics, ABI
support, and some of the functions part of the ISO/ANSI C/C++ standard.

● Debug support functions

These are functions for debug support for the semihosting interface.

Each library file is configured for different combinations of features:

● Architecture

● CPU mode

● Interworking

● Library configuration—Normal or Full.

● Floating-point implementation
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
● Byte order.

In the IDE, the linker will include the correct library object file and library configuration
file based on the options you select. See the IAR Embedded Workbench® IDE User
Guide for ARM® for additional information.

If you build your application from the command line, you must specify the library
configuration file for the compiler, either DLib_Config_Full.h or
DLib_Config_Normal.h, for example:

--dlib_config C:\...\DLib_Config_Normal.h

You can find the library object files and the library configuration files in the subdirectory
arm\lib, and the library configuration files in the arm\inc directory.

LIBRARY FILENAME SYNTAX

The names of the libraries are constructed by the following constituents:

● <architecture> is the name of the architecture. It can be one of 4t, 5E, 6M, or 7M
for the ARM architectures v4T, v5TE, v6M, or v7M, respectively. Libraries built for
the v5TE architecture are also used for the v6 architecture.

● <cpu_mode> is one of t or a, for Thumb and ARM, respectively.

● <endian> is one of l or b, for little-endian and big-endian, respectively.

● <fp_implementation> is _ when the library is compiled without VFP support,
that is, software implementation compliant to AAPCS. It is s when the library is
compiled with VFP support and compliant to AAPCS/STD. It is v when compiled
with VFP support and using VFP registers in function calls; this is not AEABI
compliant. The supported version of VFP is v1 when architecture is 4t and v2 when
architecture is 5E.

● <interworking> is i when the library contains interworking code, otherwise it is
_ .

● <library_config> is one of n or f for normal and full, respectively.
● <debug_interface> is one of s, b or i, for the SWI/SVC mechanism, the BKPT

mechanism, and the IAR-specific breakpoint mechanism, respectively. For more
information, see --semihosting, page 197.

Library files for C/C++ standard library functions

The names of the library files are constructed in the following way:

dl<architecture>_<cpu_mode><endian><fp_implementation><interworki
ng><library_config>.a

which more specifically means

dl<4t|5E|6M|7M>_<a|t><l|b><_|s|v><i|_><n|f>.a
DARM-2

Part 1. Using the build tools 63

64

Using a prebuilt library
Library files for runtime support functions

The names of the library files are constructed in the following way:

rt<architecture>_<cpu_mode><endian><fp_implementation>.a

which more specifically means

rt<4t|5E|6M|7M>_<a|t><l|b><_|s|v>.a

Library files for debug support functions

The names of the library files are constructed in the following way:

sh<debug_interface>_<endian>.a

which more specifically means

sh<s|b|i>_<l|b>.a

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the compiler can be used as is. However, it is
possible to customize parts of a library without rebuilding it. There are two different
methods:

● Setting options for:

● Formatters used by printf and scanf

● The sizes of the heap and the stack

● Overriding library modules with your own customized versions.

The following items can be customized:

Items that can be customized Described in

Formatters for printf and scanf Choosing formatters for printf and scanf, page 65

Startup and termination code System startup and termination, page 70

Low-level input and output Standard streams for input and output, page 75

File input and output File input and output, page 78

Low-level environment functions Environment interaction, page 81

Low-level signal functions Signal and raise, page 82

Low-level time functions Time, page 83

Table 7: Customizable items
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
For a description about how to override library modules, see Overriding library
modules, page 67.

Choosing formatters for printf and scanf
To override the default formatter for all the printf- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, it is possible to optimize these functions even further,
see Configuration symbols for printf and scanf, page 77.

CHOOSING PRINTF FORMATTER

The printf function uses a formatter called _Printf. The default version is quite
large, and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
standard C/EC++ library.

Size of heaps, stacks, and sections Stack considerations, page 111
Heap considerations, page 113
Placing code and data—the linker configuration file,
page 40

Items that can be customized Described in

Table 7: Customizable items (Continued)
DARM-2

Part 1. Using the build tools 65

66

Choosing formatters for printf and scanf
The following table summarizes the capabilities of the different formatters:

† Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 77.

Specifying the print formatter in the IDE

To use any other formatter than the default (Full), choose Project>Options and select
the General Options category. Select the appropriate option on the Library options
page.

Specifying printf formatter from the command line

To use any other formatter than the default (_PrintfFull), add one of the following
ILINK command line options:

--redirect _Printf=_PrintfLarge
--redirect _Printf=_PrintfSmall
--redirect _Printf=_PrintfTiny

CHOOSING SCANF FORMATTER

In a similar way to the printf function, scanf uses a common formatter, called
_Scanf. The default version is very large, and provides facilities that are not required
in many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the standard C/C++ library.

Formatting capabilities _PrintfFull _PrintfLarge _PrintfSmall _PrintfTiny

Basic specifiers c, d, i, o, p, s, u, X,
x, and %

Yes Yes Yes Yes

Multibyte support † † † No

Floating-point specifiers a, and A Yes No No No

Floating-point specifiers e, E, f, F, g,
and G

Yes Yes No No

Conversion specifier n Yes Yes No No

Format flag space, +, -, #, and 0 Yes Yes Yes No

Length modifiers h, l, L, s, t, and Z Yes Yes Yes No

Field width and precision, including * Yes Yes Yes No

long long support Yes Yes No No

Table 8: Formatters for printf
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
The following table summarizes the capabilities of the different formatters:

† Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 77.

Specifying scanf formatter in the IDE

To use any other formatter than the default (Full), choose Project>Options and select
the General Options category. Select the appropriate option on the Library options
page.

Specifying scanf formatter from the command line

To use any other variant than the default (_ScanfFull), add one of the following
ILINK command line options:

--redirect _Scanf=_ScanfLarge
--redirect _Scanf=_PrintfSmall

Overriding library modules
The library contains modules which you probably need to override with your own
customized modules, for example functions for character-based I/O and cstartup.
This can be done without rebuilding the entire library. This section describes the
procedure for including your version of the module in the application project build
process. The library files that you can override with your own versions are located in the
arm\src\lib directory.

Formatting capabilities _ScanfFull _ScanfLarge _ScanfSmall

Basic specifiers c, d, i, o, p, s, u, X,
x, and %

Yes Yes Yes

Multibyte support † † †

Floating-point specifiers a, and A Yes No No

Floating-point specifiers e, E, f, F, g,
and G

Yes No No

Conversion specifier n Yes No No

Scan set [and] Yes Yes No

Assignment suppressing * Yes Yes No

long long support Yes No No

Table 9: Formatters for scanf
DARM-2

Part 1. Using the build tools 67

68

Overriding library modules
Note: If you override a default I/O library module with your own module, C-SPY
support for the module is turned off. For example, if you replace the module __write
with your own version, the C-SPY Terminal I/O window will not be supported.

Overriding library modules using the IDE

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

1 Copy the appropriate library_module.c file to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model).

3 Add the customized file to your project.

4 Rebuild your project.

Overriding library modules from the command line

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

1 Copy the appropriate library_module.c to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

3 Compile the modified file using the same options as for the rest of the project:

iccarm library_module

This creates a replacement object module file named library_module.o.

4 Add library_module.o to the ILINK command line, either directly or by using an
extended linker command file, for example:

ilinkarm library_module

Make sure that library_module is placed before the library on the command line.
This ensures that your module is used instead of the one in the library.

Run ILINK to rebuild your application.

This will use your version of library_module.o, instead of the one in the library. For
information about the ILINK options, see the IAR Linker and Library Tools Reference
Guide.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
Building and using a customized library
In some situations, see Situations that require library building, page 61, it is necessary
to rebuild the C/C++ standard library. In those cases you need to:

● Set up a library project

● Make the required library modifications

● Build your customized library

● Finally, make sure your application project will use the customized library.

Information about the build process is described in the IAR Embedded Workbench® IDE
User Guide for ARM®.

Note: It is possible to build IAR Embedded Workbench projects from the command
line by using the IAR Command Line Build Utility (iarbuild.exe). However, no
make or batch files for building the library from the command line are provided.

SETTING UP A LIBRARY PROJECT

The IDE provides a library project template which can be used for customizing the
runtime environment configuration. This library template has Full library configuration,
see Table 6, Library configurations, page 61.

In the IDE, modify the generic options in the created library project to suit your
application, see Basic project configuration, page 19.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file Dlib_defaults.h. This read-only file
describes the configuration possibilities. In addition, your library must have its own
library configuration file based on either DLIB_Config_Normal.h or
DLIB_Config_Full.h, which sets up that specific library with the required library
configuration. For more information, see Table 7, Customizable items, page 64.

The library configuration file is used for tailoring a build of the runtime library, as well
as tailoring the system header files.
DARM-2

Part 1. Using the build tools 69

70

System startup and termination
Modifying the library configuration file

In your library project, open the file DLIB_Config_Normal.h or
DLIB_Config_Full.h, depending on your library, make a copy of the file and
customize it by setting the values of the configuration symbols according to the
application requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY

After you have built your library, you must make sure to use it in your application
project.

In the IDE you must perform the following steps:

1 Choose Project>Options and click the Library Configuration tab in the General
Options category.

2 Choose Custom DLIB from the Library drop-down menu.

3 In the Configuration file text box, locate your library configuration file.

4 Click the Library tab, also in the Linker category. Use the Additional libraries text
box to locate your library file.

System startup and termination
This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s, cmain.s, cexit.s, and low_level_init.c located in the
arm\src\lib directory.

For Cortex-M, one of the following files is used instead of cstartup.s:

thumb\cstartup_M.s or thumb\cstartup_M.c
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
SYSTEM STARTUP

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs intitializations required for the target hardware and
the C/C++ environment.

For the hardware intialization, it looks like this:

Figure 10: Target hardware initialization phase

● When the CPU is reset it will jump to the program entry label
__iar_program_start in the system startup code.

● Exception stack pointers are initialized to the end of each corresponding section

● The stack pointer is initialized to the end of the CSTACK block

● The function __low_level_init is called, giving the application a chance to
perform early initializations.

Note: The first four bullets in the above list are not valid for Cortex-M devices. Instead
at reset, Cortex-M CPUs initialize PC and SP from the vector table (__vector_table),
which is defined in the cstartup_M.c file.
DARM-2

Part 1. Using the build tools 71

72

System startup and termination
For the C/C++ initialization, it looks like this:

Figure 11: C/C++ initialization phase

● Static variables are initialized; this includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the rest of the initialized variables
depending on the return value of __low_level_init. For more details, see
Initialization at system startup, page 43

● Static C++ objects are constructed

● The main function is called, which starts the application.

For an overview of the initialization phase, see Application execution—an overview,
page 14.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
SYSTEM TERMINATION

The following illustration shows the different ways an embedded application can
terminate in a controlled way:

Figure 12: System termination phase

An application can terminate normally in two different ways:

● Return from the main function

● Call the exit function.

As the ISO/ANSI C standard states that the two methods should be equivalent, the
system startup code calls the exit function if main returns. The parameter passed to the
exit function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will perform the following operations:

● Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard C function atexit

● Close all open files

● Call __exit

● When __exit is reached, stop the system.

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.
The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.
DARM-2

Part 1. Using the build tools 73

74

Customizing system initialization
If you want your application to perform anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit(int) function.

C-SPY interface to system termination

If your project is linked with the semihosted interface, the normal __exit and abort
functions are replaced with special ones. C-SPY will then recognize when those
functions are called and can take appropriate actions to simulate program termination.
For more information, see C-SPY runtime interface, page 84.

Customizing system initialization
It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data sections performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cmain.s before the data sections are initialized. Modifying the file
cstartup directly should be avoided.

The code for handling system startup is located in the source files cstartup.s and
low_level_init.c, located in the arm\src\lib directory.

Note: Normally, there is no need for customizing either of the files cmain.s or
cexit.s.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 69.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup.s, you do not have to rebuild the library.

__LOW_LEVEL_INIT

Two skeleton low-level initialization files are supplied with the product: a C source file,
low_level_init.c and an alternative assembler source file, low_level_init.s.
The latter is part of the prebuilt runtime environment. The only limitation using the C
source version is that static initialized variables cannot be used within the file, as
variable initialization has not been performed at this point.

The value returned by __low_level_init determines whether or not data sections
should be initialized by the system startup code. If the function returns 0, the data
sections will not be initialized.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
MODIFYING THE FILE CSTARTUP.S

As noted earlier, you should not modify the file cstartup.s if a customized version of
__low_level_init is enough for your needs. However, if you do need to modify the
file cstartup.s, we recommend that you follow the general procedure for creating a
modified copy of the file and adding it to your project, see Overriding library modules,
page 67.

For Cortex-M, you need to create a modified copy of cstartup_M.c to use interrupts
or other exception handlers.

Standard streams for input and output
There are three standard communication channels (streams)—stdin, stdout, and
stderr—which are defined in stdio.h. If any of these streams are used by your
application, for example by the functions printf and scanf, you need to customize the
low-level functionality to suit your hardware.

There are primitive I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/O. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides.

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the arm\src\lib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 69. Note that customizing the
low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations
for the C-SPY runtime interface are needed, see C-SPY runtime interface, page 84.
DARM-2

Part 1. Using the build tools 75

76

Standard streams for input and output
Example of using __write and __read

The code in the following examples uses memory-mapped I/O to write to an LCD
display:

__no_init volatile unsigned char LCD_IO @ address;

size_t __write(int Handle, const unsigned char * Buf,
 size_t Bufsize)
{
 size_t nChars = 0;
 /* Check for the command to flush all handles */
 if (Handle == -1)
 {
 return 0;
 }

 /* Check for stdout and stderr
 (only necessary if FILE descriptors are enabled.) */
 if (Handle != 1 && Handle != 2)
 {
 return -1;
 }
 for (/*Empty */; Bufsize > 0; --Bufsize)
 {
 LCD_IO = * Buf++;
 ++nChars;
 }
 return nChars;
}

Note: A call to __write where BUF has the value NULL is a command to flush the
handle.

The code in the following example uses memory-mapped I/O to read from a keyboard:

__no_init volatile unsigned char KB_IO @ address;

size_t __read(int Handle, unsigned char *Buf, size_t BufSize)
{
 size_t nChars = 0;
 /* Check for stdin
 (only necessary if FILE descriptors are enabled) */
 if (Handle != 0)
 {
 return -1;
 }
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
 for (/*Empty*/; BufSize > 0; --BufSize)
 {
 unsigned char c = KB_IO;
 if (c == 0)
 break;
 *Buf++ = c;
 ++nChars;
 }
 return nChars;
}

For information about the @ operator, see Controlling data and function placement in
memory, page 124.

Configuration symbols for printf and scanf
When you set up your application project, you typically need to consider what printf
and scanf formatting capabilities your application requires, see Choosing formatters
for printf and scanf, page 65.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you need to rebuild the runtime library.

The default behavior of the printf and scanf formatters are defined by configuration
symbols in the file DLIB_Defaults.h.

The following configuration symbols determine what capabilities the function printf
should have:

Printf configuration symbols Includes support for

_DLIB_PRINTF_MULTIBYTE Multibyte characters

_DLIB_PRINTF_LONG_LONG Long long (ll qualifier)

_DLIB_PRINTF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_PRINTF_SPECIFIER_A Hexadecimal floats

_DLIB_PRINTF_SPECIFIER_N Output count (%n)

_DLIB_PRINTF_QUALIFIERS Qualifiers h, l, L, v, t, and z

_DLIB_PRINTF_FLAGS Flags -, +, #, and 0

_DLIB_PRINTF_WIDTH_AND_PRECISION Width and precision

_DLIB_PRINTF_CHAR_BY_CHAR Output char by char or buffered

Table 10: Descriptions of printf configuration symbols
DARM-2

Part 1. Using the build tools 77

78

File input and output
When you build a library, the following configurations determine what capabilities the
function scanf should have:

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you need to set up a library project, see
Building and using a customized library, page 69. Define the configuration symbols
according to your application requirements.

File input and output
The library contains a large number of powerful functions for file I/O operations. If you
use any of these functions, you need to customize them to suit your hardware. In order
to simplify adaptation to specific hardware, all I/O functions call a small set of primitive
functions, each designed to accomplish one particular task; for example, __open opens
a file, and __write outputs a number of characters.

Note that file I/O capability in the library is only supported by libraries with full library
configuration, see Library configurations, page 61. In other words, file I/O is supported
when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If not enabled,
functions taking a FILE * argument cannot be used.

Scanf configuration symbols Includes support for

_DLIB_SCANF_MULTIBYTE Multibyte characters

_DLIB_SCANF_LONG_LONG Long long (ll qualifier)

_DLIB_SCANF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_SCANF_SPECIFIER_N Output count (%n)

_DLIB_SCANF_QUALIFIERS Qualifiers h, j, l, t, z, and L

_DLIB_SCANF_SCANSET Scanset ([*])

_DLIB_SCANF_WIDTH Width

_DLIB_SCANF_ASSIGNMENT_SUPPRESSING Assignment suppressing ([*])

Table 11: Descriptions of scanf configuration symbols
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
Template code for the following I/O files are included in the product:

The primitive functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The I/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your library with I/O debugging support, C-SPY variants of the
low-level I/O functions will be linked for interaction with C-SPY. For more
information, see Low-level interface for debug support, page 62.

Locale
Locale is a part of the C language that allows language- and country-specific settings for
a number of areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two main modes:

● With locale interface, which makes it possible to switch between different locales
during runtime

● Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES

The level of locale support in the prebuilt libraries depends on the library configuration.

● All prebuilt libraries support the C locale only

I/O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.

__open open.c Opens a file.

__read read.c Reads a character buffer.

__write write.c Writes a character buffer.

remove remove.c Removes a file.

rename rename.c Renames a file.

Table 12: Low-level I/O files
DARM-2

Part 1. Using the build tools 79

80

Locale
● All libraries with full library configuration have support for the locale interface. For
prebuilt libraries with locale interface, it is by default only supported to switch
multibyte character encoding during runtime.

● Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you need to rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT

If you decide to rebuild the library, you can choose between the following locales:

● The standard C locale

● The POSIX locale

● A wide range of European locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings:

#define _DLIB_FULL_LOCALE_SUPPORT 1
#define _LOCALE_USE_C /* C locale */
#define _LOCALE_USE_EN_US /* US english */
#define _LOCALE_USE_EN_GB /* UK english */
#define _LOCALE_USE_SV_SE /* Swedish in Sweden */

See DLib_Defaults.h for a list of supported locale and encoding settings.

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 69.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 0 (zero). This means that a hardwired locale
is used—by default the standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_REGION

or

lang_REGION.encoding

The lang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.

The lang_REGION part matches the _LOCALE_USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction
According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.
DARM-2

Part 1. Using the build tools 81

82

Signal and raise
To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

The last string must be empty. Assign the created sequence of strings to the __environ
variable.

For example:

const char MyEnv[] = ”Key=Value\0Key2=Value2\0”;
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
arm\src\lib directory. For information about overriding default library modules, see
Overriding library modules, page 67.

If you need to use the system function, you need to implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 69.

Note: If you link your application with support for I/O debugging, the functions
getenv and system will be replaced by C-SPY variants. For further information, see
Low-level interface for debug support, page 62.

Signal and raise
There are default implementations of the functions signal and raise available. If
these functions do not provide the functionality that you need, you can implement your
own versions.

This does not require that you rebuild the library. You can find source templates in the
files signal.c and raise.c in the arm\src\lib directory. For information about
overriding default library modules, see Overriding library modules, page 67.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 69.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
Time
To make the time and date functions work, you must implement the three functions
clock, time, and __getzone.

This does not require that you rebuild the library. You can find source templates in the
files clock.c and time.c, and getzone.c in the arm\src\lib directory. For
information about overriding default library modules, see Overriding library modules,
page 67.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 69.

The default implementation of __getzone specifies UTC as the time zone.

Note: If you link your application with support for I/O debugging, the functions clock
and time will be replaced by C-SPY variants that return the host clock and time
respectively. For further information, see C-SPY runtime interface, page 84.

Strtod
The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make a library do so, you need to rebuild the
library, see Building and using a customized library, page 69. Enable the configuration
symbol _DLIB_STRTOD_HEX_FLOAT in the library configuration file.

Assert
If you have linked your application with support for runtime debugging, an assert will
print a message on stdout. If this is not the behavior you require, you must add the
source file xreportassert.c to your application project. The __ReportAssert
function generates the assert notification. You can find template code in the
arm\src\lib directory. For further information, see Building and using a customized
library, page 69. To turn off assertions, you must define the symbol NDEBUG.

In the IDE, this symbol NDEBUG is by default defined in a Release project and not
defined in a Debug project. If you build from the command line, you must explicitly
define the symbol according to your needs.
DARM-2

Part 1. Using the build tools 83

84

Atexit
Atexit
The linker allocates a static memory area for atexit function calls. By default, the
number of calls to the atexit function are limited to 32 bytes. To change this limit, see
Setting up the atexit limit, page 50.

C-SPY runtime interface
To include support for runtime and I/O debugging, you must link your application
with the option Semihosted or IAR breakpoint, see Low-level interface for debug
support, page 62.

In this case, special debugger variants of the following library functions will be linked
to the application:

LOW-LEVEL DEBUGGER RUNTIME INTERFACE

The low-level debugger runtime interface is used for communication between the
application being debugged and the debugger itself. The debugger provides runtime
services to the application via this interface; services that allow capabilities like file and
terminal I/O to be performed on the host computer.

Function Description

abort C-SPY notifies that the application has called abort

clock Returns the clock on the host computer

__close Closes the associated host file on the host computer

__exit C-SPY notifies that the end of the application has been reached

__open Opens a file on the host computer

__read stdin, stdout, and stderr will be directed to the Terminal I/O
window; all other files will read the associated host file

remove Writes a message to the Debug Log window and returns -1

rename Writes a message to the Debug Log window and returns -1

_ReportAssert Handles failed asserts

__seek Seeks in the associated host file on the host computer

system Writes a message to the Debug Log window and returns -1

time Returns the time on the host computer

__write stdin, stdout, and stderr will be directed to the Terminal I/O
window, all other files will write to the associated host file

Table 13: Functions with special meanings when linked with debug info
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
These capabilities can be valuable during the early development of an application, for
example in an application using file I/O before any flash file system I/O drivers have
been implemented. Or, if you need to debug constructions in your application that use
stdin and stdout without the actual hardware device for input and output being
available. Another debugging purpose can be to produce debug trace printouts.

THE DEBUGGER TERMINAL I/O WINDOW

To make the Terminal I/O window available, the application must be linked with
support for I/O debugging, see Low-level interface for debug support, page 62. This
means that when the functions __read or __write are called to perform I/O
operations on the streams stdin, stdout, or stderr, data will be sent to or read
from the C-SPY Terminal I/O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

See the IAR Embedded Workbench® IDE User Guide for ARM® for more information
about the Terminal I/O window.

Speeding up terminal output

On some systems, terminal output might be slow because the host computer and the
target hardware must communicate for each character.

For this reason, a replacement for the __write function called __write_buffered
has been included in the DLIB library. This module buffers the output and sends it to the
debugger one line at a time, speeding up the output. Note that this function uses about
80 bytes of RAM memory.

To use this feature you can either choose Project>General Options>Library Options
and select the option Buffered terminal output in the IDE, or add the following to the
linker command line:

--redirect __write=__write_buffered

Checking module consistency
This section introduces the concept of runtime model attributes, a mechanism that you
can use to ensure consistency between your modules.

When developing an application, it is important to ensure that incompatible modules are
not used together. For example, if you have a UART that can run in two modes, you can
specify a runtime model attribute, for example uart. For each mode, specify a value,
for example mode1 and mode2. You should declare this in each module that assumes
that the UART is in a particular mode.
DARM-2

Part 1. Using the build tools 85

86

Checking module consistency
The tools provided by IAR Systems use a set of predefined runtime model attributes to
automatically ensure module consistency.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. In
general, two modules can only be linked together if they have the same value for each
key that they both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that
property.

Note: For IAR predefined runtime model attributes, the linker uses several ways of
checking them.

Example

In the following table, the object files could (but do not have to) define the two runtime
attributes color and taste. In this case, file1 cannot be linked with any of the other
files, since the runtime attribute color does not match. Also, file4 and file5 cannot
be linked together, because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or file5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

Runtime model attributes can be specified in your C/C++ source code to ensure module
consistency with other object files by using the #pragma rtmodel directive. For
example:

#pragma rtmodel="uart", "mode1"

For detailed syntax information, see rtmodel, page 243.

Object file Color Taste

file1 blue not defined

file2 red not defined

file3 red *

file4 red spicy

file5 red lean

Table 14: Example of runtime model attributes
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The DLIB runtime environment
Runtime model attributes can also be specified in your assembler source code by using
the RTMODEL assembler directive. For example:

RTMODEL "color", "red"

For detailed syntax information, see the ARM® IAR Assembler Reference Guide.

Note: The predefined runtime attributes all start with two underscores. Any attribute
names you specify yourself should not contain two initial underscores in the name, to
eliminate any risk that they will conflict with future IAR runtime attribute names.

At link time, the IAR ILINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.
DARM-2

Part 1. Using the build tools 87

88

Checking module consistency
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Assembler language
interface
When you develop an application for an embedded system, there may be
situations where you will find it necessary to write parts of the code in
assembler, for example when using mechanisms in the ARM core that require
precise timing and special instruction sequences.

This chapter describes the available methods for this, as well as some C
alternatives, with their advantages and disadvantages. It also describes how to
write functions in assembler language that work together with an application
written in C or C++.

Finally, the chapter covers how functions are called, and how you can
implement support for call frame information in your assembler routines for
use in the C-SPY® Call Stack window.

Mixing C and assembler
The IAR C/C++ Compiler for ARM provides several ways to mix C or C++ and
assembler:

● Modules written entirely in assembler

● Intrinsic functions (the C alternative)

● Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a small number of predefined functions that allow direct access
to low-level processor operations without having to use the assembler language. These
functions are known as intrinsic functions. They can be very useful in, for example,
time-critical routines.
DARM-2

Part 1. Using the build tools 89

90

Mixing C and assembler
An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such
sequences; something the compiler is unable to do with inline assembler sequences. The
result is that you get the desired sequence properly integrated in your code, and that the
compiler can optimize the result.

For detailed information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules. There are several benefits with this compared to using inline
assembler:

● The function call mechanism is well-defined

● The code will be easy to read

● The optimizer can work with the C or C++ functions.

There will be some overhead in the form of a function call and return instruction
sequences, and the compiler will regard some registers as scratch registers. In many
cases, the overhead of the function call and return instruction sequence is compensated
by the work of the optimizer.

On the other hand, you will have a well-defined interface between what the compiler
performs and what you write in assembler. When using inline assembler, you will not
have any guarantees that your inline assembler lines do not interfere with the compiler
generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with a number of questions:

● How should the assembler code be written so that it can be called from C?

● Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

● How should assembler code call functions written in C?

● How are global C variables accessed from code written in assembler language?

● Why does not the debugger display the call stack when assembler code is being
debugged?
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Assembler language interface
The first issue is discussed in the section Calling assembler routines from C, page 92.
The following two are covered in the section Calling convention, page 95.

The section Inline assembler, page 91, covers how to use inline assembler, but it also
shows how data in memory is accessed.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 101.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 92, and Calling assembler routines from C++,
page 94, respectively.

INLINE ASSEMBLER

It is possible to insert assembler code directly into a C or C++ function. The asm
keyword inserts the supplied assembler statement in-line, see Inline assembler, page 215
for reference information. The following example demonstrates the use of the asm
keyword. This example also shows the risks of using inline assembler.

 bool flag;

 void foo()
 {
 while (!flag)
 {
 asm(" ldr r2,[pc,#0] \n" /* r2 = address of flag */
 " b .+8 \n" /* jump over constant */
 " DCD flag \n" /* address of flag */
 " ldr r3,[pc,#0] \n" /* r3 = address of PIND */
 " b .+8 \n" /* jump over constant */
 " DCD PIND \n" /* address of PIND */
 " ldr r0,[r3] \n" /* r0 = PIND */
 " str r0,[r2]"); /* flag = r0 */
 }
 }

In this example, the assignment of flag is not noticed by the compiler, which means the
surrounding code cannot be expected to rely on the inline assembler statement.

The inline assembler instruction will simply be inserted at the given location in the
program flow. The consequences or side-effects the insertion may have on the
surrounding code have not been taken into consideration. If, for example, registers or
memory locations are altered, they may have to be restored within the sequence of inline
assembler instructions for the rest of the code to work properly.
DARM-2

Part 1. Using the build tools 91

92

Calling assembler routines from C
Inline assembler sequences have no well-defined interface with the surrounding code
generated from your C or C++ code. This makes the inline assembler code fragile, and
will possibly also become a maintenance problem if you upgrade the compiler in the
future. In addition, there are several limitations to using inline assembler:

● The compiler’s various optimizations will disregard any effects of the inline
sequences, which will not be optimized at all

● The directives CODE16 and CODE32, as well as ARM and THUMB will cause errors;
several other directives cannot be used at all

● Alignment cannot be controlled; this means, for example, that DC32 directives may
be misaligned in Thumb code

● Auto variables cannot be accessed

● Alternative register names, mnemonics, and operators are not supported; read more
about the -j assembler option in the ARM® IAR Assembler Reference Guide.

Inline assembler is therefore often best avoided. If there is no suitable intrinsic function
available, we recommend the use of modules written in assembler language instead of
inline assembler, because the function call to an assembler routine normally causes less
performance reduction.

Calling assembler routines from C
An assembler routine that is to be called from C must:

● Conform to the calling convention

● Have a PUBLIC entry-point label

● Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in the following examples:

extern int foo(void);

or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Assembler language interface
variables required and perform simple accesses to them. In this example, the assembler
routine takes an long and a double, and then returns a long:

long gLong;
double gDouble;

long func(long arg1, double arg2)
{
 long locLong = arg1;
 glong = arg1;
 gDouble = arg2;
 return locLong;
}

int main()
{
 long locLong = gLong;
 gLong = func(locLong, gDouble);
 return 0;
}

Note: In this example we use a low optimization level when compiling the code to
show local and global variable access. If a higher level of optimization is used, the
required references to local variables could be removed during the optimization. The
actual function declaration is not changed by the optimization level.

COMPILING THE CODE

In the IDE, specify list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Output list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

Use the following options to compile the skeleton code:

iccarm skeleton -lA .

The -lA option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s. Also remember to specify a low level of optimization and -e for enabling
language extensions.

The result is the assembler source output file skeleton.s.

Note: The -lA option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
DARM-2

Part 1. Using the build tools 93

94

Calling assembler routines from C++
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file. In the IDE, select Project>Options>C/C++
Compiler>List and deselect the suboption Include compiler runtime information.
On the command line, use the option -lB instead of -lA. Note that CFI information
must be included in the source code to make the C-SPY Call Stack window work.

The output file

The output file contains the following important information:

● The calling convention

● The return values

● The global variables

● The function parameters

● How to create space on the stack (auto variables)

● Call frame information (CFI).

The CFI directives describe the call frame information needed by the Call Stack window
in the debugger.

Calling assembler routines from C++
The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine may therefore be called from C++ when declared in
the following manner:

extern "C"
{
 int my_routine(int x);
}

DARM-2

IAR C/C++ Development Guide
Compiling and linking

Assembler language interface
To achieve the equivalent to a non-static member function, the implicit this pointer has
to be made explicit:

class X;

extern "C"
{
 void doit(X *ptr, int arg);
}

It is possible to “wrap” the call to the assembler routine in a member function. Using an
inline member function removes the overhead of the extra call—provided that function
inlining is enabled:

class X
{
public:
 inline void doit(int arg) { ::doit(this, arg); }
};

Calling convention
A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling convention used by the compiler. The following items
are examined:

● Function declarations

● C and C++ linkage

● Preserved versus scratch registers

● Function entrance

● Function exit

● Return address handling.

At the end of the section, some examples are shown to describe the calling convention
in practice.

Unless otherwise noted, the calling convention used by the compiler adheres to AAPCS,
a part of AEABI; see AEABI compliance, page 118.
DARM-2

Part 1. Using the build tools 95

96

Calling convention
FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int a_function(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

The following is an example of a declaration of a function with C linkage:

extern "C"
{
 int f(int);
}

It is often practical to share header files between C and C++. The following is an
example of a declaration that declares a function with C linkage in both C and C++:

#ifdef __cplusplus
extern "C"
{
#endif

 int f(int);

#ifdef __cplusplus
}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general ARM CPU registers are divided into three separate sets, which are
described in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Assembler language interface
Any of the registers R0 to R3, and R12, can be used as a scratch register by the function.
Note that R12 is a scratch register also when calling between assembler functions only
because of automatically inserted instructions for veneers.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function may use the register for other purposes, but must save the value prior to use and
restore it at the exit of the function.

The registers R4 through to R11 are preserved registers. They are preserved by the called
function.

Special registers

For some registers there are certain prerequisites that you must consider:

● The stack pointer register, R13/SP, must at all times point to or below the last
element on the stack. In the eventuality of an interrupt, everything below the point
the stack pointer points to, can be destroyed. At function entry and exit, the stack
pointer must be 8-byte aligned. In the function, the stack pointer must always be
word aligned. At exit, SP must have the same value as it had at the entry.

● The register R15/PC is dedicated for the Program Counter.

● The link register, R14/LR, holds the return address at the entrance of the function.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of two basic methods: in registers or
on the stack. It is much more efficient to use registers than to take a detour via memory,
so the calling convention is designed to utilize registers as much as possible. There is
only a limited number of registers that can be used for passing parameters; when no
more registers are available, the remaining parameters are passed on the stack. The
following exceptions to these rules apply:

● Interrupt functions cannot take any parameters, except software interrupt functions
that accept parameters and have return values

● Software interrupt functions cannot use the stack in the same way as ordinary
functions. When an SVC instruction is executed, the processor switches to
supervisor mode where the supervisor stack is used. Arguments can therefore not be
passed on the stack if your application is not running in supervisor mode previous to
the interrupt.
DARM-2

Part 1. Using the build tools 97

98

Calling convention
Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

● If the function returns a structure larger than 32 bits, the memory location where the
structure is to be stored is passed as an extra parameter. Notice that it is always
treated as the first parameter.

● If the function is a non-static C++ member function, then the this pointer is passed
as the first parameter (but placed after the return structure pointer, if there is one).
For more information, see Calling assembler routines from C++, page 94.

Register parameters

The registers available for passing parameters are R0–R3:

The assignment of registers to parameters is a straightforward process. Traversing the
parameters from left to right, the first parameter is assigned to the available register or
registers. Should there be no more available registers, the parameter is passed on the
stack in reverse order.

When functions that have parameters smaller than 32 bits are called, the values are sign
or zero extended to ensure that the unused bits have consistent values. Whether the
values will be sign or zero extended depends on their type—signed or unsigned.

Parameters Passed in registers

Scalar and floating-point values no larger than 32 bits, and
single-precision (32-bits) floating-point values

Passed using the first free register:
R0–R3

long long and double-precision (64-bit) values Passed in first available register pair:
R0:R1, or R2:R3

Table 15: Registers used for passing parameters
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Assembler language interface
Stack parameters and layout

Stack parameters are stored in memory, starting at the location pointed to by the stack
pointer. Below the stack pointer (towards low memory) there is free space that the called
function can use. The first stack parameter is stored at the location pointed to by the
stack pointer. The next one is stored at the next location on the stack that is divisible by
four, etc. It is the responsibility of the caller to clean the stack after the called function
has returned.

Figure 13: Storing stack parameters in memory

The stack should be aligned to 8 at function entry.

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

Registers used for returning values

The registers available for returning values are R0 and R0:R1.

Return values Passed in register/register pair

Scalar and structure return values no larger than 32 bits,
and single-precision (32-bit) floating-point return values

R0

The memory address of a structure return value larger
than 32 bits

R0

Table 16: Registers used for returning values

The caller’s stack frame
High
address

Low
address

Stack pointer

Stack parameter n

...

Stack parameter 2

Stack parameter 1

Free stack memory
DARM-2

Part 1. Using the build tools 99

100

Calling convention
If the returned value is smaller than 32 bits, the value is sign or zero extended to 32 bits.

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function has
returned.

Return address handling

A function written in assembler language should, when finished, return to the caller by
jumping to the address pointed to by the register LR.

At function entry, non-scratch registers and the LR register can be pushed with one
instruction. At function exit, all these registers can be popped with one instruction. The
return address can be popped directly to PC.

The following example shows what this can look like:

PUSH {R4-R6,LR} /* function entry */
 .
 .
 .
POP {R4-R6,PC} /* function exit */

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases towards the end.

Example 1

Assume the following function declaration:

int add1(int);

This function takes one parameter in the register R2, and the return value is passed back
to its caller in the register R0.

The following assembler routine is compatible with the declaration; it will return a value
that is one number higher than the value of its parameter:

 add1:
 ADDS R0,R0,#+0x1
 BX BX,LR

long long and double-precision (64-bit) return values R0:R1

Return values Passed in register/register pair

Table 16: Registers used for returning values (Continued)
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Assembler language interface
Example 2

This example shows how structures are passed on the stack. Assume the following
declarations:

struct a_struct { int a,b,c,d,e; };
int a_function(struct a_struct x, int y);

The values of the structure members a, b, c, and d are passed in registers R0-R3. The
last structure member e and the integer parameter y are passed on the stack. The calling
function must reserve eight bytes on the top of the stack and copy the contents of the two
stack parameters to that location. The return value is passed back to its caller in the
register R0.

Call frame information
When debugging an application using C-SPY, it is possible to view the call stack, that
is, the chain of functions that have called the current function. The compiler makes this
possible by supplying debug information that describes the layout of the call frame, in
particular information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the ARM® IAR
Assembler Reference Guide.

The CFI directives will provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention may require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

● A names block describing the available resources to be tracked

● A common block corresponding to the calling convention

● A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.
DARM-2

Part 1. Using the build tools 101

102

Call frame information
The following table lists all the resources defined in the names block used by the
compiler:

Resource Description

CFA R13 The call frames of the stack

R0–R12 Processor general-purpose 32-bit registers

R13 Stack pointer, SP

R14 Link register, LR

S0–S31 Vector Floating Point (VFP) 32-bit coprocessor registers

CPSR Current program status register

SPSR Saved program status register

Table 17: Call frame information resources defined in a names block
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Using C++
IAR Systems supports two levels of the C++ language: The industry-standard
Embedded C++ and IAR Extended Embedded C++. They are described in this
chapter.

Overview
Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language.

STANDARD EMBEDDED C++

The following C++ features are supported:

● Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

● Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

● Overloading of operators and function names, which allows several operators or
functions with the same name, provided that there is a sufficient difference in their
argument lists

● Type-safe memory management using the operators new and delete

● Inline functions, which are indicated as particularly suitable for inline expansion.

C++ features which have been excluded are those that introduce overhead in execution
time or code size that are beyond the control of the programmer. Also excluded are
recent additions to the ISO/ANSI C++ standard. This is because they represent potential
portability problems, due to the fact that few development tools support the standard.
Embedded C++ thus offers a subset of C++ which is efficient and fully supported by
existing development tools.

Standard Embedded C++ lacks the following features of C++:

● Templates

● Multiple and virtual inheritance

● Exception handling
DARM-2

Part 1. Using the build tools 103

104

Overview
● Runtime type information

● New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

● Namespaces

● The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in
that:

● The standard template library (STL) is excluded

● Streams, strings, and complex numbers are supported without the use of templates

● Library features which relate to exception handling and runtime type information
(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds the
following features to the standard EC++:

● Full template support

● Multiple and virtual inheritance

● Namespace support

● The mutable attribute

● The cast operators static_cast, const_cast, and reinterpret_cast.

All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL has been tailored for use with the Extended
EC++ language, which means that there are no exceptions and no support for runtime
type information (rtti). Moreover, the library is not in the std namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with
a module compiled without Extended EC++ enabled.

ENABLING C++ SUPPORT

In the compiler, the default language is C. To be able to compile files written in
Embedded C++, you must use the --ec++ compiler option. See --ec++, page 163.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Using C++
To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 163.

To set the equivalent option in the IDE, select Project>Options>C/C++
Compiler>Language.

Feature descriptions
When writing C++ source code for the IAR C/C++ Compiler for ARM, there are some
benefits and some possible quirks that you need to be aware of when mixing C++
features—such as classes, and class members—with IAR language extensions, such as
IAR-specific attributes.

CLASSES

A class type class and struct in C++ can have static and non-static data members,
and static and non-static function members. The non-static function members can be
further divided into virtual function members, non-virtual function members,
constructors, and destructors. For the static data members, static function members, and
non-static non-virtual function members the same rules apply as for statically linked
symbols outside of a class. In other words, they can have any applicable IAR-specific
type, and object attribute.

The non-static virtual function members can have any applicable IAR-specific type, and
object attribute as long as a pointer to the member function can be implicitly converted
to the default function pointer type. The constructors, destructors, and non-static data
members cannot have any IAR attributes.

The location operator @ can be used on static data members and on any type of function
members.

For further information about attributes, see Type qualifiers, page 208.

Example

class A {
 public:
 static __no_init int i @ 60; // Uninitialized variables
 // located at address 60
 static __thumb void f(); // Static Thumb function
 __thumb void g(); // Thumb function
 virtual __thumb void th(); // Interworking assumed
 virtual __arm void ah(); // Interworking assumed
};
virtual void m() const volatile @ "SPECIAL"; //m() placed in
 SPECIAL
DARM-2

Part 1. Using the build tools 105

106

Feature descriptions
FUNCTIONS

A function with extern "C" linkage is compatible with a function that has C++ linkage.

Example

extern "C" {
 typedef void (*fpC)(void); // A C function typedef
}
void (*fpCpp)(void); // A C++ function typedef

fpC f1;
fpCpp f2;
void f(fpC);

f(f1); // Always works
f(f2); // fpCpp is compatible with fpC

TEMPLATES

Extended EC++ supports templates according to the C++ standard, except for the
support of the export keyword. The implementation uses a two-phase lookup which
means that the keyword typename has to be inserted wherever needed. Furthermore, at
each use of a template, the definitions of all possible templates must be visible. This
means that the definitions of all templates have to be in include files or in the actual
source file.

The standard template library

The STL (standard template library) delivered with the product is tailored for Extended
EC++, as described in Extended Embedded C++, page 104.

VARIANTS OF CASTS

In Extended EC++ the following additional C++ cast variants can be used:

 const_cast<t2>(t), static_cast<t2>(t), reinterpret_cast<t2>(t).

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Using C++
THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std // Nothing here

POINTER TO MEMBER FUNCTIONS

A pointer to a member function can only contain a default function pointer, or a function
pointer that can implicitly be casted to a default function pointer. To use a pointer to a
member function, make sure that all functions that should be pointed to reside in the
default memory or a memory contained in the default memory.

Example

class X{
public:
 __arm void af();
 __thumb void tf();
};

void (__arm X::*ap)() = &X::af; // Interworking assumed
void (__thumb X::*tp)() = &X::tf; // Interworking assumed

USING INTERRUPTS AND EC++ DESTRUCTORS

If interrupts are enabled and the interrupt functions use class objects that have
destructors, there may be problems if the program exits either by using exit or by
returning from main. If an interrupt occurs after an object has been destroyed, there is
no guarantee that the program will work properly.

To avoid this, make sure that interrupts are disabled when returning from main or when
calling exit or abort.

To avoid interrupts, place a call to the intrinsic function __disable_interrupt before
the call to _exit.
DARM-2

Part 1. Using the build tools 107

108

C++ language extensions
C++ language extensions
When you use the compiler in C++ mode and have enabled IAR language extensions,
the following C++ language extensions are available in the compiler:

● In a friend declaration of a class, the class keyword may be omitted, for
example:

class B;
class A
{
 friend B; //Possible when using IAR language
 //extensions
 friend class B; //According to standard
};

● Constants of a scalar type may be defined within classes, for example:

class A {
 const int size = 10;//Possible when using IAR language
 //extensions
 int a[size];
};

According to the standard, initialized static data members should be used instead.

● In the declaration of a class member, a qualified name may be used, for example:

struct A {
 int A::f(); //Possible when using IAR language extensions
 int f(); //According to standard
};

● It is permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "C++"), for example:

extern "C" void f();//Function with C linkage
void (*pf) () //pf points to a function with C++ linkage
 = &f; //Implicit conversion of pointer.

According to the standard, the pointer must be explicitly converted.

● If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals (which in C++ are constants), the operands may
be implicitly converted to char * or wchar_t *, for example:

char *P = x ? "abc" : "def"; //Possible when using IAR
 //language extensions
char const *P = x ? "abc" : "def"; //According to standard

● Default arguments may be specified for function parameters not only in the
top-level function declaration, which is according to the standard, but also in
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Using C++
typedef declarations, in pointer-to-function function declarations, and in
pointer-to-member function declarations.

● In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression may
reference the non-static local variable. However, a warning is issued.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.
DARM-2

Part 1. Using the build tools 109

110

C++ language extensions
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Application-related
considerations
This chapter discusses a selected range of application issues related to
developing your embedded application.

Typically, this chapter highlights issues that are not specifically related to only
the compiler or the linker.

Output format considerations
The linker produces an absolute executable image in the ELF/DWARF object file
format.

You can use the IAR ELF Tool—ielftool— to convert an absolute ELF image to a
format more suitable for loading directly to memory, or burning to a PROM or flash
memory etc.

ielftool can produce the following output formats:

● Plain binary

● Motorola S-records

● Intel hex.

Note: ielftool can also be used for other types of transformations, such as filling and
calculating checksums in the absolute image.

The source code for ielftool is provided in the arm/src directory. For more
information about ielftool, see The IAR ELF Tool—ielftool, page 306.

Stack considerations
The stack is used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. It is a continuous block
of memory pointed to by the processor stack pointer register SP.

The data section used for holding the stack is called CSTACK. The system startup code
initializes the stack pointer to the end of the stack.

The compiler uses the internal data stack, CSTACK, for a variety of user application
operations, and the required stack size depends heavily on the details of these
DARM-2

Part 1. Using the build tools 111

112

Stack considerations
operations. If the given stack size is too large, RAM will be wasted. If the given stack
size is too small, there are two things that can happen, depending on where in memory
you have located your stack. Both alternatives are likely to result in application failure.
Either variable storage will be overwritten, leading to undefined behavior, or the stack
will fall outside of the memory area, leading to an abnormal termination of your
application. Because the second alternative is easier to detect, you should consider
placing your stack so that it grows towards the end of the memory.

For more information about the stack size, see Setting up the stack, page 50, and Saving
stack space and RAM memory, page 133.

EXCEPTION STACKS

The ARM architecture supports five exception modes which are entered when different
exceptions occur. Each exception mode has its own stack to avoid corrupting the
System/User mode stack.

The table shows proposed stack names for the various exception stacks, but any name
can be used:

For each processor mode where a stack is needed, a separate stack pointer must be
initialized in your startup code, and section placement should be done in the linker
configuration file. The IRQ and FIQ stacks are the only exception stacks which are
preconfigured in the supplied cstartup.s and lnkarm.icf files, but other exception
stacks can easily be added.

Cortex-M does not have individual exception stacks. By default, all exception stacks are
placed in the CSTACK section.

To view any of these stacks in the Stack window available in the IDE, these
preconfigured section names must be used instead of user-defined section names.

Processor mode
Proposed stack section

name
Description

Supervisor SVC_STACK Operating system stack.

IRQ IRQ_STACK Stack for general-purpose (IRQ) interrupt
handlers.

FIQ FIQ_STACK Stack for high-speed (FIQ) interrupt handlers.

Undefined UND_STACK Stack for undefined instruction interrupts.
Supports software emulation of hardware
coprocessors and instruction set extensions.

Abort ABT_STACK Stack for instruction fetch and data access
memory abort interrupt handlers.

Table 18: Exception stacks
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Application-related considerations
Heap considerations
The heap contains dynamic data allocated by use of the C function malloc (or one of
its relatives) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with the
following:

● Linker sections used for the heap

● Allocating the heap size, see Setting up the heap, page 50.

The memory allocated to the heap is placed in the section HEAP, which is only included
in the application if dynamic memory allocation is actually used.

 Heap size and standard I/O

If you have excluded FILE descriptors from the DLIB runtime environment, as in the
normal configuration, there are no input and output buffers at all. Otherwise, as in the
full configuration, be aware that the size of the input and output buffers is set to 512
bytes in the stdio library header file. If the heap is too small, I/O will not be buffered,
which is considerably slower than when I/O is buffered. If you execute the application
using the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the
speed penalty, but it is quite noticeable when the application runs on an ARM core. If
you use the standard I/O library, you should set the heap size to a value which
accommodates the needs of the standard I/O buffer.

Interaction between the tools and your application
There are four ways that the linking process and the application can interact
symbolically:

● Creating a symbol by using the ILINK command line option --define_symbol.
ILINK will create a public absolute constant symbol that the application can use as
a label, as a size, as setup for a debugger, et cetera.

● Creating an exported configuration symbol by using the command line option
--config_def or the configuration directive define symbol, and exporting the
symbol using the export symbol directive. ILINK will create a public absolute
constant symbol that the application can use as a label, as a size, as setup for a
debugger, etc.

One advantage of this symbol definition is that this symbol can also be used in
expressions in the configuration file, for example to control the placement of sections
into memory ranges.

● Using the compiler operators __section_begin or __section_end, or the
assembler operators SFB or SFE to get the start and end address of a group of
DARM-2

Part 1. Using the build tools 113

114

Interaction between the tools and your application
sections that ILINK normally treats as a continuous image. These operators can be
used on sections holding initializers, initialized data, zero-initialized data, and
uninitialized data, as well as on blocks.

Note that __section_begin and SFB give the start address, but __section_end
and SFE give the address immediately after the end address.

● The command line option --entry informs ILINK about the start label of the
application. It is used by ILINK as a root symbol and to inform the debugger where
to start execution.

The following lines illustrate how to use these mechanisms. Add the following options
to your command line:

--define_symbol NrOfElements=10
--config_def HeapSize=1024

The linker configuration file can look like this:

define memory Mem with size = 4G;
define region ROM = Mem:[from 0x00000 size 0x10000];
define region RAM = Mem:[from 0x20000 size 0x10000];

/* Export of symbol */
export symbol HeapSize;

/* Setup a heap area witha size defined by an ILINK option */
define block MyHEAP with size = HeapSize, alignment = 8 {};

place in RAM { block MyHEAP };

Add the following lines to your application source code:

#include <stdlib.h>

/* Use symbol defined by ILINK option to dynamically allocate
 an array of elements with specified size */
extern int NrOfElements;
typedef long Elements;
Elements * GetElementArray()
{
 return malloc(sizeof(Elements) * NrOfElements);
}

DARM-2

IAR C/C++ Development Guide
Compiling and linking

Application-related considerations
/* Use a symbol defined by ILINK option, a symbol that in the
 configuration file was made available to the application */
#pragma section = "MyHEAP"
extern int HeapSize;
char * MyHeap()
{
 /* First get start of statically allocated section */
 char * p = __section_begin("MyHEAP");
 /* then we zero it, using the imported size */
 for (int i = 0; i < HeapSize; ++i)
 {
 p[i] = 0;
 }
 return p;
}

Checksum calculation
The IAR Checksum Calculator—ichecksum—fills specific ranges of memory with a
pattern and then calculates a checksum for those ranges. The calculated checksum
replaces the value of an existing symbol in the input ELF image. The application can
then verify that the ranges have not changed.

To use checksumming to verify the integrity of your application, you must:

● Reserve a place, with an associated name and size, for the checksum calculated by
ichecksum

● Choose a checksum algorithm, set up ichecksum for it, and include source code for
the algorithm in your application

● Decide what memory ranges to verify and set up both ichecksum and the source
code for it in your application source code.

Note: To set up ichecksum in the IDE, choose
Project>Options>Linker>Checksum.

CALCULATING A CHECKSUM

In this example, a checksum is calculated for ROM memory at 0x8002 up to 0x8FFF
and the 2-byte calculated checksum is placed at 0x8000.
DARM-2

Part 1. Using the build tools 115

116

Checksum calculation
Creating a place for the calculated checksum

There are two ways to create a place for the calculated checksum. You can create a
global C/C++ or assembler constant symbol with a proper size, residing in a specific
section (in this example .checksum). Alternatively, you can use the linker option
--place_holder.

For example, to create a 2-byte space for the symbol __checksum in the section
.checksum, with alignment 4:

--place_holder __checksum,2,.checksum,4

To place the .checksum section, you have to modify the linker configuration file. It can
look like this (note the handling of the block CHECKSUM):

define memory Mem with size = 4G;

define region ROM_region = Mem:[from 0x8000 to 0x80000000 - 1];
define region RAM_region = Mem:[from 0x80000000 to 0x100000000 -2];

initialize by copy { rw };
do not initialize { section .noinit };

define block HEAP with alignment = 8, size = 16M {};
define block CSTACK with alignment = 8, size = 16K {};
define block IRQ_STACK with alignment = 8, size = 16K {};
define block FIQ_STACK with alignment = 8, size = 16K {};

define block CHECKSUM { ro section .checksum };
place at address Mem:0x0 { ro section .intvec};
place in ROM_region { ro, first block CHECKSUM };
place in RAM_region { rw, block HEAP, block CSTACK, block
 IRQ_STACK, block FIQ_STACK };

Running ichecksum

To calculate the checksum, run ichecksum:

ichecksum --fill=0x00;0x8000–0x8FFF
--checksum=__checksum:2,crc16;0x8000–0x8FFF source ELF file
destination ELF file

To calculate a checksum you also have to define a fill operation. In this example, the fill
pattern 0x0 is used. The checksum algorithm used is crc16.

Note that ichecksum needs an unstripped input ELF image. If you use the --strip
linker option, remove it and use the --strip ichecksum option instead.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Application-related considerations
ADDING A CHECKSUM FUNCTION TO YOUR SOURCE CODE

To check the value of the ichecksum generated checksum, it has to be compared with
a checksum that has been calculated by your application. This means that you have to
add a function for checksum calculation (that uses the same algorithm as ichecksum)
to your application source code. Your application must also include a call to this
function.

A function for checksum calculation

The following function—a slow variant but with small memory footprint—uses the
CRC16 algorithm:

unsigned short slow_crc16(unsinged short sum, unsigned char *p,
 unsigned int len)
{
 while (len--)
 {
 int i;
 unsigned char byte = *(p++);
 for (i = 0; i < 8; ++i)
 {
 unsigned long osum = sum;
 sum <<= 1;
 if (byte & 0x80)
 sum |= 1;
 if (osum & 0x8000)
 sum ^= 0x1021;
 byte <<= 1;
 }
 }
 return sum;
}

You can find the source code for the checksum algorithms in the arm\src\linker
directory of your product installation.

Checksum calculation

The following code gives an example of how the checksum can be calculated:

/* Start and end of the the checksum range */
unsigned long ChecksumStart = 0x8000+2;
unsigned long ChecksumEnd = 0x8FFF;

/* The checksum calculated by ichecksum */
extern unsigned short __checksum;
DARM-2

Part 1. Using the build tools 117

118

AEABI compliance
void TestChecksum()
{
 unsigned short calc = 0;

 /* Run the checksum algorithm */
 calc = slow_crc16(0,
 (unsigned char *) ChecksumStart,
 (ChecksumEnd - ChecksumStart+1);

 /* Rotate out the answer */
 unsigned char zeros[2] = {0, 0};
 calc = slow_crc16(calc, zeros, 2);

 /* Test the checksum */
 if (calc != __Checksum)
 {
 abort(); /* Failure */
 }
}

THINGS TO REMEMBER

When calculating a checksum, you have to remember the following:

● The checksum must be calculated from the lowest to the highest address for every
memory range

● Each memory range must be verified in the same order as defined

● It is OK to have several ranges for one checksum

● If several checksums are used, you should place them in sections with unique names
and use unique symbol names

● If a slow function is used, you must make a final call to the checksum calculation
with as many bytes (with the value 0x00) as you have bytes in the checksum.

For more information, see also the The IAR ELF Tool—ielftool, page 306.

AEABI compliance
The ARM IAR build tools support the Embedded Application Binary Interface for
ARM, AEABI, defined by ARM Limited. This interface is based on the Intel IA64 ABI
interface. The advantage of adhering to AEABI is that any such module can be linked
with any other AEABI compliant module, even modules produced by tools provided by
other vendors.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Application-related considerations
The ARM IAR build tools support the following parts of the AEABI:

The IAR build tools only support a bare metal platform, that is a ROM-based system
that lacks an explicit operating system.

Note that:

● The AEABI is specified for C89 only

● The IAR build tools only support using the default and C locales

● The AEABI does not specify C++ library compatibility

● The IAR build tools do not support the use of exceptions and rtti

● Neither the size of an enum or of wchar_t is constant in the AEABI.

If AEABI compliance is enabled, almost all optimizations performed in the system
header files are turned off, and certain preprocessor constants become real constant
variables instead.

LINKING AEABI COMPLIANT MODULES USING THE IAR ILINK
LINKER

When building an application using the IAR ILINK Linker, the following types of
modules can be combined:

● Modules produced using IAR build tools, both AEABI compliant modules as well
as modules that are not AEABI compliant

● AEABI compliant modules produced using build tools from another vendor.

Note: To link a module produced by a compiler from another vendor, extra support
libraries from that vendor might be required.

The IAR ILINK Linker automatically chooses the appropriate standard C/C++ libraries
to use based on attributes from the object files. Imported object files might not have all
these attributes. Therefore, you might need to help ILINK choose the standard library
by verifying one or more of the following details:

● The used cpu by specifying the --cpu linker option

AAPCS Procedure Call Standard for the ARM architecture

CPPABI C++ ABI for the ARM architecture (EC++ parts only)

AAELF ELF for the ARM architecture

AADWARF DWARF for the ARM architecture

RTABI Runtime ABI for the ARM architecture

CLIBABI C library ABI for the ARM architecture
DARM-2

Part 1. Using the build tools 119

120

AEABI compliance
● If full I/O is needed; make sure to link with a Full library configuration in the
standard library

● Explicitly specify runtime library file(s), possibly in combination with the
--no_library_search linker option.

LINKING AEABI COMPLIANT MODULES USING A LINKER
FROM A DIFFERENT VENDOR

If you have a module produced using the IAR C/C++ Compiler and you plan to link that
module using a linker from a different vendor, that module has to be AEABI compliant,
see Enabling AEABI compliance in the compiler, page 120.

In addition, if that module uses any of the IAR-specific compiler extensions, you must
make sure that those features are also supported by the tools from the other vendor. Note
specifically:

● Support for the following extensions needs to be verified: #pragma pack,
__no_init, __root, and __ramfunc

● The following extensions are harmless to use: #pragma location/@, __arm,
__thumb, __swi, __irq, __fiq, and __nested.

ENABLING AEABI COMPLIANCE IN THE COMPILER

You can enable AEABI compliance in the compiler by setting the --aeabi option.

In the IDE, use the Project>Options>C/C++ Compiler>Extra Options page to
specify the --aeabi option.

On the command line, use the option --aeabi to enable AEABI support in the
compiler.

Alternatively, to enable support for AEABI for a specific system header file, you must
define the preprocessor symbol _AEABI_PORTABILITY_LEVEL to non-zero prior to
including a system header file, and make sure that the symbol AEABI_PORTABLE is set
to non-zero after the inclusion of the header file:

#define _AEABI_PORTABILITY_LEVEL 1
#undef _AEABI_PORTABLE
#include <header.h>
#ifndef _AEABI_PORTABLE
 #error "header.h not AEABI compatible"

#endif
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for
embedded applications
For embedded systems, the size of the generated code and data is very
important, because using smaller external memory or on-chip memory can
significantly decrease the cost and power consumption of a system.

The topics discussed are:

● Selecting data types

● Controlling data and function placement in memory

● Controlling compiler optimizations

● Writing efficient code.

As a part of this, the chapter also demonstrates some of the more common
mistakes and how to avoid them, and gives a catalog of good coding
techniques.

Selecting data types
For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

● Use int or long instead of char or short whenever possible, to avoid sign
extension or zero extension. In particular, loop indexes should always be int or
long to minimize code generation. Also, in Thumb mode, accesses through the
stack pointer (SP) is restricted to 32-bit data types, which further emphasizes the
benefits of using one of these data types.

● Use unsigned data types, unless your application really requires signed values.

● Be aware of the costs of using 64-bit data types, such as double and long long.
DARM-2

Part 1. Using the build tools 121

122

Selecting data types
● Bitfields and packed structures generate large and slow code.

● Using floating-point types on a microprocessor without a math coprocessor is very
inefficient, both in terms of code size and execution speed.

● Declaring a pointer to const data tells the calling function that the data pointed to
will not change, which opens for better optimizations.

For details about representation of supported data types, pointers, and structures types,
see the chapter Data representation.

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is very
inefficient, both in terms of code size and execution speed. The ARM IAR C/C++
Compiler supports two floating-point formats—32 and 64 bits. The 32-bit floating-point
type float is more efficient in terms of code size and execution speed. However, the
64-bit format double supports higher precision and larger numbers.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floats instead. Also consider replacing code using
floating-point operations with code using integers since these are more efficient.

Note that a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision.

In the example below a is converted from a float to a double, 1 is added and the result
is converted back to a float:

float test(float a)
{
 return a+1.0;
}

To treat a floating-point constant as a float rather than as a double, add an f to it, for
example:

float test(float a)
{
 return a+1.0f;
}

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The ARM core requires that when accessing data in memory, the data must be aligned.
Each element in a structure needs to be aligned according to its specified type
requirements. This means that the compiler might need to insert pad bytes to keep the
alignment correct.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for embedded applications
There are two reasons why this can be considered a problem:

● Due to external demands; for example, network communication protocols are
usually specified in terms of data types with no padding in between

● There is a need to save data memory.

For information about alignment requirements, see Alignment, page 199.

There are two ways to solve the problem:

● Use the #pragma pack directive or the __packed data type attribute for a tighter
layout of the structure. The drawback is that each access to an unaligned element in
the structure will use more code.

● Write your own customized functions for packing and unpacking structures. This is
a more portable way, which will not produce any more code apart from your
functions. The drawback is the need for two views on the structure data—packed
and unpacked.

For further details about the #pragma pack directive, see pack, page 241.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Anonymous structures are part of the C++ language; however, they are not part of the C
standard. In the IAR C/C++ Compiler for ARM they can be used in C if language
extensions are enabled.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 162, for
additional information.

Example

In the following example, the members in the anonymous union can be accessed, in
function f, without explicitly specifying the union name:

struct s
{

char tag;
union
{

long l;
float f;

};
} st;
DARM-2

Part 1. Using the build tools 123

124

Controlling data and function placement in memory
void f(void)
{

st.l = 5;
}

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in the following example:

__no_init volatile
union
{

unsigned char IOPORT;
struct
{

unsigned char way: 1;
unsigned char out: 1;

};
} @ address;

This declares an I/O register byte IOPORT at address. The I/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

The following example illustrates how variables declared this way can be used:

void test(void)
{

IOPORT = 0;
way = 1;
out = 1;

}

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _A_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_IOPORT.

Controlling data and function placement in memory
The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms to know which one is best suited for different situations. You can use:

● The @ operator and the #pragma location directive for absolute placement

Use the @ operator or the #pragma location directive to place individual global and
static variables at absolute addresses. The variables must be declared __no_init.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for embedded applications
This is useful for individual data objects that must be located at a fixed address, for
example variables with external requirements. Note that it is not possible to use this
notation for absolute placement of individual functions.

● The @ operator and the #pragma location directive for section placement

Use the @ operator or the #pragma location directive to place groups of functions
or global and static variables in named sections, without having explicit control of
each object. The sections can, for example, be placed in specific areas of memory, or
initialized or copied in controlled ways using the section begin and end operators.
This is also useful if you want an interface between separately linked units, for
example an application project and a boot loader project. Use named sections when
absolute control over the placement of individual variables is not needed, or not
useful.

● The --section option

Use the --section option to place functions and/or data objects in named sections,
which is useful, for example, if you want to direct them to different fast or slow
memories. To read more about the --section option, see --section, page 178.

At compile time, data and functions are placed in different sections as described in
Modules and sections, page 38. At link time, one of the most important functions of the
linker is to assign load addresses to the various sections used by the application. All
sections, except for the sections holding absolute located data, are automatically
allocated to memory according to the specifications in the linker configuration file, as
described in Placing code and data—the linker configuration file, page 40.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses. The variables must be declared using
one of the following combinations of keywords:

● __no_init

● __no_init and const (whithout initializers).

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: A variable placed in an absolute location should be defined in an include file, to
be included in every module that uses the variable. An unused definition in a module
will be ignored. A normal extern declaration—one that does not use an absolute
placement directive—can refer to a variable at an absolute address; however,
optimizations based on the knowledge of the absolute address cannot be performed.
DARM-2

Part 1. Using the build tools 125

126

Controlling data and function placement in memory
Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0x1000;/* OK */

In the following example, there is a const declared object, which is not initialized. The
object is placed in ROM. This is useful for configuration parameters, which are
accessible from an external interface.

#pragma location=0x1004
__no_init const int beta; /* OK */

The actual value must be set by other means. The typical use is for configurations where
the values are loaded to ROM separately, or for special function registers that are
read-only.

The following examples show incorrect usage:

int delta @ 0x100C; /* Error, not __no_init */

__no_init int epsilon @ 0x1011; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */

the linker will report that there are more than one variable located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

extern volatile const __no_init int x @ 0x100; /* the extern
 /* keyword makes x public */

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for embedded applications
DATA AND FUNCTION PLACEMENT IN SECTIONS

The following methods can be used for placing data or functions in named sections other
than default:

● The @ operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named sections. The named
section can either be a predefined section, or a user-defined section.

● The --section option can be used for placing variables and functions, which are
parts of the whole compilation unit, in named sections.

C++ static member variables can be placed in named sections just like any other static
variable.

If you use your own sections, in addition to the predefined sections, the sections must
also be defined in the linker configuration file.

Note: Take care when explicitly placing a variable or function in a predefined section
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

The location of the sections can be controlled from the linker configuration file.

For more information about sections, see the chapter Section reference.

Examples of placing variables in named sections

In the following three examples, a data object is placed in a user-defined section.

__no_init int alpha @ "NOINIT"; /* OK */

#pragma location="CONSTANTS"
const int beta; /* OK */

Examples of placing functions in named sections

void f(void) @ "FUNCTIONS";

void g(void) @ "FUNCTIONS"
{
}

#pragma location="FUNCTIONS"
void h(void);
DARM-2

Part 1. Using the build tools 127

128

Controlling compiler optimizations
Controlling compiler optimizations
The compiler performs many transformations on your application in order to generate
the best possible code. Examples of such transformations are storing values in registers
instead of memory, removing superfluous code, reordering computations in a more
efficient order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
there are some optimizations that are performed by the linker. For instance, all unused
functions and variables are removed and not included in the final output.

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute very quickly into a separate file and compile it
for minimal execution time, and the rest of the code for minimal code size. This will give
a small program, which is still fast enough where it matters.

In addition, you can exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. Refer to optimize, page 240, for
information about the pragma directive.

Multi-file compilation units

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but it is also possible to make
several source files in a compilation unit by using multi-file compilation. The advantage
is that interprocedural optimizations such as inlining and cross jump have more source
code to work on. Ideally, the whole application should be compiled as one compilation
unit. However, for large applications this is not practical because of resource restrictions
on the host computer. For more information, see --mfc, page 168.

If the whole application is compiled as one compilation unit, it is very useful to make
the compiler also discard unused public functions and variables before the
interprocedural optimizations are performed. Doing this limits the scope of the
optimizations to functions and variables that are actually used. For more information,
see --discard_unused_publics, page 161.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for embedded applications
OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. The following table lists the
optimizations that are performed on each level:

Note: Some of the performed optimizations can be individually enabled or disabled.
For more information about these, see Fine-tuning enabled transformations, page 130.

A high level of optimization might result in increased compile time, and will most likely
also make debugging more difficult, because it will be less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope. At any time, if you experience difficulties when debugging your
code, try lowering the optimization level.

Optimization level Description

None (Best debug support) Variables live through their entire scope

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope

Medium Same as above
Live-dead analysis and optimization
Dead code elimination
Redundant label elimination
Redundant branch elimination
Code hoisting
Peephole optimization
Some register content analysis and optimization
Static clustering
Common subexpression elimination

High (Maximum optimization) Same as above
Instruction scheduling
Cross jumping
Advanced register content analysis and optimization
Loop unrolling
Function inlining
Code motion
Type-based alias analysis

Table 19: Compiler optimization levels
DARM-2

Part 1. Using the build tools 129

130

Controlling compiler optimizations
SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used; speed will trade size for
speed, whereas size will trade speed for size. Note that one optimization sometimes
enables other optimizations to be performed, and an application may in some cases
become smaller even when optimizing for speed rather than size.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. The following transformations can individually be
disabled:

● Common subexpression elimination

● Loop unrolling

● Function inlining

● Code motion

● Type-based alias analysis

● Static clustering

● Instruction scheduling.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

To read more about the command line option, see --no_cse, page 169.

Loop unrolling

It is possible to duplicate the loop body of a small loop, whose number of iterations can
be determined at compile time, to reduce the loop overhead.

This optimization, which can be performed at optimization level High, normally
reduces execution time, but increases code size. The resulting code might also be
difficult to debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed, size, or when balancing between size and speed.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for embedded applications
Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_unroll, page 173.

Function inlining

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler decides which functions to inline. Different heuristics are used when
optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_inline, page 170.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level High, normally reduces code size and execution time. The resulting code might
however be difficult to debug.

Note: This option has no effect at optimization levels None, and Low.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object will take
place using its declared type or as a char type. This assumption lets the compiler detect
whether pointers may reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For ISO/ANSI
standard-conforming C or C++ application code, this optimization can reduce code size
and execution time. However, non-standard-conforming C or C++ code might result in
the compiler producing code that leads to unexpected behavior. Therefore, it is possible
to turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_tbaa, page 171.
DARM-2

Part 1. Using the build tools 131

132

Writing efficient code
Example

short f(short * p1, long * p2)
{
 *p2 = 0;
 *p1 = 1;
 return *p2;
}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the long value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these
pointers could overlap each other by being part of the same union. By using explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Static clustering

When static clustering is enabled, static and global variables that are defined within the
same module are arranged so that variables that are accessed in the same function are
stored close to each other. This makes it possible for the compiler to use the same base
pointer for several accesses.

Note: This option has no effect at optimization levels None and Low.

Instruction scheduling

The compiler features an instruction scheduler to increase the performance of the
generated code. To achieve that goal, the scheduler rearranges the instructions to
minimize the number of pipeline stalls emanating from resource conflicts within the
microprocessor. Note that not all cores benefit from scheduling.

Note: This option has no effect at optimization levels None, Low and Medium.

Writing efficient code
This section contains general programming hints on how to implement functions to
make your applications robust, but at the same time facilitate compiler optimizations.

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

● Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions may modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for embedded applications
● Avoid taking the address of local variables using the & operator. There are two main
reasons why this is inefficient. First, the variable must be placed in memory, and
thus cannot be placed in a processor register. This results in larger and slower code.
Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

● Module-local variables—variables that are declared static—are preferred over
global variables. Also avoid taking the address of frequently accessed static
variables.

● The compiler is capable of inlining functions. This means that instead of calling a
function, the compiler inserts the content of the function at the location where the
function was called. The result is a faster, but often larger, application. Also,
inlining may enable further optimizations. The compiler often inlines small
functions declared static. The use of the #pragma inline directive and the C++
keyword inline gives you fine-grained control, and it is the preferred method
compared to the traditional way of using preprocessor macros. Too much inlining
can decrease performance due to the limited number of registers. This feature can be
disabled using the --no_inline command line option; see --no_inline, page 170.

● Avoid using inline assembler. Instead, try writing the code in C or C++, use
intrinsic functions, or write a separate module in assembler language. For more
details, see Mixing C and assembler, page 89.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:

● If stack space is limited, avoid long call chains and recursive functions.

● Avoid using large non-scalar types, such as structures, as parameters or return type;
in order to save stack space, you should instead pass them as pointers or, in C++, as
references.

FUNCTION PROTOTYPES

It is possible to declare and define functions using one of two different styles:

● Prototyped

● Kernighan & Ritchie C (K&R C)

Both styles are included in the C standard; however, it is recommended to use the
prototyped style, since it makes it easier for the compiler to find problems in the code.
In addition, using the prototyped style will make it possible to generate more efficient
code, since type promotion (implicit casting) is not needed. The K&R style is only
supported for compatibility reasons.
DARM-2

Part 1. Using the build tools 133

134

Writing efficient code
To make the compiler verify that all functions have proper prototypes, use the compiler
option Require prototypes (--require_prototypes).

Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int test(char, int); /* declaration */
int test(char a, int b) /* definition */
{

}

Kernighan & Ritchie style

In K&R style—traditional pre-ISO/ANSI C—it is not possible to declare a function
prototyped. Instead, an empty parameter list is used in the function declaration. Also,
the definition looks different.

int test(); /* old declaration */
int test(a,b) /* old definition */
char a;
int b;
{

}

INTEGER TYPES AND BIT NEGATION

There are situations when the rules for integer types and their conversion lead to
possibly confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, types also includes types of constants.

In some cases there may be warnings (for example, for constant conditional or pointless
comparison), in others just a different result than what is expected. Under certain
circumstances the compiler might warn only at higher optimizations, for example, if the
compiler relies on optimizations to identify some instances of constant conditionals. In
the following example an 8-bit character, a 32-bit integer, and two’s complement is
assumed:

void f1(unsigned char c1)
{
 if (c1 == ~0x80)
 ;
}

DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for embedded applications
Here, the test is always false. On the right hand side, 0x80 is 0x00000080, and
~0x00000080 becomes 0xFFFFFF7F. On the left hand side, c1 is an 8-bit unsigned
character, so it cannot be larger than 255. It also cannot be negative, which means that
the integral promoted value can never have the topmost 24 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example by interrupt routines or by code
executing in separate threads, must be properly marked and have adequate protection.
The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code. To read more about the volatile type
qualifier, see Declaring objects volatile, page 208.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of ARM devices are included in the IAR product
installation. The header files are named iodevice.h and define the processor-specific
special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

Example

SFRs with bitfields are declared in the header file. The following example is from
ioks32c5000a.h:

/* system configuration register */
typedef struct {
 __REG32 se :1; /* stall enable, must be 0 */
 __REG32 ce :1; /* cache enable */
 __REG32 we :1;
 __REG32 cm :2; /* cache mode */
 __REG32 isbp :10; /* internal SRAM base pointer */
 __REG32 srbbp :10; /* special register bank base pointer */
 __REG32 :6;
} __syscfg_bits;

__IO_REG32_BIT(__SYSCFG,0x03FF0000,__READ_WRITE,__syscfg_bits);

By including the appropriate include file into the user code it is possible to access either
the whole register or any individual bit (or bitfields) from C code as follows:
DARM-2

Part 1. Using the build tools 135

136

Writing efficient code
/* whole register access */
__SYSCFG = 0x12345678;

/* Bitfield accesses */
__SYSCFG_bit.we = 1;
__SYSCFG_bit.cm = 3;

You can also use the header files as templates when you create new header files for other
ARM devices. For details about the @ operator, see Controlling data and function
placement in memory, page 124.

PASSING VALUES BETWEEN C AND ASSEMBLER OBJECTS

The following example shows how you in your C source code can use inline assembler
to set and get values from a special purpose register:

#pragma diag_suppress=Pe940
#pragma optimize=no_inline
static unsigned long get_APSR(void)
{
 /* On function exit,
 function return value should be present in R0 */
 asm("MRS R0, APSR");
}
#pragma diag_default=Pe940

#pragma optimize=no_inline
static void set_APSR(unsigned long value)
{
 /* On function entry, the first parameter is found in R0 */
 asm("MSR APSR, R0");
}

The general purpose register R0 is used for getting and setting the value of the special
purpose register APSR. As the functions only contain inline assembler, the compiler will
not interfere with the register usage. The register R0 is always used for return values. The
first parameter is always passed in R0 if the type is 32 bits or smaller.

The same method can be used also for accessing other special purpose registers and
specific instructions.

To read more about the risks of using inline assembler, see Inline assembler, page 91.
For reference information about using inline assembler, see Inline assembler, page 215.

Note: Before you use inline assembler, see if you can use an intrinsic function instead.
See Summary of intrinsic functions, page 247.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Efficient coding for embedded applications
NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate section.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For information about the __no_init keyword, see page 227. Note that to use this
keyword, language extensions must be enabled; see -e, page 162. For information about
the #pragma object_attribute, see page 240.
DARM-2

Part 1. Using the build tools 137

138

Writing efficient code
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Part 2. Reference
information
This part of the IAR C/C++ Development Guide for ARM® contains the
following chapters:

● External interface details

● Compiler options

● Linker options

● Data representation

● Compiler extensions

● Extended keywords

● Pragma directives

● Intrinsic functions

● The preprocessor

● Library functions

● The linker configuration file

● Section reference

● IAR utilities

● Implementation-defined behavior.
DARM-2

139

140
DARM-2

External interface details
This chapter provides reference information about how the compiler and
linker interact with their environment. The chapter briefly lists and describes
the invocation syntax, methods for passing options to the tools, environment
variables, the include file search procedure, and finally the different types of
compiler and linker output.

Invocation syntax
You can use the compiler and linker either from the IDE or from the command line.
Refer to the IAR Embedded Workbench® IDE User Guide for ARM® for information
about using the build tools from the IDE.

COMPILER INVOCATION SYNTAX

The invocation syntax for the compiler is:

iccarm [options] [sourcefile] [options]

For example, when compiling the source file prog.c, use the following command to
generate an object file with debug information:

iccarm prog --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order that they are specified on the
command line.

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

ILINK INVOCATION SYNTAX

The invocation syntax for ILINK is:

ilinkarm [arguments]

Each argument is either a command-line option, an object file, or a library.
DARM-2

Part 2. Reference information 141

142

Invocation syntax
For example, when linking the object file prog.o, use the following command:

ilinkarm prog.o --config configfile

If no filename extension is specified for the linker configuration file, the configuration
file must have the extension icf.

Generally, the order of arguments on the command line is not significant. There is,
however, one exception: when you supply several libraries, the libraries are searched in
the same order that they are specified on the command line. The default libraries are
always searched last.

The output executable image will be placed in a file named a.out, unless the -o option
is used.

If you run ILINK from the command line without any arguments, the ILINK version
number and all available options including brief descriptions are directed to stdout and
displayed on the screen.

PASSING OPTIONS

There are three different ways of passing options to the compiler and to ILINK:

● Directly from the command line

Specify the options on the command line after the iccarm or ilinkarm commands;
see Invocation syntax, page 141.

● Via environment variables

The compiler and linker automatically append the value of the environment variables
to every command line; see Environment variables, page 143.

● Via a text file by using the -f option; see -f, page 164.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Compiler options chapter.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

External interface details
ENVIRONMENT VARIABLES

The following environment variables can be used with the compiler:

The following environment variable can be used with ILINK:

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:

● If the name of the #include file is an absolute path, that file is opened.

● If the compiler encounters the name of an #include file in angle brackets, such as:

#include <stdio.h>

it searches the following directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -I, page 166.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 143.

● If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last.

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:
C_INCLUDE=c:\program files\iar systems\embedded

workbench 5.n\arm\inc;c:\headers

QCCARM Specifies command line options; for example: QCCARM=-lA asm.lst

Table 20: Compiler environment variables

Environment variable Description

ILINKARM_CMD_LINE Specifies command line options; for example:
ILINKARM_CMD_LINE=--config full.icf

--silent

Table 21: ILINK environment variables
DARM-2

Part 2. Reference information 143

144

Compiler output
For example:

src.c in directory dir\src
#include "src.h"
...

src.h in directory dir\include
#include "config.h"
...

When dir\exe is the current directory, use the following command for compilation:

iccarm ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src.h.

dir\src File including current file (src.c).

dir\include As specified with the first -I option.

dir\debugconfig As specified with the second -I option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Compiler output
The compiler can produce the following output:

● A linkable object file

The object files produced by the compiler use the industry-standard format ELF. By
default, the object file has the filename extension o.

● Optional list files

Different types of list files can be specified using the compiler option -l, see -l, page
166. By default, these files will have the filename extension lst.

● Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

● Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in an optional list file. To read more about diagnostic messages, see
Diagnostics, page 146.

● Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 145.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

External interface details
● Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to stdout and displayed on the screen. Some of the bytes might
be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy will be retained. For example,
in some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Error return codes

The compiler and linker return status information to the operating system that can be
tested in a batch file.

The following command line error codes are supported:

ILINK output
ILINK can produce the following output:

● An absolute executable image

The final output produced by the IAR ILINK Linker is an absolute object file
containing the executable image that can be put into an EPROM, downloaded to a
hardware emulator, or executed on your PC using the IAR C-SPY Debugger
Simulator. By default, the file has the filename extension out. The output format is
always in ELF, which optionally includes debug information in the DWARF format.

● Optional logging information

During operation, ILINK logs its decisions on stdout, and optionally to a file. For
example, if a library is searched, whether a required symbol is found in a library

Code Description

0 Compilation or linking successful, but there may have been warnings.

1 There were warnings and the option --warnings_affect_exit_code was
used.

2 There were errors.

3 There were fatal errors making the tool abort.

4 There were internal errors making the tool abort.

Table 22: Error return codes
DARM-2

Part 2. Reference information 145

146

Diagnostics
module, or whether a module will be part of the output. Timing information for each
ILINK subsystem is also logged.

● Optional map files

A linker map file—containing summaries of linkage, runtime attributes, memory,
and placement, as well as an entry list— can be generated by using ILINK option
--map, see --map, page 191. By default, the map file have the filename extension
map.

● Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in the optional map file. To read more about diagnostic messages, see
Diagnostics, page 146.

● Error return codes

ILINK returns status information to the operating system which can be tested in a
batch file, see Error return codes, page 145.

● Size information about used memory and amount of time

Information about the generated amount of bytes for functions and data for each
memory is directed to stdout and displayed on the screen.

Diagnostics
This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

MESSAGE FORMAT FOR THE COMPILER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename,linenumber level[tag]: message

with the following elements:

filename The name of the source file in which the issue was encountered

linenumber The line number at which the compiler detected the issue

level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long
DARM-2

IAR C/C++ Development Guide
Compiling and linking

External interface details
Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.

MESSAGE FORMAT FOR THE LINKER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from ILINK is produced in the form:

level[tag]: message

with the following elements:

Diagnostic messages are displayed on the screen, as well as printed in the optional map
file.

Use the option --diagnostics_tables to list all possible linker diagnostic messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler or linker finds a construction
that can possibly lead to erroneous behavior in the generated code. Remarks are by
default not issued, but can be enabled, see --remarks, page 177.

Warning

A diagnostic message that is produced when the compiler or linker finds a problem
which is of concern, but not so severe as to prevent the completion of compilation or
linking. Warnings can be disabled by use of the command line option --no_warnings,
see page 173.

Error

A diagnostic message that is produced when the compiler or linker has found a serious
error. An error will produce a non-zero exit code.

level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long
DARM-2

Part 2. Reference information 147

148

Diagnostics
Fatal error

A diagnostic message that is produced when the compiler has found a condition that not
only prevents code generation, but which makes further processing pointless. After the
message has been issued, compilation terminates. A fatal error will produce a non-zero
exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

See Summary of compiler options, page 152, for a description of the compiler options
that are available for setting severity levels.

For the compiler see also the chapter Pragma directives, for a description of the pragma
directives that are available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the compiler or linker. It is produced using the
following form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

● The product name

● The version number of the compiler or of ILINK, which can be seen in the header of
the list or map files generated by the compiler or by ILINK, respectively

● Your license number

● The exact internal error message text

● The files involved of the application that generated the internal error

● A list of the options that were used when the internal error occurred.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
This chapter describes the syntax of compiler options and the general syntax
rules for specifying option parameters, and gives detailed reference
information about each option.

Options syntax
Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

Refer to the IAR Embedded Workbench® IDE User Guide for ARM® for information
about the compiler options available in the IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and long names.
Some options have both.

● A short option name consists of one character, and it may have parameters. You
specify it with a single dash, for example -e

● A long option name consists of one or several words joined by underscores, and it
may have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 142.

RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-O or -Oh
DARM-2

Part 2. Reference information 149

150

Options syntax
For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--misrac=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\src or -I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=filename

or

--diagnostics_tables filename

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

● For short options, optional parameters are specified without a preceding space

● For long options, optional parameters are specified with a preceding equal sign (=)

● For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-lA filename

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n filename

Rules for specifying a filename or directory as parameters

The following rules apply for options taking a filename or directory as parameters:

● Options that take a filename as a parameter can optionally also take a path. The path
can be relative or absolute. For example, to generate a listing to the file list.lst
in the directory ..\listings\:

iccarm prog -l ..\listings\list.lst
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
● For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name has
been specified with the option -o, in which case that name will be used. For
example:

iccarm prog -l ..\listings\

The produced list file will have the default name ..\listings\prog.lst

● The current directory is specified with a period (.). For example:

iccarm prog -l .

● / can be used instead of \ as the directory delimiter.

● By specifying -, input files and output files can be redirected to stdin and stdout,
respectively. For example:

iccarm prog -l -

Additional rules

In addition, the following rules apply:

● When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; the following example will create a list file called -r:

iccarm prog -l ---r

● For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002

Alternatively, the option may be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002
DARM-2

Part 2. Reference information 151

152

Summary of compiler options
Summary of compiler options
The following table summarizes the compiler command line options:

Command line option Description

--aapcs Specifies the calling convention

--aeabi Enables AEABI-compliant code generation

--arm Sets the default function mode to ARM

--char_is_signed Treats char as signed

--cpu Specifies a processor variant

--cpu_mode Selects the default mode for functions

-D Defines preprocessor symbols

--debug Generates debug information

--dependencies Lists file dependencies

--diag_error Treats these as errors

--diag_remark Treats these as remarks

--diag_suppress Suppresses these diagnostics

--diag_warning Treats these as warnings

--diagnostics_tables Lists all diagnostic messages

--discard_unused_publics Discards unused public symbols

--dlib_config Determines the library configuration file

-e Enables language extensions

--ec++ Enables Embedded C++ syntax

--eec++ Enables Extended Embedded C++ syntax

--enable_multibytes Enables support for multibyte characters in source
files

--endian Specifies the byte order of the generated code and
data

--enum_is_int Sets the minimum size on enumeration types

--error_limit Specifies the allowed number of errors before
compilation stops

-f Extends the command line

--fpu Selects the type of floating-point unit

--header_context Lists all referred source files and header files

-I Specifies include file path

Table 23: Compiler options summary
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
--interwork Generates interworking code

-l Creates a list file

--legacy Generates object code linkable with older tool
chains

--mfc Enables multi-file compilation

--migration_preprocessor

_extensions

Extends the preprocessor

--misrac Enables error messages specific to MISRA-C:1998.
For information, see the IAR Embedded Workbench®
MISRA C Reference Guide.

--misrac_verbose Enables verbose logging of MISRA C checking. For
information, see the IAR Embedded Workbench®
MISRA C Reference Guide.

--no_clustering Disables static clustering optimizations

--no_code_motion Disables code motion optimization

--no_cse Disables common subexpression elimination

--no_fragments Disables section fragment handling

--no_guard_calls Disables guard calls for static initializers

--no_inline Disables function inlining

--no_path_in_file_macros Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

--no_scheduling Disables the instruction scheduler

--no_tbaa Disables type-based alias analysis

--no_typedefs_in_diagnostics Disables the use of typedef names in diagnostics

--no_unaligned_access Avoids unaligned accesses

--no_unroll Disables loop unrolling

--no_warnings Disables all warnings

--no_wrap_diagnostics Disables wrapping of diagnostic messages

-O Sets the optimization level

-o Sets the object filename

--only_stdout Uses standard output only

--output Sets the object filename

--predef_macros Lists the predefined symbols.

Command line option Description

Table 23: Compiler options summary (Continued)
DARM-2

Part 2. Reference information 153

154

Descriptions of options
Descriptions of options
The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Options to specify specific command line
options, the IDE does not perform an instant check for consistency problems like
conflicting options, duplication of options, or use of irrelevant options.

--preinclude Includes an include file before reading the source
file

--preprocess Generates preprocessor output

--public_equ Defines a global named assembler label

-r Generates debug information

--remarks Enables remarks

--require_prototypes Verifies that functions are declared before they are
defined

--section Changes a section name

--separate_cluster_for_

initialized_variables

Separates initialized and non-initialized variables

--silent Sets the silent operation

--strict_ansi Checks for strict compliance with ISO/ANSI C

--thumb Sets default function mode to Thumb

--warnings_affect_exit_code Warnings affects exit code

--warnings_are_errors Warnings are treated as errors

Command line option Description

Table 23: Compiler options summary (Continued)
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
--aapcs

Syntax --aapcs={std|vfp}

Parameters

Description Use this option to specify the calling convention.

Project>Options>C/C++ Compiler>Extra Options.

--aeabi

Syntax --aeabi

Description Use this option to generate AEABI compliant object code.

See also AEABI compliance, page 118 and --no_guard_calls, page 170.

Project>Options>C/C++ Compiler>Extra Options.

--arm

Syntax --arm

Description Use this option to set default function mode to ARM. This setting must be the same for
all files included in a program, unless they are interworking.

Note: This option has the same effect as the --cpu_mode=arm option.

See also --interwork, page 166 and __interwork, page 226.

Project>Options>General Options>Target>Processor mode>Arm

std Processor registers are used for floating-point parameters and
return values in function calls according to standard AAPCS. std is
the default when the --aeabi compiler option is used or the
software FPU is selected. Note that this calling convention enables
guard calls.

vfp VFP registers are used for floating-point parameters and return
values. The generated code is not compatible with AEABI code.
vfp is the default when a VFP is selected and --aeabi is not
used.
DARM-2

Part 2. Reference information 155

156

Descriptions of options
--char_is_signed

Syntax --char_is_signed

Description By default, the compiler interprets the char type as unsigned. Use this option to make
the compiler interpret the char type as signed instead. This can be useful when you, for
example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option. If you
use this option, you may get type mismatch warnings from the linker, because the library
uses unsigned char.

Project>Options>C/C++ Compiler>Language>Plain ‘char’ is

--cpu

Syntax --cpu=core

Parameters

Description Use this option to select the processor variant for which the code is to be generated. The
default is ARM7TDMI. The following cores and processor macrocells are recognized:

● ARM7TDMI
● ARM7TDMI-S
● ARM710T
● ARM720T
● ARM740T
● ARM9TDMI
● ARM920T
● ARM922T
● ARM940T
● ARM9E
● ARM9E-S
● ARM926EJ-S
● ARM946E-S
● ARM966E-S
● ARM968E-S
● ARM10E
● ARM1020E
● ARM1022E
● ARM1026EJ-S
● ARM1136J
● ARM1136J-S

core Specifies a specific processor variant
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
● ARM1136JF
● ARM1136JF-S
● ARM1176J
● ARM1176J-S
● ARM1176JF
● ARM1176JF-S
● Cortex-M1
● Cortex-Ms1
● Cortex-M3
● XScale

● XScale-IR7.

See also Processor variant, page 20.

Project>Options>General Options>Target>Processor configuration

--cpu_mode

Syntax --cpu_mode={arm|a|thumb|t}

Parameters

Description Use this option to select the default mode for functions. This setting must be the same
for all files included in a program, unless they are interworking.

See also --interwork, page 166 and __interwork, page 226.

Project>Options>General Options>Target>Processor mode

-D

Syntax -D symbol[=value]

Parameters

Description Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

arm, a (default) Selects the arm mode as the default mode for functions

thumb, t Selects the thumb mode as the default mode for functions

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol
DARM-2

Part 2. Reference information 157

158

Descriptions of options
The option -D has the same effect as a #define statement at the top of the source file:

-Dsymbol

is equivalent to:

#define symbol 1

In order to get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFOO=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--debug, -r

Syntax --debug
-r

Description Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies

Syntax --dependencies[=[i|m]] {filename|directory}

Parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 150.

Description Use this option to make the compiler list all source and header files opened by the
compilation into a file with the default filename extension i.

i (default) Lists only the names of files

m Lists in makefile style
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
Example If --dependencies or --dependencies=i is used, the name of each opened source
file, including the full path, if available, is output on a separate line. For example:

 c:\iar\product\include\stdio.h
 d:\myproject\include\foo.h

If --dependencies=m is used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of a source file. For example:

 foo.o: c:\iar\product\include\stdio.h
 foo.o: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

1 Set up the rule for compiling files to be something like:

 %.o : %.c
 $(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension .d).

2 Include all the dependency files in the makefile using, for example:

 -include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the .d files do not yet exist.

This option is not available in the IDE.

--diag_error

Syntax --diag_error=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

tag The number of a diagnostic message, for example the message
number Pe117
DARM-2

Part 2. Reference information 159

160

Descriptions of options
--diag_remark

Syntax --diag_remark=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress

Syntax --diag_suppress=tag[,tag,...]

Parameters

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning

Syntax --diag_warning=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler

tag The number of a diagnostic message, for example the message
number Pe177

tag The number of a diagnostic message, for example the message
number Pe117

tag The number of a diagnostic message, for example the message
number Pe826
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

Description Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IDE.

--discard_unused_publics

Syntax --discard_unused_publics

Description Use this option to discard unused public functions and variables from the compilation
unit. This enhances interprocedural optimizations such as inlining, cross call, and cross
jump by limiting their scope to public functions and variables that are actually used.

This option is only useful when all source files are compiled as one unit, which means
that the --mfc compiler option is used.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output.

See also --mfc, page 168 and Multi-file compilation units, page 128.

Project>Options>C/C++ Compiler>Discard unused publics
DARM-2

Part 2. Reference information 161

162

Descriptions of options
 --dlib_config

Syntax --dlib_config filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 150.

Description Each runtime library has a corresponding library configuration file. Use this option to
specify the library configuration file for the compiler. Make sure that you specify a
configuration file that corresponds to the library you are using.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files and the library configuration files in the directory
arm\lib. For examples and a list of prebuilt runtime libraries, see Using a prebuilt
library, page 62.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 69.

To set related options, choose:

Project>Options>General Options>Library Configuration

-e

Syntax -e

Description In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must enable them by using this option.

Note: The -e option and the --strict_ansi option cannot be used at the same time.

See also The chapter Compiler extensions.

Project>Options>C/C++ Compiler>Language>Allow IAR extensions

Note: By default, this option is enabled in the IDE.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
--ec++

Syntax --ec++

Description In the compiler, the default language is C. If you use Embedded C++, you must use this
option to set the language the compiler uses to Embedded C++.

Project>Options>C/C++ Compiler>Language>Embedded C++

--eec++

Syntax --eec++

Description In the compiler, the default language is C. If you take advantage of Extended Embedded
C++ features like namespaces or the standard template library in your source code, you
must use this option to set the language the compiler uses to Extended Embedded C++.

See also Extended Embedded C++, page 104.

Project>Options>C/C++ Compiler>Language>Extended Embedded C++

--enable_multibytes

Syntax --enable_multibytes

Description By default, multibyte characters cannot be used in C or C++ source code. Use this option
to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>C/C++ Compiler>Language>Enable multibyte support

--endian

Syntax --endian={big|b|little|l}

Parameters
big, b Specifies big endian as the default byte order

little, l (default) Specifies little endian as the default byte order
DARM-2

Part 2. Reference information 163

164

Descriptions of options
Description Use this option to specify the byte order of the generated code and data. By default, the
compiler generates code in little-endian byte order.

See also Byte order, page 21, Byte order, page 200, --BE8, page 183, and --BE32, page 183.

Project>Options>General Options>Target>Endian mode

--enum_is_int

Syntax --enum_is_int

Description Use this option to force the size of all enumeration types to be at least 4 bytes.

Note: This option will not consider the fact that an enum type can be larger than an
integer type.

See also The enum type, page 201.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--error_limit

Syntax --error_limit=n

Parameters

Description Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

-f

Syntax -f filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 208.

n The number of errors before the compiler stops the compilation. n
must be a positive integer; 0 indicates no limit.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
Descriptions Use this option to make the compiler read command line options from the named file,
with the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--fpu

Syntax --fpu={VFPv1|VFPv2|VFP9-S|none}

Parameters

Description Use this option to generate code that carries out floating-point operations using a Vector
Floating Point (VFP) coprocessor. By selecting a VFP coprocessor, you will override the
use of the software floating-point library for all supported floating-point operations.

See also VFP and floating-point arithmetic, page 21.

Project>Options>General Options>Target>FPU

--header_context

Syntax --header_context

Description Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic

VFPv1 For a vector floating-point unit conforming to the architecture
VFPv1.

VFPv2 For a system that implements a VFP unit conforming to the
architecture VFPv2.

VFP9-S VFP9-S is an implementation of the VFPv2 architecture that can be
used with the ARM9E family of CPU cores. Selecting the VFP9-S
coprocessor is therefore identical to selecting the VFPv2
architecture.

none (default) The software floating-point library is used.
DARM-2

Part 2. Reference information 165

166

Descriptions of options
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IDE.

-I

Syntax -I path

Parameters

Description Use this option to specify the search paths for #include files. This option may be used
more than once on the command line.

See also Include file search procedure, page 143.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

--interwork

Syntax --interwork

Description Use this option to generate interworking code.

In code compiled with this option, functions will by default be of the type interwork. It
will be possible to mix files compiled as arm and thumb (using the --cpu_mode option)
as long as they are all compiled with the --interwork option.

Note: Source code compiled for an ARM architecture v5 or higher, or AEABI
compliance is interworking by default.

Project>Options>General Options>Target>Generate interwork code

-l

Syntax -l[a|A|b|B|c|C|D][N][H] {filename|directory}

Parameters

path The search path for #include files

a Assembler list file

A Assembler list file with C or C++ source as comments
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
* This makes the list file less useful as input to the assembler, but more useful for reading by a
human.

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 150.

Description Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

--legacy

Syntax --legacy={mode}

Parameters

b Basic assembler list file. This file has the same contents as a list file
produced with -la, except that no extra compiler-generated
information (runtime model attributes, call frame information, frame
size information) is included *

B Basic assembler list file. This file has the same contents as a list file
produced with -lA, except that no extra compiler generated
information (runtime model attributes, call frame information, frame
size information) is included *

c C or C++ list file

C (default) C or C++ list file with assembler source as comments

D C or C++ list file with assembler source as comments, but without
instruction offsets and hexadecimal byte values

N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are included

a Assembler list file

RVCT3.0 Generates object code linkable with the linker in RVCT3.0. Use this
mode together with the --aeabi option to export code that should
be linked with the linker in RVCT3.0.
DARM-2

Part 2. Reference information 167

168

Descriptions of options
Description Use this option to generate code compatible with older tool chains.

Project>Options>C/C++ Compiler>Extra Options.

--mfc

Syntax --mfc

Description Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which makes
interprocedural optimizations such as inlining, cross call, and cross jump possible.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

Example iccarm myfile1.c myfile2.c myfile3.c --mfc

See also --discard_unused_publics, page 161, -o, --output, page 174, and Multi-file compilation
units, page 128.

Project>Options>C/C++ Compiler>Multi-file compilation

--migration_preprocessor_extensions

Syntax --migration_preprocessor_extensions

Description If you need to migrate code from an earlier IAR Systems C or C/C++ compiler, you may
want to use this option. Use this option to use the following in preprocessor expressions:

● Floating-point expressions

● Basic type names and sizeof

● All symbol names (including typedefs and variables).

Note: If you use this option, not only will the compiler accept code that does not
conform to the ISO/ANSI C standard, but it will also reject some code that does conform
to the standard.

Important! Do not depend on these extensions in newly written code, because support
for them may be removed in future compiler versions.

Project>Options>C/C++ Compiler>Language>Enable IAR migration
preprocessor extensions
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
--no_clustering

Syntax --no_clustering

Description Use this option to disable static clustering optimizations. When static clustering is
enabled, static and global variables are arranged so that variables that are accessed in the
same function are stored close to each other. This makes it possible for the compiler to
use the same base pointer for several accesses. These optimizations, which are
performed at optimization levels Medium and High, normally reduce code size and
execution time.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Static clustering

--no_code_motion

Syntax --no_code_motion

Description Use this option to disable code motion optimizations. These optimizations, which are
performed at the optimization levels Medium and High, normally reduce code size and
execution time. However, the resulting code may be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_cse

Syntax --no_cse

Description Use this option to disable common subexpression elimination. At the optimization
levels Medium and High, the compiler avoids calculating the same expression more than
once. This optimization normally reduces both code size and execution time. However,
the resulting code may be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination
DARM-2

Part 2. Reference information 169

170

Descriptions of options
--no_fragments

Syntax --no_fragments

Description Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and thus further minimize
the size of the executable image. The effect of using this option in the compiler is smaller
object size.

See also Keeping symbols and sections, page 85.

To set this option, use Project>Options>C/C++ Compiler>Extra Options

--no_guard_calls

Syntax --no_guard_calls

Description If the --aeabi compiler option is used, the compiler produces extra library calls that
guard the initialization of static variables in file scope. These library calls are only
meaningful in an OS environment where there is a need to make sure that these variables
are not initialized by another concurrent process at the same time.

Use this option to remove these library calls.

Note: For AEABI compliant code, this option must not be used.

See also --aeabi, page 155.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_inline

Syntax --no_inline

Description Use this option to disable function inlining. Function inlining means that a simple
function, whose definition is known at compile time, is integrated into the body of its
caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level High, normally reduces
execution time and increases code size. The resulting code may also be difficult to
debug.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed than for size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_path_in_file_macros

Syntax --no_path_in_file_macros

Description Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

See also Descriptions of predefined preprocessor symbols, page 266.

This option is not available in the IDE.

--no_scheduling

Syntax --no_scheduling

Description Use this option to disable the instruction scheduler. The compiler features an instruction
scheduler to increase the performance of the generated code. To achieve that goal, the
scheduler rearranges the instructions to minimize the number of pipeline stalls
emanating from resource conflicts within the microprocessor. This optimization, which
is performed at optimization level High, normally reduce execution time. However, the
resulting code may be difficult to debug.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Instruction scheduling

--no_tbaa

Syntax --no_tbaa

Description Use this option to disable type-based alias analysis. When this options is not used, the
compiler is free to assume that objects are only accessed through the declared type or
through unsigned char.
DARM-2

Part 2. Reference information 171

172

Descriptions of options
See also Type-based alias analysis, page 131.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax --no_typedefs_in_diagnostics

Description Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

Example typedef int (*MyPtr)(char const *);
MyPtr p = "foo";

will give an error message like the following:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

If the --no_typedefs_in_diagnostics option is used, the error message will be like
this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "int (*)(char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unaligned_access

Syntax --no_unaligned_access

Description Use this option to make the compiler avoid unaligned accesses. Data accesses are
usually performed aligned for improved performance. However, some accesses, most
notably when reading from or writing to packed data structures, may be unaligned.
When using this option, all such accesses will be performed using a smaller data size to
avoid any unaligned accesses. This option is only useful for ARMv6 architectures and
higher.

See also --interwork, page 166 and __interwork, page 226.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
--no_unroll

Syntax --no_unroll

Description Use this option to disable loop unrolling. The code body of a small loop, whose number
of iterations can be determined at compile time, is duplicated to reduce the loop
overhead.

For small loops, the overhead required to perform the looping can be large compared
with the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. The unrolled body also opens up for other optimization opportunities.

This optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_warnings

Syntax --no_warnings

Description By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.
DARM-2

Part 2. Reference information 173

174

Descriptions of options
-O

Syntax -O[n|l|m|h|hs|hz]

Parameters

*The most important difference between None and Low is that at None, all non-static variables
will live during their entire scope.

Description Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -O is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

See also Controlling compiler optimizations, page 128.

Project>Options>C/C++ Compiler>Optimizations

-o, --output

Syntax -o {filename|directory}
--output {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

Description By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension o. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IDE.

n None* (Best debug support)

l (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
--only_stdout

Syntax --only_stdout

Description Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

Description By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension o. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IDE.

--predef_macros

Syntax --predef_macros {filename|directory}

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 150.

Description Use this option to list the predefined symbols. When using this option, make sure to also
use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

This option is not available in the IDE.
DARM-2

Part 2. Reference information 175

176

Descriptions of options
--preinclude

Syntax --preinclude includefile

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 150.

Description Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess

Syntax --preprocess[=[c][n][l]] {filename|directory}

Parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 150.

Description Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ

Syntax --public_equ symbol[=value]

Parameters

c Preserve comments

n Preprocess only

l Generate #line directives

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
Description This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option may be used more
than once on the command line.

This option is not available in the IDE.

-r, --debug

Syntax -r
--debug

Description Use the -r or the --debug option to make the compiler include information in the
object modules required by the IAR C-SPY Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--remarks

Syntax --remarks

Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

See also Severity levels, page 204.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Syntax --require_prototypes

Description Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

● A function definition of a public function with no previous prototype declaration
DARM-2

Part 2. Reference information 177

178

Descriptions of options
● An indirect function call through a function pointer with a type that does not include
a prototype.

Note: This option only applies to functions in the C standard library.

Project>Options>C/C++ Compiler>Language>Require prototypes

--section

Syntax --section OldName=NewName

Description The compiler places functions and data objects into named sections which are referred
to by the IAR ILINK Linker. Use this option to change the name of the section OldName
to NewName.

This is useful if you want to place your code or data in different address ranges and you
find the @ notation, alternatively the #pragma location directive, insufficient. Note
that any changes to the section names require corresponding modifications in the linker
configuration file.

Example To place functions in the section MyText, use:

--section .text=MyText

See also For information about the different methods for controlling placement of data and code,
see Controlling data and function placement in memory, page 124. For descriptions of
the available memory attributes, see Summary of extended keywords, page 224.

Project>Options>C/C++ Compiler>Output>Code section name

--separate_cluster_for_initialized_variables

Syntax --separate_cluster_for_initialized_variables

Description Use this option to separate initialized and non-initialized variables when using variable
clustering. This might reduce the number of bytes in the ROM area which are needed
for data initialization, but it might lead to larger code.

This option can be useful if you want to have your own data initialization routine, but
want the IAR tools to arrange for the zero-initialized variables.

See also Manual initialization, page 52 and Initialize directive, page 287.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler options
--silent

Syntax --silent

Description By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--strict_ansi

Syntax --strict_ansi

Description By default, the compiler accepts a relaxed superset of ISO/ANSI C/C++, see Minor
language extensions, page 217. Use this option to ensure that the program conforms to
the ISO/ANSI C/C++ standard.

Note: The -e option and the --strict_ansi option cannot be used at the same time.

Project>Options>C/C++ Compiler>Language>Language conformances>Strict
ISO/ANSI

--thumb

Syntax --thumb

Description Use this option to set default function mode to Thumb. This setting must be the same for
all files included in a program, unless they are interworking.

Note: This option has the same effect as the --cpu_mode=thumb option.

See also --interwork, page 166 and __interwork, page 226.

Project>Options>General Options>Target>Processor mode>Arm
DARM-2

Part 2. Reference information 179

180

Descriptions of options
--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

See also diag_warning, page 296.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
This chapter gives detailed reference information about each linker option.

For general syntax rules, see Options syntax, page 149.

Summary of linker options
The following table summarizes the linker options:

Command line option Description

--BE8 Uses the big-endian format BE8

--BE32 Uses the big-endian format BE32

--config Specifies the linker configuration file to be used by
the linker

--config_def Defines symbols for the configuration file

--cpp_init_routine Specifies a user-defined C++ dynamic initialization
routine

--cpu Specifies a processor variant

--define_symbol Defines symbols that can be used by the application

--diag_error Treats these message tags as errors

--diag_remark Treats these message tags as remarks

--diag_suppress Suppresses these diagnostic messages

--diag_warning Treats these message tags as warnings

--diagnostics_tables Lists all diagnostic messages

--entry Treats the symbol as a root symbol and as the start
of the application

--error_limit Specifies the allowed number of errors before
compilation stops

--export_builtin_config Produces an icf file for the default configuration

-f Extends the command line

--force_output Produces an output file even if there are errors

--image_input Puts an image file in a section

--keep Forces a symbol to be included in the application

--log Enables log output for selected topics

Table 24: Linker options summary
DARM-2

Part 2. Reference information 181

182

Summary of linker options
--log_file Directs the log to a file

--mangled_names_in_messages Adds mangled names in messages

--map Produces a map file

--misrac Enables error messages specific to MISRA-C. See
the IAR Embedded Workbench® MISRA C Reference
Guide.

--misrac_verbose Enables verbose logging of MISRA C checking. See
the IAR Embedded Workbench® MISRA C Reference
Guide.

--no_fragments Disables section fragment handling

--no_library_search Disables automatic runtime library search

--no_locals Removes local symbols from the ELF executable
image.

--no_remove Disables removal of unused sections

--no_veneers Disables generation of veneers

--no_warnings Disables generation of warnings

--no_wrap_diagnostics Does not wrap long lines in diagnostic messages

-o Sets the object filename

--only_stdout Uses standard output only

--ose_load_module Produces an OSE load module image

--output Sets the object filename

--pi_veneers Generates position independent veneers.

--place_holder Reserve a place in ROM to be filled by some other
tool, for example a checksum calculated by
ichecksum.

--redirect Redirects a reference to a symbol to another
symbol

--remarks Enables remarks

--semihosting Links with debug interface

--silent Sets silent operation

--strip Removes debug information from the executable
image

--warnings_are_errors Warnings are treated as errors

--warnings_affect_exit_code Warnings affects exit code

Command line option Description

Table 24: Linker options summary (Continued)
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
Descriptions of options
The following section gives detailed reference information about each compiler and
linker option.

Note that if you use the options page Extra Options to specify specific command line
options, the IDE does not perform an instant check for consistency problems like
conflicting options, duplication of options, or use of irrelevant options.

--BE8

Syntax --BE8

Description Use this option to specify the Byte Invariant Addressing mode.

This means that the linker reverses the byte order of the instructions, resulting in
little-endian code and big-endian data. This is the default byte addressing mode for
ARMv6 big-endian images. This is the only mode available for ARM v6M and ARM
v7 with big-endian images.

Byte Invariant Addressing mode is only available on ARM processors that support
ARMv6, ARM v6M, and ARM v7.

See also Byte order, page 21, Byte order, page 200, --BE32, page 183, and --endian, page 163.

Project>Options>General Options>Target>Endian mode

--BE32

Syntax --BE32

Description Use this option to specify the legacy big-endian mode.

This produces big-endian code and data. This is the only byte-addressing mode for all
big-endian images prior to ARMv6. This mode is also available for ARM v6 with
big-endian, but not for ARM v6M or ARM v7.

See also Byte order, page 21, Byte order, page 200, --BE8, page 183, and --endian, page 163.

Project>Options>General Options>Target>Endian mode
DARM-2

Part 2. Reference information 183

184

Descriptions of options
--config

Syntax --config filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 150.

Description Use this option to specify the configuration file to be used by the linker (the default
filename extension is icf). If no configuration file is specified, a default configuration
is used. This option can only be used once on the command line.

See also The chapter The linker configuration file.

Project>Options>Linker>Config>Linker configuration file

--config_def

Syntax --config_def symbol[=constant_value]

Parameters

Description Use this option to define a constant configuration symbol to be used in the configuration
file. This option has the same effect as the define symbol directive in the linker
configuration file. This option can be used more that once on the command line.

See also --define_symbol, page 185 and Interaction between ILINK and the application, page 54.

Project>Options>Linker>Config>Defined symbols for configuration file

--cpp_init_routine

Syntax --cpp_init_routine routine

Parameters

Description When using the IAR C/C++ compiler and the standard library, C++ dynamic
initialization is handled automatically. In other cases you might need to use this option.

symbol
The name of the symbol to be used in the configuration file. By

default, the value 0 (zero) is used.

const_value The constant value of the configuration symbol.

routine A user-defined C++ dynamic initialization routine.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
If any sections with the section type INIT_ARRAY or PREINIT_ARRAY are included in
your application, the C++ dynamic initialization routine is considered to be needed. By
default, this routine is named __iar_cstart_call_ctors and is called by the startup
code in the standard library. Use this option if you are not using the standard library and
require another routine to handle these section types.

To set this option, use Project>Options>Linker>Extra Options.

--cpu

Syntax --cpu=core

Parameters

Description Use this option to select the processor variant for which the code is to be generated. The
default is ARM7TDMI.

See also --cpu, page 156 for a list of recognized cores and processor macrocells.

Project>Options>General Options>Target>Processor configuration

--define_symbol

Syntax --define_symbol symbol[=constant_value]

Parameters

Description Use this option to define a constant symbol that can be used by your application. If no
value is specified, 0 is used. This option can be used more than once on the command
line. Note that this option is different from the define symbol directive.

See also --config_def, page 184 and Interaction between ILINK and the application, page 54.

Project>Options>Linker>#define>Defined symbols

core Specifies a specific processor variant

symbol
The name of the constant symbol that can be used by the

application. By default, the value 0 (zero) is used.

constant_value The constant value of the symbol
DARM-2

Part 2. Reference information 185

186

Descriptions of options
--diag_error

Syntax --diag_error=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that a violation of the linking
rules of such severity that an executable image will not be generated. The exit code will
be non-zero. This option may be used more than once on the command line.

Project>Options>Linker>Diagnostics>Treat these as errors

--diag_remark

Syntax --diag_remark=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a construction that may cause
strange behavior in the executable image. This option may be used more than once on
the command line.

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>Options>Linker>Diagnostics>Treat these as remarks

--diag_suppress

Syntax --diag_suppress=tag[,tag,...]

Parameters

tag The number of a diagnostic message, for example the message
number Pe117

tag The number of a diagnostic message, for example the message
number Pe177

tag The number of a diagnostic message, for example the message
number Pe117
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>Linker>Diagnostics>Suppress these diagnostics

--diag_warning

Syntax --diag_warning=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the linker to
stop before linking is completed. This option may be used more than once on the
command line.

Project>Options>Linker>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

Description Use this option to list all possible diagnostic messages in a named file.

This option cannot be given together with other options.

This option is not available in the IDE.

--entry

Syntax --entry symbol

Parameters

tag The number of a diagnostic message, for example the message
number Pe826

symbol The name of the symbol to be treated as a root symbol and start
label
DARM-2

Part 2. Reference information 187

188

Descriptions of options
Description Use this option to make a symbol be treated as a root symbol and the start label of the
application. This is useful for loaders. If this option is not used, the default start symbol
is __iar_program_start. A root symbol is kept whether or not it is referenced from
the rest of the application, provided its module is included. A module in an object file is
always included and a module part of a library is only included if needed.

Project>Options>Linker>Library>Override default program entry

--error_limit

Syntax --error_limit=n

Parameters

Description Use the --error_limit option to specify the number of errors allowed before the
linker stops the linking. By default, 100 errors are allowed.

This option is not available in the IDE.

--export_builtin_config

Syntax --export_builtin_config filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 150.

Description Exports the configuration used by default to a file.

This option is not available in the IDE.

-f

Syntax -f filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 208.

n The number of errors before the linker stops linking. n must be a
positive integer; 0 indicates no limit.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
Descriptions Use this option to make the linker read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>Linker>Extra Options.

--force_output

Syntax --force_output

Description Use this option to produce an output executable image regardless of any linking errors.

To set this option, use Project>Options>Linker>Extra Options

--image_input

Syntax --image_input filename [symbol,[section[,alignment]]]

Parameters

Description Use this option to link pure binary files in addition to the ordinary input files. The file’s
entire contents are placed in the section, which means it can only contain pure binary
data.

The section where the contents of the filename file are placed, is only included if the
symbol symbol is required by your application. Use the --keep option if you want to
force a reference to the section.

Example --image_input bootstrap.abs,Bootstrap,CSTARTUPCODE,4

filename The pure binary file containing the raw image you want to link

symbol The symbol which the binary data can be referenced with.

section The section where the binary data will be placed in; default is
.text.

alignment The alignment of the section; default is 1.
DARM-2

Part 2. Reference information 189

190

Descriptions of options
The contents of the pure binary file bootstrap.abs are placed in the section
CSTARTUPCODE. The section where the contents are placed will be 4-byte aligned and
will only be included if your application (or the command line option --keep) includes
a reference to the symbol Bootstrap.

See also --keep, page 190.

Project>Options>Linker>Config>Raw binary image

--keep

Syntax --keep symbol

Parameters

Description Normally, the linker keeps a symbol only if it is needed by your application. Use this
option to make a symbol always be included in the final application.

Project>Options>Linker>Input>Keep symbols

--log

Syntax --log topic,topic,...

Parameters

Description Use this option to make the linker log information to stdout. The log information can
be useful for understanding why an executable image became the way it is.

See also --log_file, page 191.

Project>Options>Linker>List>Generate log

symbol The name of the symbol to be treated as a root symbol

initialization Log initialization decisions

modules Log module selections

sections Log section selections
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
--log_file

Syntax --log_file filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 150.

Description Use this option to direct the log output to the specified file.

See also --log, page 190.

Project>Options>Linker>List>Generate log

--mangled_names_in_messages

Syntax --mangled_names_in_messages

Descriptions Use this option to produce mangled names as well as unmangled names for C/C++
symbols in messages. Mangling is a technique used for mapping a complex C name or
a C++ name (for example, for overloading) into a simple name. For example, void
h(int, char) becomes _Z1hic.

This option is not available in the IDE.

--map

Syntax --map {filename|directory}

Description Use this option to produce a linker memory map file. The map file has the default
filename extension map. The map file contains the following:

● Linking summary in the map file header which lists the version of the linker, the
current date and time, and the command line that was used.

● Runtime attribute summary which lists AEABI attributes and IAR-specific runtime
attributes.

● Placement summary which lists each section/block in address order, sorted by
placement directives.

● Module summary which lists contributions from each module to the image, sorted
by directory and library.

● Entry list which lists all public and some local symbols in alphabetical order,
indicating which module they came from.
DARM-2

Part 2. Reference information 191

192

Descriptions of options
● Some of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy will be retained. For example,
in some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

 This option can only be used once on the command line.

Project>Options>Linker>List>Generate linker map file

--no_fragments

Syntax --no_fragments

Description Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and thus further minimize
the size of the executable image.

See also Keeping symbols and sections, page 85.

To set this option, use Project>Options>Linker>Extra Options

--no_library_search

Syntax --no_library_search

Description Use this option to disable the automatic runtime library search. This option turns off the
automatic inclusion of the correct standard libraries. This is useful, for example, if the
application needs a user-built standard library, etc.

Project>Options>Linker>Library>Automatic runtime library selection
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
--no_locals

Syntax --no_locals

Description Use this option to remove local symbols from the ELF executable image.

Note: This option does not remove any local symbols from the DWARF information
in the executable image.

Project>Options>Linker>Output

--no_remove

Syntax --no_remove

Description When this option is used, unused sections are not removed. In other words, each module
that is included in the executable image contains all its original sections.

See also Keeping symbols and sections, page 49.

To set this option, use Project>Options>Linker>Extra Options

--no_veneers

Syntax --no_veneers

Description Use this option to disable the insertion of veneers even though the executable image
needs it. In this case, the linker will generate a relocation error for each reference that
needs a veneer.

See also Veneers, page 55.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_warnings

Syntax --no_warnings

Description By default, the linker issues warning messages. Use this option to disable all warning
messages.
DARM-2

Part 2. Reference information 193

194

Descriptions of options
This option is not available in the IDE.

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

-o, --output

Syntax -o {filename|directory}
--output {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

Description By default, the object executable image produced by the linker is located in a file with
the name a.out. Use this option to explicitly specify a different output filename, which
by default will have the filename extension out.

Project>Options>Linker>Output>Output file

--only_stdout

Syntax --only_stdout

Description Use this option to make the linker use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
--ose_load_module

Syntax --ose_load_module

Description By default, the linker generates a ROMable executable image. Use this option to
generate an executable image in the OSE load module image format instead.

Project>Options>Linker>Output

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

Description By default, the object executable image produced by the linker is located in a file with
the name a.out. Use this option to explicitly specify a different output filename, which
by default will have the filename extension out.

Project>Options>Linker>Output>Output file

--pi_veneers

Syntax --pi_veneers

Description Use this option to make the linker generate position-independent veneers. Note that this
type of veneers is bigger and slower than normal veneers.

See also Veneers, page 55.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

 --place_holder

Syntax --place_holder symbol[,size[,section[,alignment]]]

Parameters
symbol The name of the symbol to create
DARM-2

Part 2. Reference information 195

196

Descriptions of options
Description Use this option to reserve a place in ROM to be filled by some other tool, for example a
checksum calculated by ichecksum. Each use of this linker option results in a section
with the specified name, size, and alignment. The symbol can be used by your
application to refer to the section.

Note: Like any other section, sections created by the --place_holder option will
only be included in your application if the section appears to be needed. The --keep
linker option, or the keep linker directive can be used for forcing such section to be
included.

See also IAR utilities, page 303.

To set this option, use Project>Options>Linker>Extra Options

--redirect

Syntax --redirect from_symbol=to_symbol

Parameters

Description Use this option to change a reference from one symbol to another symbol.

To set this option, use Project>Options>Linker>Extra Options

--remarks

Syntax --remarks

Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
linker does not generate remarks. Use this option to make the linker generate remarks.

See also Severity levels, page 204.

size Size in ROM; by default 4 bytes

section Section name to use; by default .text

alignment Alignment of section; by default 1

from_symbol The name of the source symbol

to_symbol The name of the destination symbol
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Linker options
Project>Options>Linker>Diagnostics>Enable remarks

--semihosting

Syntax --semihosting[=iar_breakpoint]

Parameters

Description Use this option to include the debug interface—breakpoint mechanism—in the output
image. If no parameter is specified, the SWI/SVC mechanism is included for
ARM7/9/11, and the BKPT mechanism is included for Cortex-M.

See also Low-level interface for debug support, page 62.

Project>Options>General Options>Library Configuration>Semihosted

--silent

Syntax --silent

Description By default, the linker issues introductory messages and a final statistics report. Use this
option to make the linker operate without sending these messages to the standard output
stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--strip

Syntax --strip

Description By default, the linker retains the debug information from the input object files in the
output executable image. Use this option to remove that information.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

iar_breakpoint The IAR-specific mechanism can be used when debugging
applications that use SWI/SVC extensively.
DARM-2

Part 2. Reference information 197

198

Descriptions of options
--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the linker treat all warnings as errors. If the linker encounters
an error, no executable image is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning directive will also be treated as errors when
--warnings_are_errors is used.

See also --diag_warning, page 244 and diag_warning, page 296.

Project>Options>Linker>Diagnostics>Treat all warnings as errors
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Data representation
This chapter describes the data types, pointers, and structure types supported
by the compiler.

See the chapter Efficient coding for embedded applications for information about
which data types and pointers provide the most efficient code for your
application.

Alignment
Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte long integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To decrease the alignment requirements on the structure and its
members, use #pragma pack or the __packed data type attribute.

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements.

Note that with the #pragma data_alignment directive you can increase the
alignment demands on specific variables.

ALIGNMENT ON THE ARM CORE

The alignment of a data object controls how it can be stored in memory. The reason for
using alignment is that the ARM core can access 4-byte objects more efficiently only
when the object is stored at an address divisible by 4.

Objects with alignment 4 must be stored at an address divisible by 4, while objects with
alignment 2 must be stored at addresses divisible by 2.
DARM-2

Part 2. Reference information 199

200

Byte order
The compiler ensures this by assigning an alignment to every data type, ensuring that
the ARM core will be able to read the data.

Byte order
The ARM core stores data in either little-endian or big-endian byte order. To specify the
byte order, use the --endian compiler option; see --endian, page 163.

In the little-endian byte order, which is default, the least significant byte is stored at the
lowest address in memory. The most significant byte is stored at the highest address.

In the big-endian byte order, the most significant byte is stored at the lowest address in
memory. The least significant byte is stored at the highest address. If you use the
big-endian byte order it may be necessary to use the #pragma bitfields=reversed
directive to be compatible with code for other compilers and the I/O register definitions
of some derivatives; see bitfields, page 234.

Note: There are two variants of the big-endian mode, BE8 and BE32, which you
specify at link time. In BE8 data is big-endian and code is little-endian. In BE32 both
data and code are big-endian. In architectures before v6, the BE32 endian mode is used,
and after v6 the BE8 mode is used. In the v6 (ARM11) architecture, both big-endian
modes are supported.

Basic data types

The compiler supports both all ISO/ANSI C basic data types and some additional types.

INTEGER TYPES

The following table gives the size and range of each integer data type:

Data type Size Range Alignment

bool 8 bits 0 to 1 1

char 8 bits 0 to 255 1

signed char 8 bits -128 to 127 1

unsigned char 8 bits 0 to 255 1

signed short 16 bits -32768 to 32767 2

unsigned short 16 bits 0 to 65535 2

signed int 32 bits -231 to 231-1 4

unsigned int 32 bits 0 to 232-1 4

Table 25: Integer types
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Data representation
Signed variables are represented using the two’s complement form.

Bool

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

The enum type

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type long, unsigned long, long long, or unsigned
long long.

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example,

/* Disables usage of the char type for enum */
enum Cards{Spade1, Spade2,
 DontUseChar=257};

Read also about the command line option --enum_is_int, page 164.

The char type

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

The wchar_t type

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

signed long 32 bits -231 to 231-1 2

unsigned long 32 bits 0 to 232-1 2

signed long long 64 bits -263 to 263-1 4

unsigned long long 64 bits 0 to 264-1 4

Data type Size Range Alignment

Table 25: Integer types (Continued)
DARM-2

Part 2. Reference information 201

202

Basic data types
The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef.h from the
runtime library.

Bitfields

In ISO/ANSI C, int, signed int, and unsigned int can be used as the base type for
integer bitfields. It is implementation defined whether the type specified by int is the
same as signed int or unsigned int. In the IAR C/C++ Compiler for ARM, bitfields
specified as int are treated as unsigned int. Furthermore, any integer type can be
used as the base type when language extensions are enabled. Bitfields in expressions
will have the same data type as the integer base type.

By default, the compiler places bitfield members from the most significant to the least
significant bit in the container type. A bitfield is assigned to the last available container
of its base type which has enough unassigned bits to contain the entire bitfield. This
means that bitfield containers can overlap other structure members as long as the order
of the fields in the structure is preserved, for example in big-endian mode:

struct example
{
 char a;
 short b : 10;
 int c : 6;
};

Here the first declaration creates an unsigned character which is allocated to bits 24
through 31. The second declaration creates a signed short integer member of size 10 bits.
This member is allocated to bits 15 through 6 as it will not fit in the remaining 8 bits of
the first short integer container. The last bitfield member declared is placed in the bits 0
through 5. If seen as a 32-bit value, the structure looks like this in memory:

Figure 14: Layout of bitfield members
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Data representation
By using the directive #pragma bitfields=disjoint_types, the bitfield containers
are forced to be disjoint, or in other words, to not overlap. The layout of the above
example structure would then become:

Figure 15: Layout of bitfield members forced to be disjoint

By using the directive #pragma bitfields=reversed_disjoint_types, the
bitfield members are placed from the least significant bit to the most significant bit in
non-overlapping storage containers.

FLOATING-POINT TYPES

In the IAR C/C++ Compiler for ARM, floating-point values are represented in standard
IEEE 754 format. The sizes for the different floating-point types are:

Exception flags according to the IEEE 754 standard are not supported. The alignment
for the float type is 4, and for the long double type it is 8.

For Cortex-M1, the compiler does not support subnormal numbers. All operations that
should produce subnormal numbers will instead generate zero. For information about
the representation of subnormal numbers for other cores, see Representation of special
floating-point numbers, page 204.

32-bit floating-point format

The representation of a 32-bit floating-point number as an integer is:

The exponent is 8 bits, and the mantissa is 23 bits.

Type Size Range (+/-) Decimals Exponent Mantissa

float 32 bits ±1.18E-38 to ±3.39E+38 7 8 bits 23 bits

double 64 bits ±2.23E-308 to ±1.79E+308 15 11 bits 52 bits

long
double

64 bits ±2.23E-308 to ±1.79E+308 15 11 bits 52 bits

Table 26: Floating-point types

 31 30 23 22 0
S Exponent Mantissa
DARM-2

Part 2. Reference information 203

204

Basic data types
The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

The range of the number is:

±1.18E-38 to ±3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

64-bit floating-point format

The representation of a 64-bit floating-point number as an integer is:

The exponent is 11 bits, and the mantissa is 52 bits.

The value of the number is:

(-1)S * 2(Exponent-1023) * 1.Mantissa

The range of the number is:

±2.23E-308 to ±1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

Representation of special floating-point numbers

The following list describes the representation of special floating-point numbers:

● Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

● Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

● Not a number (NaN) is represented by setting the exponent to the highest positive
value and at least one bit set in the 20 most significant bits of the mantissa.
Remaining bits are zero.

● Subnormal numbers are used for representing values smaller than what can be
represented by normal values. The drawback is that the precision will decrease with
smaller values. The exponent is set to 0 to signify that the number is denormalized,
even though the number is treated as if the exponent would have been 1. Unlike
normal numbers, denormalized numbers do not have an implicit 1 as the most
significant bit (the MSB) of the mantissa. The value of a denormalized number is:

(-1)S * 2(1-BIAS) * 0.Mantissa

 63 62 52 51 0
S Exponent Mantissa
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Data representation
where BIAS is 127 and 1023 for 32-bit and 64-bit floating-point values, respectively.

Pointer types
The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The size of function pointers is always 32 bits and the range is 0x0–0xFFFFFFFF.

When function pointer types are declared, attributes are inserted before the * sign, for
example:

typedef void (__thumb __interwork * IntHandler) (void);

This can be rewritten using #pragma directives:

#pragma type_attribute=__thumb __interwork
typedef void IntHandler_function(void);
typedef IntHandler_function *IntHandler;

DATA POINTERS

There is one data pointer available. Its size is 32 bits and the range is 0x0–0xFFFFFFFF.

CASTING

Casts between pointers have the following characteristics:

● Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

● Casting a value of an unsigned integer type to a pointer of a larger type is performed
by zero extension

● Casting a value of a signed integer type to a pointer of a larger type is performed by
sign extension

● Casting a pointer type to a smaller integer type is performed by truncation

● Casting a pointer type to a larger integer type is performed by zero extension

● Casting a data pointer to a function pointer and vice versa is illegal

● Casting a function pointer to an integer type gives an undefined result

size_t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the IAR C/C++ Compiler for ARM, the size of size_t is 32 bits.
DARM-2

Part 2. Reference information 205

206

Structure types
ptrdiff_t

ptrdiff_t is the type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the IAR C/C++ Compiler for ARM, the size
of ptrdiff_t is 32 bits.

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the IAR C/C++
Compiler for ARM, the size of intptr_t is 32 bits.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types
The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT

The struct and union types have the same alignment as the member with the highest
alignment requirement. In addition, the size of a struct is adjusted to allow arrays of
aligned structure objects.

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

Example

struct First {
char c;
short s;

} s;

The following diagram shows the layout in memory:

Figure 16: Structure layout
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Data representation
The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The __packed data type attribute or the #pragma pack directive is used for relaxing
the alignment requirements of the members of a structure. This changes the layout of the
structure. The members will be placed in the same order as when declared, but there
might be less pad space between members.

Note that accessing an object that is not correctly aligned requires code that is both
larger and slower. If there are many accesses to such structure members, it is usually
better to construct the correct values in a struct that is not packed, and access this
struct instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work.

Example

This example declares a packed structure:

#pragma pack(1)
struct S {

char c;
short s;

};

#pragma pack()

In this example, the structure S has the following memory layout:

Figure 17: Packed structure layout

The following example declares a new non-packed structure, S2, that contains the
structure s declared in the previous example:

struct S2 {
 struct S s;
 long l;
};
DARM-2

Part 2. Reference information 207

208

Type qualifiers
S2 has the following memory layout

Figure 18: Packed structure layout

The structure S will use the memory layout, size, and alignment described in the
previous example. The alignment of the member l is 4, which means that alignment of
the structure S2 will become 4.

For more information, see Alignment of elements in a structure, page 122.

Type qualifiers
According to the ISO/ANSI C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

There are three main reasons for declaring an object volatile:

● Shared access; the object is shared between several tasks in a multitasking
environment

● Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

● Modified access; where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The ISO/ANSI standard defines an abstract machine, which governs the behavior of
accesses to volatile declared objects. In general and in accordance to the abstract
machine, the compiler:

● Considers each read and write access to an object that has been declared volatile
as an access

● The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a = 5; /* A write access */
a += 6; /* First a read then a write access */

● An access to a bitfield is treated as an access to the underlaying type.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Data representation
However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for ARM are described
below.

Rules for accesses

In the IAR C/C++ Compiler for ARM, accesses to volatile declared objects are
subject to the following rules:

● All accesses are preserved

● All accesses are complete, that is, the whole object is accessed

● All accesses are performed in the same order as given in the abstract machine

● All accesses are atomic, that is, they cannot be interrupted.

The compiler adheres to these rules for accesses to all 8-, 16-, and 32-bit scalar types,
except for accesses to unaligned 16- and 32-bit fields in packed structures.

For all other of object types, only the rule that states that all accesses are preserved
applies.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++
In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions
can be made concerning the data representation. This means, for example, that it is not
supported to write assembler code that accesses class members.
DARM-2

Part 2. Reference information 209

210

Data types in C++
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler extensions
This chapter gives a brief overview of the compiler extensions to the
ISO/ANSI C standard. All extensions can also be used for the C++
programming language. More specifically the chapter describes the available C
language extensions.

Compiler extensions overview
The compiler offers the standard features of ISO/ANSI C as well as a wide set of
extensions, ranging from features specifically tailored for efficient programming in the
embedded industry to the relaxation of some minor standards issues.

You can find the extensions available as:

● C/C++ language extensions

For a summary of available language extensions, see C language extensions, page
212. For reference information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

● Pragma directives

The #pragma directive is defined by the ISO/ANSI C standard and is a mechanism
for using vendor-specific extensions in a controlled way to make sure that the source
code is still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For a list of
available pragma directives, see the chapter Pragma directives.

● Preprocessor extensions

The preprocessor of the compiler adheres to the ISO/ANSI standard. In addition, the
compiler also makes a number of preprocessor-related extensions available to you.
For more information, see the chapter The preprocessor.

● Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of
DARM-2

Part 2. Reference information 211

212

C language extensions
instructions. To read more about using intrinsic functions, see Mixing C and
assembler, page 89. For a list of available functions, see the chapter Intrinsic
functions.

● Library functions

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. In addition, the library also provides some
extensions, partly taken from the C99 standard. For more information, see IAR DLIB
Library, page 272.

Note: Any use of these extensions, except for the pragma directives, makes your
application inconsistent with the ISO/ANSI C standard.

ENABLING LANGUAGE EXTENSIONS

In the IDE, language extensions are enabled by default.

For information about how to enable and disable language extensions from the
command line, see the compiler options -e, page 162, and --strict_ansi, page 179.

C language extensions
This section gives a brief overview of the C language extensions available in the
compiler. The compiler provides a wide set of extensions, so to help you to find the
extensions required by your application, the extensions have been grouped according to
their expected usefulness. In short, this means:

● Important language extensions—extensions specifically tailored for efficient
embedded programming, typically to meet memory restrictions

● Useful language extensions—features considered useful and typically taken from
related standards, such as C99 and C++

● Minor language extensions, that is, the relaxation of some minor standards issues
and also some useful but minor syntax extensions.

IMPORTANT LANGUAGE EXTENSIONS

The following language extensions available both in the C and the C++ programming
languages are well suited for embedded systems programming:

● Type attributes and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler extensions
● Placement at an absolute address or in a named section

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named
section. For more information about using these primitives, see Controlling data and
function placement in memory, page 124, and location, page 239.

● Alignment

Each data type has its own alignment, for more details, see Alignment, page 199. If
you want to change the alignment, the __packed data type attribute, and the
#pragma pack and #pragma data_alignment directives are available. If you
want to use the alignment of an object, use the __ALIGNOF__() operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

● __ALIGNOF__ (type)

● __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.

● Anonymous structs and unions

C++ includes a feature named anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 123.

● Bitfields and non-standard types

In ISO/ANSI C, a bitfield must be of type int or unsigned int. Using IAR
Systems language extensions, any integer type or enumeration may be used. The
advantage is that the struct will sometimes be smaller. This matches G.5.8 in the
appendix of the ISO standard, ISO Portability Issues. For more information, see
Bitfields, page 202.

● Dedicated section operators __section_begin and __section_end

The syntax for these operators is:

 void * __section_begin(section)
 void * __section_end(section)

Note: The aliases __segment_begin and __sfb, as well as __segment_end and
__sfe can be used.

These operators return the address of the first byte of the named section and the
first byte after the named section, respectively. This can be useful if you have used
the @ operator or the #pragma location directive to place a data object or a function
in a user-defined section.

The named section must be a string literal and section must have been declared
earlier with the #pragma section directive. If the section was declared with a
memory attribute memattr, the type of the __section_begin operator is a pointer
DARM-2

Part 2. Reference information 213

214

C language extensions
to memattr void. Otherwise, the type is a default pointer to void. Note that you
must have enabled language extensions to use these operators.

In the following example, the type of the __section_begin operator is void
__huge *.

#pragma section="MYSECTION"
...
section_start_address = __section_begin("MYSECTION");

See also section, page 244, and location, page 239.

USEFUL LANGUAGE EXTENSIONS

This section lists and briefly describes useful extensions, that is, useful features typically
taken from related standards, such as C99 and C++:

● Inline functions

The #pragma inline directive, alternatively the inline keyword, advises the
compiler that the function whose declaration follows immediately after the directive
should be inlined. This is similar to the C++ keyword inline. For more information,
see inline, page 238.

● Mixing declarations and statements

It is possible to mix declarations and statements within the same scope. This feature
is part of the C99 standard and C++.

● Declaration in for loops

It is possible to have a declaration in the initialization expression of a for loop, for
example:

for (int i = 0; i < 10; ++i)
{...}

This feature is part of the C99 standard and C++.

● The bool data type

To use the bool type in C source code, you must include the file stdbool.h. This
feature is part of the C99 standard and C++. (The bool data type is supported by
default in C++.)

● C++ style comments

C++ style comments are accepted. A C++ style comment starts with the character
sequence // and continues to the end of the line. For example:

// The length of the bar, in centimeters.
int length;

This feature is copied from the C99 standard and C++.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler extensions
Inline assembler

Inline assembler can be used for inserting assembler instructions in the generated
function. This feature is part of the C99 standard and C++.

The asm and __asm extended keywords both insert an assembler instruction. However,
when compiling C source code, the asm keyword is not available when the option
--strict_ansi is used. The __asm keyword is always available.

Note: Not all assembler directives or operators can be inserted using this keyword.

The syntax is:

asm ("string");

The string can be a valid assembler instruction or a data definition assembler directive,
but not a comment. You can write several consecutive inline assembler instructions, for
example:

asm ("Label: nop\n"
 " b Label");

where \n (new line) separates each new assembler instruction. Note that you can define
and use local labels in inline assembler instructions.

For more information about inline assembler, see Mixing C and assembler, page 89.

Compound literals

To create compound literals you can use the following syntax:

/* Create a pointer to an anonymous array */
int *p = (int []) {1,2,3};

/* Create a pointer to an anonymous structX */
structX *px = &(structX) {5,6,7};

Note:

● A compound literal can be modified unless it is declared const

● Compound literals are not supported in Embedded C++ and Extended EC++.

● This feature is part of the C99 standard.

Incomplete arrays at end of structs

The last element of a struct can be an incomplete array. This is useful for allocating a
chunk of memory that contains both the structure and a fixed number of elements of the
array. The number of elements can vary between allocations.

This feature is part of the C99 standard.
DARM-2

Part 2. Reference information 215

216

C language extensions
Note: The array cannot be the only member of the struct. If that was the case, then
the size of the struct would be zero, which is not allowed in ISO/ANSI C.

Example

struct str
{
 char a;
 unsigned long b[];
};

struct str * GetAStr(int size)
{
 return malloc(sizeof(struct str) +
 sizeof(unsigned long) * size);
}

void UseStr(struct str * s)
{
 s->b[10] = 0;
}

The incomplete array will be aligned in the structure just like any other member of the
structure. For more information about structure alignment, see Structure types, page
206.

Hexadecimal floating-point constants

Floating-point constants can be given in hexadecimal style. The syntax is
0xMANTp{+|-}EXP, where MANT is the mantissa in hexadecimal digits, including an
optional . (decimal point), and EXP is the exponent with decimal digits, representing an
exponent of 2. This feature is part of the C99 standard.

Examples

0x1p0 is 1

0xA.8p2 is 10.5*2^2

Designated initializers in structures and arrays

Any initialization of either a structure (struct or union) or an array can have a
designation. A designation consists of one or more designators followed by an
initializer. A designator for a structure is specified as .elementname and for an array
[constant index expression]. Using designated initializers is not supported in
C++.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler extensions
Examples

The following definition shows a struct and its initialization using designators:

struct{
 int i;
 int j;
 int k;
 int l;
 short array[10];
} u = {
 .l = 6, /* initialize l to 6 */
 .j = 6, /* initialize j to 6 */
 8, /* initialize k to 8 */
 .array[7] = 2, /* initialize element 7 to 2 */
 .array[3] = 2, /* initialize element 3 to 2 */
 5, /* array[4] = 5 */
 .k = 4 /* reinitialize k to 4 */
};

Note that a designator specifies the destination element of the initialization. Note also
that if one element is initialized more than once, it is the last initialization that will be
used.

To initialize an element in a union other than the first, do like this:

union {
 int i;
 float f;
} y = {.f = 5.0};

To set the size of an array by initializing the last element, do like this:

char array[] = {[10] = 'a'};

MINOR LANGUAGE EXTENSIONS

This section lists and briefly describes minor extensions, that is, the relaxation of some
standards issues and also some useful but minor syntax extensions:

● Arrays of incomplete types

An array may have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

● Forward declaration of enum types

The IAR Systems language extensions allow that you first declare the name of an
enum and later resolve it by specifying the brace-enclosed list.
DARM-2

Part 2. Reference information 217

218

C language extensions
● Missing semicolon at end of struct or union specifier

A warning is issued if the semicolon at the end of a struct or union specifier is
missing.

● Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In ISO/ANSI C, some operators allow such
things, while others do not allow them.

● Casting pointers to integers in static initializers

In an initializer, a pointer constant value may be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 205.

● Taking the address of a register variable

In ISO/ANSI C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

● Duplicated size and sign specifiers

Should the size or sign specifiers be duplicated (for example, short short or
unsigned unsigned), an error is issued.

● long float means double

The type long float is accepted as a synonym for double.

● Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

● Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning will be issued.

● Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.

● Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Compiler extensions
● Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled, unless strict ISO/ANSI mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

● An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict ISO/ANSI
mode, a warning is issued.

● A label preceding a }

In ISO/ANSI C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. In the IAR C/C++ Compiler for ARM,
a warning is issued.

Note: This also applies to the labels of switch statements.

● Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

● Single-value initialization

ISO/ANSI C requires that all initializer expressions of static arrays, structs, and
unions are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. In the IAR C/C++ Compiler for ARM, the following expression is allowed:

struct str
{
 int a;
} x = 10;

● Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test(int x)
{
 if (x)
 {
 extern int y;
 y = 1;
 }

 return y;
}

DARM-2

Part 2. Reference information 219

220

C language extensions
● Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make the symbol expand into a string, with the function name as context. Use the
symbol __PRETTY_FUNCTION__ to also include the parameter types and return
type. The result might, for example, look like this if you use the
__PRETTY_FUNCTION__ symbol:

"void func(char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -e, page 162.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Extended keywords
This chapter describes the extended keywords that support specific features
of the ARM core and the general syntax rules for the keywords. Finally the
chapter gives a detailed description of each keyword.

General syntax rules for extended keywords
To understand the syntax rules for the extended keywords, it is important to be familiar
with some related concepts.

The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the ARM core. There are two types of attributes—type
attributes and object attributes:

● Type attributes affect the external functionality of the data object or function

● Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For detailed information about each attribute, see Descriptions of extended keywords,
page 225.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 162 for
additional information.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

You can either place the type attributes directly in your source code, or use the pragma
directive #pragma type_attribute.

The following general type attributes are available:

● Function type attributes affect how the function should be called: __arm, __fiq,
__interwork, __irq, __swi, and __thumb
DARM-2

Part 2. Reference information 221

222

General syntax rules for extended keywords
● Data type attributes: __big_endian, const, __little_endian, __packed, and
volatile

You can specify as many type attributes as required for each level of pointer indirection.

To read more about the type qualifiers const and volatile, see Type qualifiers, page
208.

Syntax for type attributes used on data objects

In general, type attributes for data objects follow the same syntax as the type qualifiers
const and volatile.

The following declaration assigns the __little_endian type attribute to the variables
i and j; in other words, the variables i and j will be accessed with little endian byte
order. The variables k and l behave in the same way:

__little_endian int i, j;
int __little_endian k, l;

Note that the attribute affects both identifiers.

The following declaration of i and j is equivalent with the previous one:

#pragma type_attribute=__little_endian
int i, j;

The advantage of using pragma directives for specifying keywords is that it offers you
a method to make sure that the source code is portable. Note that the pragma directive
has no effect if a memory attribute is already explicitly declared.

Syntax for type attributes on data pointers

The syntax for declaring pointers using type attributes follows the same syntax as the
type qualifiers const and volatile:

Syntax for type attributes on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or in parentheses, for example:

__irq __arm void my_handler(void);

int __little_endian * p; The int object will be accessed in little endian byte
order.

int * __little_endian p; The pointer will be accessed in little endian byte order.

 __little_endian int * p; The pointer will be accessed in little endian byte order.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Extended keywords
or

void (__irq __arm my_handler)(void);

The following declaration of my_handler is equivalent with the previous one:

#pragma type_attribute=__irq __arm
void my_handler(void);

OBJECT ATTRIBUTES

Object attributes affect the internal functionality of functions and data objects, but not
how the function is called or how the data is accessed. This means that an object attribute
does not need to be present in the declaration of an object.

The following object attributes are available:

● Object attributes that can be used for variables: __no_init

● Object attributes that can be used for functions and variables: location, @,
__root, and __weak,

● Object attributes that can be used for functions: __intrinsic, __nested,
__noreturn, and __ramfunc.

You can specify as many object attributes as required for a specific function or data
object.

For more information about location and @, see Controlling data and function
placement in memory, page 124.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];

The #pragma object_attribute directive can also be used. The following
declaration is equivalent to the previous one:

#pragma object_attribute=__no_init
int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.
DARM-2

Part 2. Reference information 223

224

Summary of extended keywords
Summary of extended keywords
The following table summarizes the extended keywords:

Extended keyword Description

__arm Makes a function execute in ARM mode

__big_endian Declares a variable to use the big endian byte order

__fiq Declares a fast interrupt function

__interwork Declares a function to be callable from both ARM and
Thumb mode

__intrinsic Reserved for compiler internal use only

__irq Declares an interrupt function

__little_endian Declares a variable to use the little endian byte order

__nested Allows an __irq declared interrupt function to be nested,
that is, interruptible by the same type of interrupt

__no_init Supports non-volatile memory

__ramfunc Makes a function execute in RAM

__noreturn Informs the compiler that the declared function will not
return

__packed Decreases data type alignment to 1

__root Ensures that a function or variable is included in the object
code even if unused

__swi Declares a software interrupt function

__thumb Makes a function execute in Thumb mode

__weak Declares a symbol to be externally weakly linked

Table 27: Extended keywords summary
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Extended keywords
Descriptions of extended keywords
The following sections give detailed information about each extended keyword.

__arm

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 221.

Description The __arm keyword makes a function execute in ARM mode. An __arm declared
function can, unless it is also declared __interwork, only be called from functions that
also execute in ARM mode.

A function declared __arm cannot be declared __thumb.

Note: Non-interwork ARM functions cannot be called from Thumb mode.

Example __arm int func1(void);

See also __interwork, page 226.

__big_endian

Syntax Follows the generic syntax rules for type attributes that can be used on data objects, see
Type attributes, page 221.

Description The __big_endian keyword is used for accessing a variable that is stored in the big
endian byte order regardless of what byte order the rest of the application uses. The
__big_endian keyword is available when you compile for ARMv6 or higher.

Example __big_endian long my_variable;

See also __little_endian, page 226.

__fiq

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 221.

Description The __fiq keyword declares a fast interrupt function. All interrupt functions must be
compiled in ARM mode. A function declared __fiq does not accept parameters and
does not have a return value.
DARM-2

Part 2. Reference information 225

226

Descriptions of extended keywords
Example __fiq __arm void interrupt_function(void);

__interwork

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 221.

Description A function declared __interwork can be called from functions executing in either
ARM or Thumb mode.

Note: By default, functions are interwork when the --interwork compiler option is
used, and when the --cpu option is used and it specifies a core where intework is
default.

Example typedef void (__thumb __interwork *IntHandler)(void);

__intrinsic

Description The __intrinsic keyword is reserved for compiler internal use only.

__irq

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 221.

Description The __irq keyword declares an interrupt function. All interrupt functions must be
compiled in ARM mode. A function declared __irq does not accept parameters and
does not have a return value.

Example __irq __arm void interrupt_function(void);

__little_endian

Syntax Follows the generic syntax rules for type attributes that can be used on data objects, see
Type attributes, page 221.

Description The __little_endian keyword is used for accessing a variable that is stored in the
little endian byte order regardless of what byte order the rest of the application uses. The
__little_endian keyword is available when you compile for ARMv6 or higher.

Example __little_endian long my_variable;
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Extended keywords
See also __big_endian, page 225.

__nested

Syntax Follows the generic syntax rules for object attributes that can be used on functions, see
Object attributes, page 223.

Description The __nested keyword modifies the enter and exit code of an interrupt function to
allow for nested interrupts. This allows interrupts to be enabled, which means new
interrupts can be served inside an interrupt function, without overwriting the SPSR and
return address in R14. Nested interrupts are only supported for __irq declared
functions.

Note: The __nested keyword requires the processor mode to be in either User or
System mode.

Example __irq __nested __arm void interrupt_handler(void);

See also Nested interrupts, page 33.

__no_init

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 223.

Description Use the __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

Example __no_init int myarray[10];

__ramfunc

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 223.

Description The __ramfunc keyword makes a function execute in RAM. Two code sections will be
created: one for the RAM execution, and one for the ROM initialization.

If a function declared __ramfunc tries to access ROM, the compiler will issue a
warning. This behavior is intended to simplify the creation of upgrade routines, for
instance, rewriting parts of flash memory. If this is not why you have declared the
function __ramfunc, you may safely ignore or disable these warnings.

Functions declared __ramfunc are by default stored in the section named CODE_I.
DARM-2

Part 2. Reference information 227

228

Descriptions of extended keywords
Example __ramfunc int FlashPage(char * data, char * page);

See also To read more about __ramfunc declared functions in relation to breakpoints, see the
IAR Embedded Workbench® IDE User Guide for ARM®.

__noreturn

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 223.

Description The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

Example __noreturn void terminate(void);

__packed

Syntax Follows the generic syntax rules for type attributes that can be used on data, see Type
attributes, page 221.

Description Use the __packed keyword to decrease the data type alignment to 1. __packed can be
used for two purposes:

● When used with a struct or union type definition, the maximum alignment of
members of that struct or union is set to 1, so that there is no gap between the
members. The type of each members also receives the __packed type attribute.

● When used with any other type, the resulting type is the same as the type without
the __packed type attribute, but with an alignment of 1. Types that already have an
alignment of 1 are not affected by the __packed type attribute.

A normal pointer can be implicitly converted to a pointer to __packed, but the reverse
conversion requires a cast.

Note: Accessing data types at other alignments than their natural alignment can result
in code that is significantly larger and slower.

Example __packed struct X {char ch; int i;}; /* No pad bytes */
void foo (struct X * xp) /* No need for __packed here */
{
 int * p1 = &xp->1;/* Error:"int *">"int __packed *" */
 int __packed * p2 = &xp->i; /* OK */
 char * p2 = &xp->ch; /* OK, char not affected */
}

DARM-2

IAR C/C++ Development Guide
Compiling and linking

Extended keywords
See also pack, page 241.

__root

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 223.

Description A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

Example __root int myarray[10];

See also To read more about root symbols and how they are kept, see Keeping symbols and
sections, page 49.

__swi

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 221.

Description The __swi keyword declares a software interrupt function. It inserts an SVC (formerly
SWI) instruction and the specified software interrupt number to make a proper function
call. A function declared __swi accepts arguments and returns values. The __swi
keyword makes the compiler generate the correct return sequence for a specific software
interrupt function. Software interrupt functions follow the same calling convention
regarding parameters and return values as an ordinary function, except for the stack
usage.

The __swi keyword also expects a software interrupt number which is specified with
the #pragma swi_number=number directive. The swi_number is used as an
argument to the generated assembler SWC instruction, and can be used by the SVC
interrupt handler, for example SWI_Handler, to select one software interrupt function
in a system containing several such functions. Note that the software interrupt number
should only be specified in the function declaration—typically, in a header file that you
include in the source code file that calls the interrupt function—not in the function
definition.

Note: All interrupt functions must be compiled in ARM mode, except for Cortex-M.
Use either the __arm keyword or the #pragma type_attribute=__arm directive to
alter the default behavior if needed.
DARM-2

Part 2. Reference information 229

230

Descriptions of extended keywords
Example To declare your software interrupt function, typically in a header file, write for example
like this:

#pragma swi_number=0x23
__swi int swi0x23_function(int a, int b);
...

To call the function:

...
int x = swi0x23_function(1, 2); /* Will be replaced by SVC 0x23,
 hence the linker will
 never try to locate
 swi0x23_function */
...

Somewhere in your application source code, you define your software interrupt
function:

...
__swi __arm int the_actual_swi0x23_function(int a, int b)
{
 ...
 return 42;
}

See also Software interrupts, page 34 and Calling convention, page 95.

__thumb

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 221.

Description The __thumb keyword makes a function execute in Thumb mode. Unless the function
is also declared __interwork, the function declared __thumb can only be called from
functions that also execute in Thumb mode.

A function declared __thumb cannot be declared __arm.

Note: Non-interwork Thumb functions cannot be called from ARM mode.

Example __thumb int func2(void);

See also __interwork, page 226.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Extended keywords
__weak

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 223.

Description Using the __weak object attribute on an external declaration of a symbol makes all
references to that symbol in the module weak.

Symbols that only have weak references when the application is linked, will not be
included in the executable image. Such references will then get the value 0.

Example extern __weak int foo(void);
int fp = foo;

void g(void)
{
 if (fp) fp();
}

DARM-2

Part 2. Reference information 231

232

Descriptions of extended keywords
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Pragma directives
This chapter describes the pragma directives of the compiler.

The #pragma directive is defined by the ISO/ANSI C standard and is a
mechanism for using vendor-specific extensions in a controlled way to make
sure that the source code is still portable.

The pragma directives control the behavior of the compiler, for example how
it allocates memory for variables and functions, whether it allows extended
keywords, and whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Summary of pragma directives
The following table lists the pragma directives of the compiler that can be used either
with the #pragma preprocessor directive or the _Pragma() preprocessor operator:

Pragma directive Description

bitfields Controls the order of bitfield members

constseg Places constant variables in a named section

data_alignment Gives a variable a higher (more strict) alignment

dataseg Places variables in a named section

diag_default Changes the severity level of diagnostic messages

diag_error Changes the severity level of diagnostic messages

diag_remark Changes the severity level of diagnostic messages

diag_suppress Suppresses diagnostic messages

diag_warning Changes the severity level of diagnostic messages

include_alias Specifies an alias for an include file

inline Inlines a function

language Controls the IAR Systems language extensions

location Specifies the absolute address of a variable, or places groups
of functions or variables in named sections

message Prints a message

Table 28: Pragma directives summary
DARM-2

Part 2. Reference information 233

234

Descriptions of pragma directives
Note: For portability reasons, the pragma directives alignment, baseaddr,
codeseg, constseg, dataseg, function, memory, and warnings are recognized
but will give a diagnostic message. It is important to be aware of this if you need to port
existing code that contains any of those pragma directives. See also Recognized pragma
directives (6.8.6), page 327.

Descriptions of pragma directives
This section gives detailed information about each pragma directive.

bitfields

Syntax #pragma bitfields=disjoint_types|joint_types|
 reversed_disjoint_types|reversed|default|}

Parameters

object_attribute Changes the definition of a variable or a function

optimize Specifies the type and level of an optimization

pack Specifies the alignment of structures and union members

__printf_args Verifies that a function with a printf-style format string is
called with the correct arguments

required Ensures that a symbol that is needed by another symbol is
included in the linked output

rtmodel Adds a runtime model attribute to the module

__scanf_args Verifies that a function with a scanf-style format string is
called with the correct arguments

section Declares a section name to be used by intrinsic functions

swi_number Sets the interrupt number of a software interrupt function

type_attribute Changes the declaration and definitions of a variable or
function

Pragma directive Description

Table 28: Pragma directives summary (Continued)

disjoint_types Bitfield members are placed from the most significant bit to
the least significant bit. Storage containers of bitfields with
different base types may not overlap.

joint_types Bitfield members are placed depending on byte order.
Storage containers of bitfields may overlap other structure
members.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Pragma directives
Description Use this pragma directive to control the layout of bitfield members.

See also Bitfields, page 202.

data_alignment

Syntax #pragma data_alignment=expression

Parameters

Description Use this pragma directive to give a variable a higher (more strict) alignment than it
would otherwise have. It can be used on variables with static and automatic storage
duration.

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

diag_default

Syntax #pragma diag_default=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level back to default, or to the severity
level defined on the command line by using any of the options --diag_error,
--diag_remark, --diag_suppress, or --diag_warnings, for the diagnostic
messages specified with the tags.

See also Diagnostics, page 146.

reversed_disjoint_types Bitfield members are placed from the least significant bit to
the most significant bit. Storage containers of bitfields with
different base types may not overlap.

reversed This is an alias for reversed_disjoint_types.

default The default behavior for the compiler is joint_types.

expression A constant which must be a power of two (1, 2, 4, etc.).

tag The number of a diagnostic message, for example the message
number Pe117.
DARM-2

Part 2. Reference information 235

236

Descriptions of pragma directives
diag_error

Syntax #pragma diag_error=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to error for the specified
diagnostics.

See also Diagnostics, page 146.

diag_remark

Syntax #pragma diag_remark=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

See also Diagnostics, page 146.

diag_suppress

Syntax #pragma diag_suppress=tag[,tag,...]

Parameters

Description Use this pragma directive to suppress the specified diagnostic messages.

See also Diagnostics, page 146.

tag The number of a diagnostic message, for example the message
number Pe117.

tag The number of a diagnostic message, for example the message
number Pe177.

tag The number of a diagnostic message, for example the message
number Pe117.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Pragma directives
diag_warning

Syntax #pragma diag_warning=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

See also Diagnostics, page 146.

include_alias

Syntax #pragma include_alias ("orig_header" , "subst_header")
#pragma include_alias (<orig_header> , <subst_header>)

Parameters

Description Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a
relative file.

This pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

Example #pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

See also Include file search procedure, page 143.

tag The number of a diagnostic message, for example the message
number Pe826.

orig_header The name of a header file for which you want to create an alias.

subst_header The alias for the original header file.
DARM-2

Part 2. Reference information 237

238

Descriptions of pragma directives
inline

Syntax #pragma inline[=forced]

Parameters

Description Use this pragma directive to advise the compiler that the function whose declaration
follows immediately after the directive should be inlined—that is, expanded into the
body of the calling function. Whether the inlining actually takes place is subject to the
compiler’s heuristics.

This is similar to the C++ keyword inline, but has the advantage of being available in
C code.

Specifying #pragma inline=forced disables the compiler’s heuristics and forces
inlining. If the inlining fails for some reason, for example if it cannot be used with the
function type in question (like printf), an error message is emitted.

Note: Because specifying #pragma inline=forced disables the compiler’s
heuristics, including the inlining heuristics, the function declared immediately after the
directive will not be inlined on optimization levels None or Low. No error or warning
message will be emitted.

language

Syntax #pragma language={extended|default}

Parameters

Description Use this pragma directive to enable the compiler language extensions or for using the
language settings specified on the command line.

forced Disables the compiler’s heuristics and forces inlining.

extended Turns on the IAR Systems language extensions and turns off the
--strict_ansi command line option.

default Uses the language settings specified by compiler options.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Pragma directives
location

Syntax #pragma location={address|NAME}

Parameters

Description Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variable must be
declared either __no_init or const. Alternatively, the directive can take a string
specifying a section for placing either a variable or a function whose declaration follows
the pragma directive.

Example #pragma location=0xFFFF0400
__no_init volatile char PORT1; /* PORT1 is located at address
 0xFFFF0400 */

#pragma location="foo"
char PORT1; /* PORT1 is located in section foo */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma("location=\"FLASH\"")
...
FLASH int i; /* i is placed in the FLASH section */

See also Controlling data and function placement in memory, page 124.

message

Syntax #pragma message(message)

Parameters

Description Use this pragma directive to make the compiler print a message to stdout when the file
is compiled.

Example: #ifdef TESTING
#pragma message("Testing")
#endif

address The absolute address of the global or static variable for which you
want an absolute location.

NAME A user-defined section name; cannot be a section name predefined
for use by the compiler and linker.

message The message that you want to direct to stdout.
DARM-2

Part 2. Reference information 239

240

Descriptions of pragma directives
object_attribute

Syntax #pragma object_attribute=object_attribute[,object_attribute,...]

Parameters For a list of object attributes that can be used with this pragma directive, see Object
attributes, page 223.

Description Use this pragma directive to declare a variable or a function with an object attribute.
This directive affects the definition of the identifier that follows immediately after the
directive. The object is modified, not its type. Unlike the directive #pragma
type_attribute that specifies the storing and accessing of a variable or function, it is
not necessary to specify an object attribute in declarations.

Example #pragma object_attribute=__no_init
char bar;

See also General syntax rules for extended keywords, page 221.

optimize

Syntax #pragma optimize=param[param...]

Parameters

Description Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters speed, size, and balanced only have effect on the high optimization
level and only one of them can be used as it is not possible to optimize for speed and

balanced|size|speed Optimizes balanced between speed and size,
optimizes for size, or optimizes for speed

none|low|medium|high Specifies the level of optimization

no_code_motion Turns off code motion

no_cse Turns off common subexpression elimination

no_inline Turns off function inlining

no_tbaa Turns off type-based alias analysis

no_unroll Turns off loop unrolling

no_scheduling Turns off instruction scheduling
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Pragma directives
size at the same time. It is also not possible to use preprocessor macros embedded in this
pragma directive. Any such macro will not be expanded by the preprocessor.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

Example #pragma optimize=speed
int small_and_used_often()
{
 ...
}

#pragma optimize=size no_inline
int big_and_seldom_used()
{
 ...
}

pack

Syntax #pragma pack(n)
#pragma pack()
#pragma pack({push|pop}[,name] [,n])

Parameters

Description Use this pragma directive to specify the maximum alignment of struct and union
members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or end of file.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

n Sets an optional structure alignment; one of: 1, 2, 4, 8, or 16

Empty list Restores the structure alignment to default

push Sets a temporary structure alignment

pop Restores the structure alignment from a temporarily pushed alignment

name An optional pushed or popped alignment label
DARM-2

Part 2. Reference information 241

242

Descriptions of pragma directives
See also Structure types, page 206 and __packed, page 228.

__printf_args

Syntax #pragma __printf_args

Description Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

Example #pragma __printf_args
int printf(char const *,...);

/* Function call */
printf("%d",x); /* Compiler checks that x is a double */

required

Syntax #pragma required=symbol

Parameters

Description Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the section it
resides in.

Example const char copyright[] = "Copyright by me";
...
#pragma required=copyright
int main()
{...}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

symbol Any statically linked function or variable.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Pragma directives
rtmodel

Syntax #pragma rtmodel="key","value"

Parameters

Description Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All
modules that are linked together and define the same runtime attribute key must have
the same value for the corresponding key, or the special value *. It can, however, be
useful to state explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
In order to avoid confusion, this style must not be used in the user-defined attributes.

Example #pragma rtmodel="I2C","ENABLED"

The linker will generate an error if a module that contains this definition is linked with
a module that does not have the corresponding runtime model attributes defined.

See also Checking module consistency, page 85.

__scanf_args

Syntax #pragma __scanf_args

Description Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

Example #pragma __scanf_args
int printf(char const *,...);

/* Function call */
scanf("%d",x); /* Compiler checks that x is a double */

"key" A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model attribute.
Using the special value * is equivalent to not defining the attribute at
all.
DARM-2

Part 2. Reference information 243

244

Descriptions of pragma directives
section

Syntax #pragma section="NAME" [align]

alias

#pragma segment="NAME" [align]

Parameters

Description Use this pragma directive to define a section name that can be used by the section
operators __section_begin and __section_end. All section declarations for a
specific section must have the same memory type attribute and alignment.

Example #pragma section="MYHUGE" __huge 4

See also Important language extensions, page 212. For more information about sections, see the
chapter Linking your application.

swi_number

Syntax #pragma swi_number=number

Parameters

Description Use this pragma directive together with the __swi extended keyword. It is used as an
argument to the generated SWC assembler instruction, and is used for selecting one
software interrupt function in a system containing several such functions.

Example #pragma swi_number=17

See also Software interrupts, page 34.

NAME The name of the section or segment

align Specifies an alignment for the section. The value must be a constant
integer expression to the power of two.

number The software interrupt number
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Pragma directives
type_attribute

Syntax #pragma type_attribute=type_attribute[,type_attribute,...]

Parameters For a list of type attributes that can be used with this pragma directive, see Type
attributes, page 221.

Description Use this pragma directive to specify IAR-specific type attributes, which are not part of
the ISO/ANSI C language standard. Note however, that a given type attribute may not
be applicable to all kind of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.

Example In the following example, thumb-mode code is generated for the function foo.

#pragma type_attribute=__thumb
void foo(void)
{
}

The following declaration, which uses extended keywords, is equivalent:

__thumb void foo(void);
{
}

See also See the chapter Extended keywords for more details.
DARM-2

Part 2. Reference information 245

246

Descriptions of pragma directives
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
This chapter gives reference information about the intrinsic functions, a
predefined set of functions available in the compiler.

The intrinsic functions provide direct access to low-level processor
operations and can be very useful in, for example, time-critical routines. The
intrinsic functions compile into inline code when possible, either as a single
instruction or as a short sequence of instructions.

Summary of intrinsic functions
To use intrinsic functions in an application, include the header file intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:

__disable_interrupt

The following table summarizes the intrinsic functions:

Intrinsic function Description

__CLZ Inserts a CLZ instruction

__disable_fiq Disables fast interrupt requests (fiq)

__disable_interrupt Disables interrupts

__disable_irq Disables interrupt requests (irq)

__DMB Inserts a DMB instruction

__DSB Inserts a DSB instruction

__enable_fiq Enables fast interrupt requests (fiq)

__enable_interrupt Enables interrupts

__enable_irq Enables interrupt requests (irq)

__get_BASEPRI Returns the value of the Cortex-M3
BASEPRI register

__get_CONTROL Returns the value of the Cortex-M CONTROL
register

__get_CPSR Returns the value of the ARM CPSR (Current
Program Status Register)

Table 29: Intrinsic functions summary
DARM-2

Part 2. Reference information 247

248

Summary of intrinsic functions
__get_FAULTMASK Returns the value of the Cortex-M3
FAULTMASK register

__get_interrupt_state Returns the interrupt state

__get_PRIMASK Returns the value of the Cortex-M BASEPRI
register

__ISB Inserts a ISB instruction

__LDREX Inserts an LDREX instruction

__MCR Inserts a coprocessor write instruction (MCR)

__MRC Inserts a coprocessor read instruction (MRC)

__no_operation Inserts a NOP instruction

__QADD Inserts a QADD instruction

__QADD8 Inserts a QADD8 instruction

__QADD16 Inserts a QADD16 instruction

__QASX Inserts a QASX instruction

__QDADD Inserts a QDADD instruction

__QDSUB Inserts a QDSUB instruction

__QFlag Returns the Q flag that indicates if
overflow/saturation has occurred

__QSUB Inserts a QSUB instruction

__QSUB8 Inserts a QSUB8 instruction

__QSUB16 Inserts a QSUB16 instruction

__QSAX Inserts a QSAX instruction

__reset_Q_flag Clears the Q flag that indicates if
overflow/saturation has occurred

__REV Inserts a REV instruction

__REVSH Inserts a REVSH instruction

__SADD8 Inserts a SADD8 instruction

__SADD16 Inserts a SADD16 instruction

__SASX Inserts a SASX instruction

__SEL Inserts a SEL instruction

__set_BASEPRI Sets the value of the Cortex-M3 BASEPRI
register

Intrinsic function Description

Table 29: Intrinsic functions summary (Continued)
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
__set_CONTROL .Sets the value of the Cortex-M CONTROL
register

__set_CPSR Sets the value of the ARM CPSR (Current
Program Status Register)

__set_FAULTMASK Sets the value of the Cortex-M3 FAULTMASK
register

__set_interrupt_state Restores the interrupt state

__set_PRIMASK Sets the value of the Cortex-M PRIMASK
register

__SHADD8 Inserts a SHADD8 instruction

__SHADD16 Inserts a SHADD16 instruction

__SHASX Inserts a SHASX instruction

__SHSUB8 Inserts a SHSUB8 instruction

__SHSUB16 Inserts a SHSUB16 instruction

__SHSAX Inserts a SHSAX instruction

__SMUL Inserts a signed 16-bit multiplication

__SSUB8 Inserts a SSUB8 instruction

__SSUB16 Inserts a SSUB16 instruction

__SSAX Inserts a SSAX instruction

__STREX Inserts a STREX instruction

__UADD8 Inserts a UADD8 instruction

__UADD16 Inserts a UADD16 instruction

__UASX Inserts a UASX instruction

__UHADD8 Inserts a UHADD8 instruction

__UHADD16 Inserts a UHADD16 instruction

__UHASX Inserts a UHASX instruction

__UQADD8 Inserts a UQADD8 instruction

__UQADD16 Inserts a UQADD16 instruction

__UQASX Inserts a UQASX instruction

__UQSUB8 Inserts a UQSUB8 instruction

__UQSUB16 Inserts a UQSUB16 instruction

__UQSAX Inserts a UQSAX instruction

__USAX Inserts a USAX instruction

Intrinsic function Description

Table 29: Intrinsic functions summary (Continued)
DARM-2

Part 2. Reference information 249

250

Descriptions of intrinsic functions
Descriptions of intrinsic functions
The following section gives reference information about each intrinsic function.

__CLZ

Syntax unsigned char __CLZ(unsigned long);

Description Inserts a CLZ instruction. This intrinsic function requires an ARM v5 architecture or
higher.

__disable_fiq

Syntax void __disable_fiq(void);

Description This intrinsic function disables fast interrupt requests (fiq).

This intrinsic function can only be used in privileged mode and is not available for
Cortex-M devices.

__disable_interrupt

Syntax void __disable_interrupt(void);

Description This intrinsic function disables interrupts. For Cortex-M devices it raises the execution
priority level, using bit 0 of the PRIMASK register. For other devices, it disables irq and
fiq.

This intrinsic function can only be used in privileged mode.

__disable_irq

Syntax void __disable_irq(void);

Description This intrinsic function disables interrupt requests (irq).

__USUB8 Inserts a USUB8 instruction

__USUB16 Inserts a USUB16 instruction

Intrinsic function Description

Table 29: Intrinsic functions summary (Continued)
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
This intrinsic function can only be used in privileged mode and is not available for
Cortex-M devices.

__DMB

Syntax void __DMB(void);

Description Inserts a DMB instruction. This intrinsic function requires an ARM v7 architecture or
higher.

__DSB

Syntax void __DSB(void);

Description Inserts a DSB instruction. This intrinsic function requires an ARM v7 architecture or
higher.

__enable_fiq

Syntax void __enable_fiq(void);

Description This intrinsic function enables fast interrupt requests (fiq).

This intrinsic function can only be used in privileged mode, is not available for
Cortex-M devices.

__enable_interrupt

Syntax void __enable_interrupt(void);

Description This intrinsic function enables interrupts. For Cortex-M devices it raises the execution
priority level, using bit 0 of the PRIMASK register. For other devices it disables interrupt
requests and fast interrupt requests.

This intrinsic function can only be used in privileged mode.
DARM-2

Part 2. Reference information 251

252

Descriptions of intrinsic functions
__enable_irq

Syntax void __enable_irq(void);

Description This intrinsic function enables interrupt requests (irq).

This intrinsic function can only be used in privileged mode, is not available for
Cortex-M devices.

__get_BASEPRI

Syntax unsigned long __get_BASEPRI(void);

Description Returns the value of the BASEPRI register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M3 device.

__get_CONTROL

Syntax unsigned long __get_CONTROL(void);

Description Returns the value of the CONTROL register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M device.

__get_CPSR

Syntax unsigned long __get_CPSR(void);

Description Returns the value of the ARM CPSR (Current Program Status Register). This intrinsic
function can only be used in privileged mode, is not available for Cortex-M devices, and
it requires ARM mode.

__get_FAULTMASK

Syntax unsigned long __get_FAULTMASK(void);

Description Returns the value of the FAULTMASK register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M3 device.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
__get_interrupt_state

Syntax __istate_t __get_interrupt_state(void);

Description Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

This intrinsic function can only be used in privileged mode, and cannot be used when
using the --aeabi compiler option.

Example __istate_t s = __get_interrupt_state();
__disable_interrupt();

 /* Do something */

__set_interrupt_state(s);

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled before the call of __get_interrupt_state.

__get_PRIMASK

Syntax unsigned long __get_PRIMASK(void);

Description Returns the value of the PRIMASK register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M device.

__ISB

Syntax void __ISB(void);

Description Inserts a ISB instruction. This intrinsic function requires an ARM v7 architecture or
higher.

__LDREX

Syntax unsigned long __LDREX(unsigned long *);

Description Inserts an LDREX instruction. This intrinsic function requires an ARM v6 architecture or
higher, and it requires ARM mode.
DARM-2

Part 2. Reference information 253

254

Descriptions of intrinsic functions
__MCR

Syntax void __MCR(__ul coproc, __ul opcode_1, __ul src, __ul CRn, __ul
CRm, __ul opcode_2);

Parameters

Description Inserts a coprocessor write instruction (MCR). A value will be written to a coprocessor
register. The parameters coproc, opcode_1, CRn, CRm, and opcode_2 will be encoded
in the MCR instruction operation code and must therefore be constants. This intrinsic
function requires ARM mode.

__MRC

Syntax unsigned long __MRC(__ul coproc, __ul opcode_1, __ul CRn, __ul
CRm, __ul opcode_2);

Parameters

Description Inserts a coprocessor read instruction (MRC). Returns the value of the specified
coprocessor register. The parameters coproc, opcode_1, CRn, CRm, and opcode_2
will be encoded in the MRC instruction operation code and must therefore be constants.
This intrinsic function requires ARM mode.

coproc The coprocessor number 0..15.

opcode_1 Coprocessor-specific operation code.

src The value to be written to the coprocessor.

CRn The coprocessor register to write to.

CRm Additional coprocessor register; set to zero if not used.

opcode_2 Additional coprocessor-specific operation code; set to zero if not used.

coproc The coprocessor number 0..15.

opcode_1 Coprocessor-specific operation code.

CRn The coprocessor register to write to.

CRm Additional coprocessor register; set to zero if not used.

opcode_2 Additional coprocessor-specific operation code; set to zero if not used.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
__no_operation

Syntax void __no_operation(void);

Description Inserts a NOP instruction.

__QADD

Syntax signed long __QADD(signed long, signed long);

Description Inserts a QADD instruction. This intrinsic function requires an ARM v5E architecture.

__QADD8

Syntax unsigned long __QADD8(unsigned long, unsigned long);

Description Inserts a QADD8 instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__QADD16

Syntax unsigned long __QADD16(unsigned long, unsigned long);

Description Inserts a QADD16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__QASX

Syntax unsigned long __QASX(unsigned long, unsigned long);

Description Inserts a QASX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__QDADD

Syntax signed long __QDADD(signed long, signed long);

Description Inserts a QDADD instruction. This intrinsic function requires an ARM v5E architecture.
DARM-2

Part 2. Reference information 255

256

Descriptions of intrinsic functions
__QDSUB

Syntax signed long __QDSUB(signed long, signed long);

Description Inserts a QDSUB instruction. This intrinsic function requires an ARM v5E architecture.

__QFlag

Syntax int __QFlag(void);

Description Returns the Q flag that indicates if overflow/saturation has occurred. This intrinsic
function requires an ARM v5E or ARM v6 architecture and ARM mode.

__QSUB

Syntax signed long __QSUB(signed long, signed long);

Description Inserts a QSUB instruction. This intrinsic function requires an ARM v5E architecture.

__QSUB8

Syntax unsigned long __QSUB8(unsigned long, unsigned long);

Description Inserts a QSUB8 instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__QSUB16

Syntax unsigned long __QSUB16(unsigned long, unsigned long);

Description Inserts a QSUB16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__QSAX

Syntax unsigned long __QSAX(unsigned long, unsigned long);

Description Inserts a QSAX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
__reset_Q_flag

Syntax void __reset_Q_flag(void);

Description Clears the Q flag that indicates if overflow/saturation has occurred. This intrinsic
function requires an ARM v5E or ARM v6 architecture and ARM mode.

__REV

Syntax unsigned long __REV(unsigned long);

Description Inserts a REV instruction. This intrinsic function requires an ARM v6 architecture or
higher.

__REVSH

Syntax signed long __REV(short);

Description Inserts a REVSH instruction. This intrinsic function requires an ARM v6 architecture or
higher.

__SADD8

Syntax unsigned long __SADD8(unsigned long, unsigned long);

Description Inserts a SADD8 instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__SADD16

Syntax unsigned long __SADD16(unsigned long, unsigned long);

Description Inserts a SADD16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.
DARM-2

Part 2. Reference information 257

258

Descriptions of intrinsic functions
__SASX

Syntax unsigned long __SASX(unsigned long, unsigned long);

Description Inserts a SASX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__SEL

Syntax unsigned long __SEL(unsigned long, unsigned long);

Description Inserts a SEL instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__set_BASEPRI

Syntax void __set_BASEPRI(unsigned long);

Description Sets the value of the BASEPRI register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M3 device.

__set_CONTROL

Syntax void __set_CONTROL(unsigned long);

Description Sets the value of the CONTROL register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M device.

__set_CPSR

Syntax void __set_CPSR(unsigned long);

Description Sets the value of the ARM CPSR (Current Program Status Register). Only the control
field is changed (bits 0-7). This intrinsic function can only be used in privileged mode,
is not available for Cortex-M devices, and it requires ARM mode.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
__set_FAULTMASK

Syntax void __set_FAULTMASK(unsigned long);

Description Sets the value of the FAULTMASK register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M3 device.

__set_interrupt_state

Syntax void __set_interrupt_state(__istate_t);

Descriptions Restores the interrupt state to a value previously returned by the
__get_interrupt_state function.

For information about the __istate_t type, see __get_interrupt_state, page 253.

__set_PRIMASK

Syntax void __set_PRIMASK(unsigned long);

Description Sets the value of the PRIMASK register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M device.

__SHADD8

Syntax unsigned long __SHADD8(unsigned long, unsigned long);

Description Inserts a SHADD8 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__SHADD16

Syntax unsigned long __SHADD16(unsigned long, unsigned long);

Description Inserts a SHADD16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.
DARM-2

Part 2. Reference information 259

260

Descriptions of intrinsic functions
__SHASX

Syntax unsigned long __SHASX(unsigned long, unsigned long);

Description Inserts a SHASX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__SHSUB8

Syntax unsigned long __SHSUB8(unsigned long, unsigned long);

Description Inserts a SHSUB8 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__SHSUB16

Syntax unsigned long __SHSUB16(unsigned long, unsigned long);

Description Inserts a SHSUB16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__SHSAX

Syntax unsigned long __SHSAX(unsigned long, unsigned long);

Description Inserts a SHSAX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__SMUL

Syntax signed long __SMUL(signed short, signed short);

Description Inserts a signed 16-bit multiplication. This intrinsic function requires an ARM v5E
architecture and ARM mode.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
__SSUB8

Syntax unsigned long __SSUB8(unsigned long, unsigned long);

Description Inserts a SSUB8 instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__SSUB16

Syntax unsigned long __SSUB16(unsigned long, unsigned long);

Description Inserts a SSUB16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__SSAX

Syntax unsigned long __SSAX(unsigned long, unsigned long);

Description Inserts a SSAX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__STREX

Syntax unsigned long __STREX(unsigned long, unsigned long);

Description Inserts a STREX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__UADD8

Syntax unsigned long __UADD8(unsigned long, unsigned long);

Description Inserts a UADD8 instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.
DARM-2

Part 2. Reference information 261

262

Descriptions of intrinsic functions
__UADD16

Syntax unsigned long __UADD16(unsigned long, unsigned long);

Description Inserts a UADD16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__UASX

Syntax unsigned long __UASX(unsigned long, unsigned long);

Description Inserts a UASX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__UHADD8

Syntax unsigned long __UHADD8(unsigned long, unsigned long);

Description Inserts a UHADD8 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__UHADD16

Syntax unsigned long __UHADD16(unsigned long, unsigned long);

Description Inserts a UHADD16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__UHASX

Syntax unsigned long __UHASX(unsigned long, unsigned long);

Description Inserts a UHASX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Intrinsic functions
__UQADD8

Syntax unsigned long __UQADD8(unsigned long, unsigned long);

Description Inserts a UQADD8 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__UQADD16

Syntax unsigned long __UQADD16(unsigned long, unsigned long);

Description Inserts a UQADD16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__UQASX

Syntax unsigned long __UQASX(unsigned long, unsigned long);

Description Inserts a UQASX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__UQSUB8

Syntax unsigned long __UQSUB8(unsigned long, unsigned long);

Description Inserts a UQSUB8 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.

__UQSUB16

Syntax unsigned long __UQSUB16(unsigned long, unsigned long);

Description Inserts a UQSUB16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.
DARM-2

Part 2. Reference information 263

264

Descriptions of intrinsic functions
__UQSAX

Syntax unsigned long __UQSAX(unsigned long, unsigned long);

Description Inserts a UQSAX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__USAX

Syntax unsigned long __USAX(unsigned long, unsigned long);

Description Inserts a USAX instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__USUB8

Syntax unsigned long __USUB8(unsigned long, unsigned long);

Description Inserts a USUB8 instruction. This intrinsic function requires an ARM v6 architecture and
ARM mode.

__USUB16

Syntax unsigned long __USUB16(unsigned long, unsigned long);

Description Inserts a USUB16 instruction. This intrinsic function requires an ARM v6 architecture
and ARM mode.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The preprocessor
This chapter gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other
related information.

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for ARM adheres to the ISO/ANSI
standard. The compiler also makes the following preprocessor-related features available
to you:

● Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. For details, see Descriptions of predefined
preprocessor symbols, page 266.

● User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 157.

● Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for
more information, see the chapter Pragma directives in this guide. Read also about
the corresponding _Pragma operator and the other extensions related to the
preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 269.

● Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 176.

Some parts listed by the ISO/ANSI standard are implementation-defined, for example
the character set used in the preprocessor directives and inclusion of bracketed and
quoted filenames. To read more about this, see Preprocessing directives, page 326.
DARM-2

Part 2. Reference information 265

266

Descriptions of predefined preprocessor symbols
Descriptions of predefined preprocessor symbols
The following table describes the predefined preprocessor symbols:

Predefined symbol Identifies

__BASE_FILE__ A string that identifies the name of the base source file (that is,
not the header file), being compiled. See also __FILE__,
page 266, and --no_path_in_file_macros, page 171.

__BUILD_NUMBER__ A unique integer that identifies the build number of the
compiler currently in use.

__CORE__ An integer that identifies the processor architecture in use.
The symbol reflects the --cpu option and is defined to
__ARM4M__, __ARM4TM__, __ARM5__, __ARM5E__,
__ARM6__, or __ARM7M__. These symbolic names can be
used when testing the __CORE__ symbol.

__ARMVFP__ An integer that reflects the --fpu option and is defined to 1
for VFPv1 and 2 for VFPv2. If VFP code generation is disabled
(default), the symbol will be undefined.

__cplusplus An integer which is defined when the compiler runs in any of
the C++ modes, otherwise it is undefined. When defined, its
value is 199711L. This symbol can be used with #ifdef to
detect whether the compiler accepts C++ code. It is
particularly useful when creating header files that are to be
shared by C and C++ code.*

__CPU_MODE__ An integer that reflects the selected CPU mode and is defined
to 1 for Thumb and 2 for ARM.

__DATE__ A string that identifies the date of compilation, which is
returned in the form "Mmm dd yyyy", for example "Oct 30

2005". *

__embedded_cplusplus An integer which is defined to 1 when the compiler runs in
any of the C++ modes, otherwise the symbol is undefined.
This symbol can be used with #ifdef to detect whether the
compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++
code.*

__FILE__ A string that identifies the name of the file being compiled,
which can be the base source file as well as any included
header file. See also __BASE_FILE__, page 266, and
--no_path_in_file_macros, page 171.*

Table 30: Predefined symbols
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The preprocessor
__func__ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 162. See also
__PRETTY_FUNCTION__, page 267.

__FUNCTION__ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 162. See also
__PRETTY_FUNCTION__, page 267.

__IAR_SYSTEMS_ICC__ An integer that identifies the IAR compiler platform. The
current value is 7. Note that the number could be higher in a
future version of the product. This symbol can be tested with
#ifdef to detect whether the code was compiled by a
compiler from IAR Systems.

__ICCARM__ An integer that is set to 1 when the code is compiled with the
IAR C/C++ Compiler for ARM, and otherwise to 0.

__LINE__ An integer that identifies the current source line number of
the file being compiled, which can be the base source file as
well as any included header file.*

__LITTLE_ENDIAN__ An integer that identifies the byte order of the core. For the
ARM core families, the value of this symbol is defined to 1
(TRUE), which means that the byte order is little-endian.

__PRETTY_FUNCTION__ A string that identifies the function name, including parameter
types and return type, of the function in which the symbol is
used, for example "void func(char)". This symbol is
useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled, see -e, page
162. See also __func__, page 267.

__STDC__ An integer that is set to 1, which means the compiler adheres
to the ISO/ANSI C standard. This symbol can be tested with
#ifdef to detect whether the compiler in use adheres to
ISO/ANSI C.*

__STDC_VERSION__ An integer that identifies the version of ISO/ANSI C standard
in use. The symbols expands to 199409L. This symbol does
not apply in EC++ mode.*

__TIME__ A string that identifies the time of compilation in the form
"hh:mm:ss".*

Predefined symbol Identifies

Table 30: Predefined symbols (Continued)
DARM-2

Part 2. Reference information 267

268

Descriptions of predefined preprocessor symbols
* This symbol is required by the ISO/ANSI standard.

__TID__

Description Target identifier for the ARM IAR C/C++ Compiler. Expands to the target identifier
which contains the following parts:

● A one-bit intrinsic flag (i) which is reserved for use by IAR
● A target identifier (t) unique for each IAR compiler. For the ARM compiler, the

target identifier is 79
● A value (c) reserved for specifying different CPU core families. The value is

derived from the setting of the --cpu option:

The __TID__value is constructed as:

((i << 15) | (t << 8) | (c << 4))

You can extract the values as follows:

To find the value of the target identifier for the current compiler, execute:

printf("%ld",(__TID__ >> 8) & 0x7F)

__VER__ An integer that identifies the version number of the IAR
compiler in use. For example, version 5.11.3 is returned as
5011003.

Predefined symbol Identifies

Table 30: Predefined symbols (Continued)

Value CPU core family

0 Unspecified

1 ARM7TDMI

2 ARM9TDMI

3 ARM9E

4 ARM10E

5 ARM11

6 Cortex–M3

Table 31: Values for specifying different CPU core families in __TID__

i = (__TID__ >> 15) & 0x01; /* intrinsic flag */

t = (__TID__ >> 8) & 0x7F; /* target identifier */

c = (__TID__ >> 4) & 0x0F; /* cpu core family */
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The preprocessor
Note: Because coding may change or functionality may be entirely removed in future
versions, the use of __TID__ is not recommended. We recommend that you use the
symbols __ICCARM__ and __CORE__ instead.

Descriptions of miscellaneous preprocessor extensions
The following section gives reference information about the preprocessor extensions
that are available in addition to the predefined symbols, pragma directives, and
ISO/ANSI directives.

NDEBUG

Description This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

● defined, the assert code will not be included

● not defined, the assert code will be included

This means that if you have written any assert code and build your application, you
should define this symbol to exclude the assert code from the final application.

Note that the assert macro is defined in the assert.h standard include file.

In the IDE, the NDEBUG symbol is automatically defined if you build your application in
the Release build configuration.

_Pragma()

Syntax _Pragma("string")

where string follows the syntax of the corresponding pragma directive.

Description This preprocessor operator is part of the C99 standard and can be used, for example, in
defines and is equivalent to the #pragma directive.

Note: The -e option—enable language extensions—does not have to be specified.
DARM-2

Part 2. Reference information 269

270

Descriptions of miscellaneous preprocessor extensions
Example #if NO_OPTIMIZE
 #define NOOPT _Pragma("optimize=none")
#else
 #define NOOPT
#endif

See also See the chapter Pragma directives.

#warning message

Syntax #warning message

where message can be any string.

Description Use this preprocessor directive to produce messages. Typically, this is useful for
assertions and other trace utilities, similar to the way the ISO/ANSI standard #error
directive is used.

__VA_ARGS__

Syntax #define P(...) __VA_ARGS__
#define P(x,y,...) x + y + __VA_ARGS__

__VA_ARGS__ will contain all variadic arguments concatenated, including the
separating commas.

Description Variadic macros are the preprocessor macro equivalents of printf style functions.
__VA_ARGS__ is part of the C99 standard.

Example #if DEBUG
 #define DEBUG_TRACE(S,...) printf(S,__VA_ARGS__)
#else
 #define DEBUG_TRACE(S,...)
#endif
/* Place your own code here */
DEBUG_TRACE("The value is:%d\n",value);

will result in:

printf("The value is:%d\n",value);
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Library functions
This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

For detailed reference information about the library functions, see the online
help system.

Introduction
The compiler comes with the IAR DLIB Library, which is a complete ISO/ANSI C and
C++ library. This library also supports floating-point numbers in IEEE 754 format and
it can be configured to include different levels of support for locale, file descriptors,
multibyte characters, et cetera.

For additional information, see the chapter The DLIB runtime environment.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For additional information about library functions, see the chapter
Implementation-defined behavior in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into a number
of different header files, each covering a particular functional area, letting you include
just those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic project configuration, page 19. The linker will
include only those routines that are required—directly or indirectly—by your
application.
DARM-2

Part 2. Reference information 271

272

IAR DLIB Library
REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB library are reentrant, but the following functions and parts are
not reentrant as they need static data:

● Heap functions—malloc, free, realloc, calloc, as well as the C++ operators
new and delete

● Time functions—asctime, localtime, gmtime, mktime

● Multibyte functions—mbrlen, mbrtowc, mbsrtowc, wcrtomb, wcsrtomb,
wctomb

● The miscellaneous functions setlocale, rand, atexit, strerror, strtok

● Functions that use files in some way. This includes printf, scanf, getchar, and
putchar. The functions sprintf and sscanf are not included.

In addition, some functions share the same storage for errno. These functions are not
reentrant, since an errno value resulting from one of these functions can be destroyed
by a subsequent use of the function before it has been read. Among these functions are:

exp, exp10, ldexp, log, log10, pow, sqrt, acos, asin, atan2,
cosh, sinh, strtod, strtol, strtoul

Remedies for this are:

● Do not use non-reentrant functions in interrupt service routines

● Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

IAR DLIB Library
The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

● Adherence to a free-standing implementation of the ISO/ANSI standard for the
programming language C. For additional information, see the chapter
Implementation-defined behavior in this guide.

● Standard C library definitions, for user programs.

● Embedded C++ library definitions, for user programs.

● CSTARTUP, the module containing the start-up code. It is described in the chapter
The DLIB runtime environment in this guide.

● Runtime support libraries; for example low-level floating-point routines.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Library functions
● Intrinsic functions, allowing low-level use of ARM features. See the chapter
Intrinsic functions for more information.

In addition, the IAR DLIB Library includes some added C functionality, partly taken
from the C99 standard, see Added C functionality, page 276.

C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter
Compiler extensions.

The following table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

float.h Testing floating-point type properties

inttypes.h Defining formatters for all types defined in stdint.h

iso646.h Using Amendment 1—iso646.h standard header

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdarg.h Accessing a varying number of arguments

stdbool.h Adds support for the bool data type in C.

stddef.h Defining several useful types and macros

stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats

wchar.h Support for wide characters

wctype.h Classifying wide characters

Table 32: Traditional standard C header files—DLIB
DARM-2

Part 2. Reference information 273

274

IAR DLIB Library
C++ HEADER FILES

This section lists the C++ header files.

Embedded C++

The following table lists the Embedded C++ header files:

The following table lists additional C++ header files:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception handling

fstream Defining several I/O stream classes that manipulate external files

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes

iosfwd Declaring several I/O stream classes before they are necessarily defined

iostream Declaring the I/O stream objects that manipulate the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several I/O stream classes that manipulate string containers

stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer I/O stream operations

string Defining a class that implements a string container

strstream Defining several I/O stream classes that manipulate in-memory character
sequences

Table 33: Embedded C++ header files

Header file Usage

fstream.h Defining several I/O stream classes that manipulate external files

iomanip.h Declaring several I/O stream manipulators that take an argument

iostream.h Declaring the I/O stream objects that manipulate the standard streams

new.h Declaring several functions that allocate and free storage

Table 34: Additional Embedded C++ header files—DLIB
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Library functions
Extended Embedded C++ standard template library

The following table lists the Extended EC++ standard template library (STL) header
files:

Using standard C libraries in C++

The C++ library works in conjunction with 15 of the header files from the standard C
library, sometimes with small alterations. The header files come in two forms—new and
traditional—for example, cassert and assert.h.

The following table shows the new header files:

Header file Description

algorithm Defines several common operations on sequences

deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm

hash_set A set associative container, based on a hash algorithm

iterator Defines common iterators, and operations on iterators

list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences

queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Table 35: Standard template library header files

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h

Table 36: New standard C header files—DLIB
DARM-2

Part 2. Reference information 275

276

IAR DLIB Library
LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example
memcpy, memset, and strcat.

ADDED C FUNCTIONALITY

The IAR DLIB Library includes some added C functionality, partly taken from the C99
standard.

The following include files provide these features:

● ctype.h

● inttypes.h

● math.h

● stdbool.h

● stdint.h

● stdio.h

● stdlib.h

● wchar.h

climits Testing integer type properties

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

cstdarg Accessing a varying number of arguments

cstdbool Adds support for the bool data type in C.

cstddef Defining several useful types and macros

cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

cwchar Support for wide characters

cwctype Classifying wide characters

Header file Usage

Table 36: New standard C header files—DLIB (Continued)
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Library functions
● wctype.h

ctype.h

In ctype.h, the C99 function isblank is defined.

inttypes.h

This include file defines the formatters for all types defined in stdint.h to be used by
the functions printf, scanf, and all their variants.

math.h

In math.h all functions exist in a float variant and a long double variant, suffixed
by f and l respectively. For example, sinf and sinl.

The following C99 macro symbols are defined:

HUGE_VALF, HUGE_VALL, INFINITY, NAN, FP_INFINITE, FP_NAN, FP_NORMAL,
FP_SUBNORMAL, FP_ZERO, MATH_ERRNO, MATH_ERREXCEPT, math_errhandling.

The following C99 macro functions are defined:

fpclassify, signbit, isfinite, isinf, isnan, isnormal, isgreater, isless,
islessequal, islessgreater, isunordered.

The following C99 type definitions are added:

float_t, double_t.

stdbool.h

This include file makes the bool type available if the Allow IAR extensions (-e) option
is used.

stdint.h

This include file provides integer characteristics.

stdio.h

In stdio.h, the following C99 functions are defined:

vscanf, vfscanf, vsscanf, vsnprintf, snprintf

The functions printf, scanf, and all their variants have added functionality from the
C99 standard. For reference information about these functions, see the library reference
available from the Help menu.
DARM-2

Part 2. Reference information 277

278

IAR DLIB Library
The following functions providing I/O functionality for libraries built without FILE
support are definded:

stdlib.h

In stdlib.h, the following C99 functions are defined:

_Exit, llabs, lldiv, strtoll, strtoull, atoll, strtof, strtold.

The function strtod has added functionality from the C99 standard. For reference
information about this functions, see the library reference available from the Help
menu.

The __qsortbbl function is defined; it provides sorting using a bubble sort algorithm.
This is useful for applications that have a limited stack.

wchar.h

In wchar.h, the following C99 functions are defined:

vfwscanf, vswscanf, vwscanf, wcstof, wcstolb.

wctype.h

In wctype.h, the C99 function iswblank is defined.

__write_array Corresponds to fwrite on stdout.

__ungetchar Corresponds to ungetc on stdout.

__gets Corresponds to fgets on stdin.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration
file
This chapter describes the purpose of the linker configuration file and
describes its contents.

To read this chapter you need to be familiar with the concept of sections, see
Modules and sections, page 38.

Overview
To link and locate an application in memory according to your requirements, ILINK
needs information about how to handle sections and how to place them into the available
memory regions. In other words, ILINK needs a configuration, passed to it by means of
the linker configuration file.

This file consists of a sequence of directives and typically, provides facilities for:

● Defining available addressable memories

giving the linker information about the maximum size of possible addresses and
defining the available physical memory, as well as dealing with memories that can
be addressed in different ways.

● Defining the regions of the available memories that are populated with ROM or
RAM

giving the start and end address for each region.

● Section groups

dealing with how to group sections into blocks and overlays depending on the section
requirements.

● Defining how to handle initialization of the application

giving information about which sections that are to be initialized, and how that
initialization should be made.

● Memory allocation

defining where—in what memory region—each set of sections should be placed.

● Using symbols, expressions, and numbers

expressing addresses and sizes, etc, in the other configuration directives. The
symbols can also be used in the application itself.
DARM-2

Part 2. Reference information 279

280

Defining memories and regions
● Structural configuration

meaning that you can include or exclude directives depending on a condition, and to
split the configuration file into several different files.

Comments can be written either as C comments (/*...*/) or as C++ comments
(//...).

Defining memories and regions
ILINK needs information about the available memory spaces, or more specifically it
needs information about:

● The maximum size of possible addressable memories

The define memory directive defines a memory space with a given size, which is
the maximum possible amount of addressable memory, not necessarily physically
available. See Define memory directive, page 280.

● Available physical memory

The define region directive defines a region in the available memories in what
specific sections of application code and sections of application data can be placed.
See Define region directive, page 281.

A region consists of one or several memory ranges. A range is a continuous sequence
of bytes in a memory and several ranges can be expressed by using region
expressions. See Region expression, page 283.

Define memory directive

Syntax define memory name with size = size_expr [,unit-size];

where unit-size is one of:

unitbitsize = bitsize_expr
unitbytesize = bytesize_expr

and where expr is an expression, see Expressions, page 295.

Parameters
size_expr Specifies how many units the memory space contains;

always counted from address zero.

bitsize_expr Specifies how many bits each unit contains.

bytesize_expr Specifies how many bytes each unit contains. Each byte
contains 8 bits.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
Description The define memory directive defines a memory space with a given size, which is the
maximum possible amount of addressable memory, not necessarily physically
available. This sets the limits for the possible addresses to be used in the linker
configuration file. For many microcontrollers, one memory space is sufficient.
However, some microcontrollers require two or more. For example, a Harvard
architecture usually requires two different memory spaces, one for code and one for
data. If no unit-size is given, the unit contains 8 bits.

Example /* Declare the memory space Mem of four Gigabytes */
define memory Mem with size = 4G;

Define region directive

Syntax define region name = region-expr;

where region-expr is a region expression, see also Regions, page 281.

Parameters

Description The define region directive defines a region in which specific sections of code and
sections of data can be placed. A region consists of one or several memory ranges, where
each memory range consists of a continuous sequence of bytes in a specific memory.
Several ranges can be combined by using region expressions. Note that those ranges do
not need to be consecutive or even in the same memory.

Example /* Define the 0x10000-byte code region ROM located at address
 0x10000 in memory Mem */
define region ROM = Mem:[from 0x10000 size 0x10000];

Regions
A region is s a set of non-overlapping memory ranges. A region expression is built up
out of region literals and set operations (union, intersection, and difference) on regions.

Region literal

Syntax memory-name:[from expr { to expr | size expr }

 [repeat expr [displacement expr]]]

where expr is an expression, see Expressions, page 295.

name The name of the region.
DARM-2

Part 2. Reference information 281

282

Regions
Parameters

Description A region literal consists of one memory range. When you define a range, the memory it
resides in, a start address, and a size must be specified. The range size can be stated
explicitly by specifying a size, or implicitly by specifying the final address of the range.
The final address is included in the range and a zero-sized range will only contain an
address. A range can span over the address zero and the range can even be expressed by
unsigned values, because it is known where the memory wraps.

The repeat parameter will create a region literal that contains several ranges, one for
each repeat. This is useful for banked or far regions.

Example /* The 5-byte size range spans over the address zero */
Mem:[from -2 to 2]

/* The 512-byte size range spans over zero, in a 64-Kbyte memory
*/
Mem:[from 0xFF00 to 0xFF]

/* Defining several ranges in the same memory, a repeating
 literal */
Mem:[from 0 size 0x100 repeat 3 displacement 0x1000]

/* Resulting in a region containing:
 Mem:[from 0 size 0x100]
 Mem:[from 0x1000 size 0x100]
 Mem:[from 0x2000 size 0x100]
*/

See also Define region directive, page 281, and Region expression, page 283.

memory-name The name of the memory space in which the region literal will be
located.

from The start address of the memory range (inclusive).

to The end address of the memory range (inclusive).

size The size of the memory range.

repeat Defines several ranges in the same memory for the region literal.

displacement Displacement from the previous range start in the repeat sequence.
Default displacement is the same value as the range size.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
Region expression

Syntax region-operand
 | region-expr | region-operand
 | region-expr - region-operand
 | region-expr & region-operand

where region-operand is one of:

(region-expr)
region-name
region-literal
empty-region

where region-name is a region, see Define region directive, page 281

where region-literal is a region literal, see Region literal, page 281

and where empty-region is an empty region, see Empty region, page 284.

Description Normally, a region consists of one memory range, which means a region literal is
sufficient to express it. When a region contains several ranges, possibly in different
memories, it is instead necessary to use a region expression to express it. Region
expressions are actually set expressions on sets of memory ranges.

To create region expressions, three operators are available: union (|), intersection (&),
and difference (-). These operators work as in set theory. For example, if you have the
sets A and B, then the result of the operators would be:

● A | B: all elements in either set A or set B

● A & B: all elements in both set A and B

● A - B: all elements in set A but not in B.

Example /* Resulting in a range starting at 1000 and ending at 2FFF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] | Mem:[from 0x1500 to 0x2FFF]

/* Resulting in a range starting at 1500 and ending at 1FFF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] & Mem:[from 0x1500 to 0x2FFF]

/* Resulting in a range starting at 1000 and ending at 14FF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] - Mem:[from 0x1500 to 0x2FFF]
DARM-2

Part 2. Reference information 283

284

Section handling
/* Resulting in two ranges. The first starting at 1000 and ending
 at 1FFF, the second starting at 2501 and ending at 2FFF.
 Both located in memory Mem */
Mem:[from 0x1000 to 0x2FFF] - Mem:[from 0x2000 to 0x24FF]

Empty region

Syntax []

Description The empty region does not contain any memory ranges. If the empty region is used in a
placement directive that actually is used for placing one or more sections, ILINK will
issue an error.

Example define region Code = Mem:[from 0 size 0x10000];
if (Banked) {
 define region Bank = Mem:[from 0x8000 size 0x1000];
} else {
 define region Bank = [];
}
define region NonBanked = Code - Bank;

/* Depending on the Banked symbol, the NonBanked region is either
 one range with 0x10000 bytes, or two ranges with 0x8000 and
 0x7000 bytes, respectively. */

See also Region expression, page 283.

Section handling
Section handling describes how ILINK should handle the sections of the execution
image, which means:

● Placing sections in regions

The place at and place into directives place sets of sections with similar
attributes into previously defined regions. See Place at directive, page 290 and Place
in directive, page 291.

● Making sets of sections with special requirements

The block directive makes it possible to create empty sections with specific sizes
and alignments, sequentially sorted sections of different types, etc.

The overlay directive makes it possible to create an area of memory that can
contain several overlay images. See Define block directive, page 285, and Define
overlay directive, page 286.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
● Initializing the application

The directives initialize and do not initialize control how the application
should be started. With these directives, the application can initialize global symbols
at startup, as well as copy pieces of code. The initializers can be stored in several
ways, for example they can be compressed. See Initialize directive, page 287 and Do
not initialize directive, page 289.

● Keeping removed sections

The keep directive retains sections even though they are not referred to by the rest
of the application, which means it is equivalent to the root concept in the assembler
and compiler. See Keep directive, page 290.

Define block directive

Syntax define block name
 [with param, param...]
{
 extended-selectors
}
[except
 {
 section_selectors
 }];

where param can be one of:

size = expr
maximum size = expr
alignment = expr
fixed order

and where the rest of the directive selects sections to include in the block, see Section
selection, page 291.

Parameters
name The name of the defined block.

size Customizes the size of the block. By default, the size of a block is
the sum of its parts dependent of its contents.

maximum size Specifies an upper limit for the size of the block. An error is
generated if the sections in the block do not fit.

alignment Specifies a minimum alignment for the block. If any section in the
block has a higher alignment than the minimum alignment, the block
will have that alignment.
DARM-2

Part 2. Reference information 285

286

Section handling
Description The block directive defines a named set of sections. By defining a block you can create
empty blocks of bytes that can be used, for example as stacks or heaps. Another use for
the directive is to group certain types of sections, consecutive or non-consecutive. A
third example of use for the directive is to group sections into one memory area to access
the start and end of that area from the application.

Example /* Create a 0x1000-byte block for the heap */
define block HEAP with size = 0x1000, alignment = 8 { };

See also Interaction between the tools and your application, page 113. See Define overlay
directive, page 286 for an accessing example.

Define overlay directive

Syntax define overlay name [with param, param...]
{
 extended-selectors;
}
[except
 {
 section_selectors
 }];

For information about extended selectors and except clauses, see Section selection, page
291.

Parameters

fixed order Places sections in fixed order; if not specified, the order of the
sections will be arbitrary.

name The name of the overlay.

size Customizes the size of the overlay. By default, the size of a overlay
is the sum of its parts dependent of its contents.

maximum size Specifies an upper limit for the size of the overlay. An error is
generated if the sections in the overlay do not fit.

alignment Specifies a minimum alignment for the overlay. If any section in the
overlay has a higher alignment than the minimum alignment, the
overlay will have that alignment.

fixed order Places sections in fixed order; if not specified, the order of the
sections will be arbitrary.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
Description The overlay directive defines a named set of sections. In contrast to the block
directive, the overlay directive can define the same name several times. Each definition
will then be grouped in memory at the same place as all other definitions of the same
name. This creates an overlaid memory area, which can be useful for an application that
has several independent sub-applications.

Place each sub-application image in ROM and reserve a RAM overlay area that can hold
all sub-applications. To execute a sub-application, first copy it from ROM to the RAM
overlay. Note that ILINK does not help you with managing interdependent overlay
definitions, apart from generating a diagnostic message for any reference from one
overlay to another overlay.

The size of an overlay will be the same size as the largest definition of that overlay name
and the alignment requirements will be the same as for the definition with the highest
alignment requirements.

Note: Sections that have been overlaid must be split into a RAM and a ROM part and
you must take care of all the copying needed.

See also Manual initialization, page 52.

Initialize directive

Syntax initialize { by copy | manually }
 [with param, param...]
{
 section-selectors
}
[except
 {
 section_selectors
 }];

where param is one of:

packing = { none | zeros | auto }
copy routine = functionname

and where the rest of the directive selects sections to include in the block. See Section
selection, page 291.

Parameters
by copy Splits the section into sections for initializers and initialized data,

and handles the initialization at application startup automatically.

manually Splits the section into sections for initializers and initialized data.
The initialization at application startup is not handled automatically.
DARM-2

Part 2. Reference information 287

288

Section handling
Description The initialize directive splits the initialization section into one section holding the
initializers and another section holding the initialized data. You can choose whether the
initialization at startup should be handled automatically (initialize by copy) or
whether you should handle it yourself (initialize manually).

When using the packing option auto (default for initialize by copy), ILINK will
automatically choose an appropriate packing algorithm for the initializers and
automatically revert it at the initialization process at the startup of the application. You
can override this by specifying a different packing option to be used. You can also
override the method for copying the initializers by using the copy routine option.

Optionally, ILINK will also produce a table that an initialization function in the system
startup code uses for copying the section contents from the initializer sections to the
corresponding original sections. Normally, the section content is initialized variables.

Zero-initialized sections are not affected by the initialize directive.

Sections that must execute before initialization has finished are not affected by the
initialize by copy directive. This includes the __low_level_init function and
anything it references.

Anything reachable from the program entry label is considered needed for initialization
unless reached via a section fragment with a label starting with __iar_init$$done.
The --log sections command can be used for creating a log of this process (in
addition to the more general process of marking section fragments to be included in the
application).

The initialize directive can be used for copying other things as well, for example
copying executable code from slow ROM to fast RAM. For another example, see Define
overlay directive, page 286.

packing Specifies how to handle the initializers. Choose between:

copy routine Uses your own initialization routine instead of the default routine. It
will be automatically called at the application startup.

none Disables compressing of the selected
section contents. This is default for
initialize manually.

zeros Compresses sequential bytes with the value
zero.

auto ILINK selects a suitable packing method.
This is default for initialize by copy.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
Example /* Copy all read-write sections automatically from ROM to RAM at
 program start */
initialize by copy { rw };
place in RAM { rw };
place in ROM { ro };

/* Initialize special sections (initializers placed in flash) */
initialize by copy with packing = none, copy routine =
 my_initializers { section .special };
place in RAM { section .special };
place in ROM { section .special_init };

See also Initialization at system startup, page 43, and Do not initialize directive, page 289.

Do not initialize directive

Syntax do not initialize
{
 section-selectors
}
[except
 {
 section-selectors
 }];

For information about extended selectors and except clauses, see Section selection, page
291.

Description The do not initialize directive specifies the sections that should not be initialized
by the system startup code. The directive can only be used on zeroinit sections.

The compiler keyword __no_init places variables into sections that must be handled
by a do not initialize directive.

Example /* Do not initialize read-write sections whose name ends with
 _noinit at program start */
do not initialize { rw section .*_noinit };
place in RAM { rw section .*_noinit };

See also Initialization at system startup, page 43, and Initialize directive, page 287.
DARM-2

Part 2. Reference information 289

290

Section handling
Keep directive

Syntax keep
{
 section-selectors
}
[except
 {
 section-selectors
 }];

For information about extended selectors and except clauses, see Section selection, page
291.

Description The keep directive specifies that all selected sections should be kept in the executable
image, even if there are no references to the sections.

Example keep { section .keep* } except {section .keep};

Place at directive

Syntax place at { address memory[: expr] | start of region_expr |
 end of region_expr }
{
 extended-selectors
}
[except
 {
 section-selectors
 }];

For information about extended selectors and except clauses, see Section selection, page
291.

Parameters

Description The place at directive places sections and blocks either at a specific address or, at the
beginning or the end of a region. It is not allowed to use the same address for two
different place at directives. It is also not possible to use an empty region in a place

address The address must be available in the supplied memory defined by
the define memory directive.

start of A region expression.

end of A region expression.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
at directive. If placed in a region, the sections and blocks will be placed prior to any
other sections or blocks placed in the same region with a place in directive.

The sections and blocks will be placed in the region in an arbitrary order. To specify a
specific order, use the block directive.

Example /* Place the read-only section .startup at the beginning of the
 code_region */
place at start of ROM { readonly section .startup };

See also Place in directive, page 291.

Place in directive

Syntax place in region-expr
{
 extended-selectors
}
 {
 section-selectors
 }];

where region-expr is a region expression, see also Regions, page 281.

and where the rest of the directive selects sections to include in the block. See Section
selection, page 291.

Description The place in directive places sections and blocks in a specific region. The sections and
blocks will be placed in the region in an arbitrary order.

To specify a specific order, use the block directive. The region can have several ranges.

Example /* Place the read-only sections in the code_region */
place in ROM { readonly };

See also Place at directive, page 290.

Section selection
The purpose of section selection is to specify—by means of section selectors and except
clauses—the sections that an ILINK directive should be applied to. All sections that
match one or more of the section selectors will be selected, and none of the sections
selectors in the except clause, if any. Each section selector can match sections on section
attributes, section name, and object or library name.
DARM-2

Part 2. Reference information 291

292

Section selection
Some directives provide functionality that requires more detailed selection capabilities,
for example directives that can be applied on both sections and blocks. In this case, the
extended-selectors are used.

Section-selectors

Syntax { [section-selector][, section-selector...] }

where section-selector is:

 [section-attribute][section sectionname][object filename]

where section-attribute is:

 [ro [code | data] | rw [code | data] | zi]

and where ro, rw, and zi also can be readonly, readwrite, and zeroinit,
respectively.

Parameters

Description A section selector selects all sections that match the section attribute, section name, and
the name of the object, where object is an object file, a library, or an object in a library.

ro or readonly Read-only sections.

rw or readwrite Read/write sections.

zi or zeroinit Zero-initialized sections. These sections should be initialized with
zeros during system startup.

code Sections that contain code.

data Sections that contain data.

sectionname The section name. If omitted, any section will be selected without
restriction on the section name. Two wildcards are allowed:
? matches any single character
* matches zero or more characters.

filename The name of the object, where object denotes an object file, a
library, or an object in a library. If omitted, sections from any object
will be selected without restriction on name. Two wildcards are
allowed:
? matches any single character
* matches zero or more characters.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
It is only possible to omit one or two of the three conditions. If the section attribute is
omitted, any section will be selected, without restrictions on the section attribute.

It is also possible to use only { } without any section selectors, which can be useful
when defining blocks.

Note that a section selector with narrower scope has higher priority than a more generic
section selector.

Example { rw } /* Selects all read-write sections */

{ section .mydata* } /* Selects only .mydata* sections */
/* Selects .mydata* sections available in the object special.o */
{ section .mydata* object special.o }

See also Initialize directive, page 287, Do not initialize directive, page 289, and Keep directive,
page 290.

Extended-selectors

Syntax { [extended-selector][, extended-selector...] }

where extended-selector is:

 [first | last]{ section-selector |
 block name [inline-block-def]|
 overlay name }

where inline-block-def is:

 [block-params] extended-selectors

Parameters

Description In addition to what the section-selector performs, extended-selector provides
functionality for placing blocks or overlays first or last in a set of sections, a block, or
an overlay. It is also possible to create an inline definition of a block. This means that
you can get more precise control over section placement.

first Places the selected name first in the region, block, or overlay.

last Places the selected name last in the region, block, or overlay.

block The name of the block.

overlay The name of the overlay.
DARM-2

Part 2. Reference information 293

294

Using symbols, expressions, and numbers
Example define block First { section .first }; /* Define a block holding
 the section .first */
define block Table { first block First }; /* Define a block where
 the first is placed
 first */

or, equivalently using an inline definition of the block First:

define block Table { first block First { section .first }};

See also Define block directive, page 285, Define overlay directive, page 286, and Place at
directive, page 290.

Using symbols, expressions, and numbers
In the linker configuration file, you can also:

● Define and export symbols

The define symbol directive defines a symbol with a specified value that can be
used in expressions in the configuration file. The symbol can also be exported to be
used by the application or the debugger. See Define symbol directive, page 294, and
Export directive, page 295.

● Use expressions and numbers

In the linker configuration file, expressions and numbers are used for specifying
addresses, sizes, et cetera. See Expressions, page 295.

Define symbol directive

Syntax define [exported] symbol name = expr;

Parameters

Description The define symbol directive defines a symbol with a specified value. The symbol can
then be used in expressions in the configuration file. The symbols defined in this way
work exactly like the symbols defined with the option --config_def outside of the
configuration file.

The define exported symbol variant of this directive is a shortcut for using the
directive define symbol in combination with the export symbol directive. On the

exported Exports the symbol to be usable by the executable image.

name The name of the symbol.

expr The symbol value.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
command line this would require both a --config_def option and a
--define_symbol option to achieve the same effect.

Note:

● A symbol cannot be redefined

● Symbols that are either prefixed by _X, where X is a capital letter, or that contain
__ (double underscore) are reserved for toolset vendors.

Example /* Define the symbol my_symbol with the value 4 */
define symbol my_symbol = 4;

See also Export directive, page 295 and Interaction between ILINK and the application, page 54.

Export directive

Syntax export symbol name;

Parameters

Description The export directive defines a symbol to be exported, so that it can be used from the
executable image as well as from a global label. The application, or the debugger, can
then refer to it for setup purposes etc.

Example /* Define the symbol my_symbol to be exported */
export symbol my_symbol;

Expressions

Syntax An expression is built up of the following constituents:

expression binop expression
unop expression
expression ? expression : expression
(expression)
number
symbol
func-operator

where binop is one of the following binary operators:

+, -, *, /, %, <<, >>, <, >, ==, !=, &, ^, |, &&, ||

name The name of the symbol.
DARM-2

Part 2. Reference information 295

296

Using symbols, expressions, and numbers
where unop is one of the following unary operators:

+, -, !, ~

where number is a number, see Numbers, page 296

where symbol is a defined symbol, see Define symbol directive, page 294 and
--config_def, page 184

and where func-operator is one of the following function-like operators:

where expr is an expression, and r is a region expression, see Region expression, page
283.

Description In the linker configuration file, an expression is a 65-bit value with the range -2^64 to
2^64. The expression syntax closely follows C syntax with some minor exceptions.
There are no assignments, casts, pre- or post-operations, and no address operations (*,
&, [], ->, and .). Some operations that extract a value from a region expression, etc, use
a syntax resembling that of a function call. A boolean expression returns 0 (false) or 1
(true).

Numbers

Syntax nr [nr-suffix]

where nr is either a decimal number or a hexadecimal number (0x... or 0X...).

and where nr-suffix is one of:

K /* Kilo = (1 << 10) 1024 */
M /* Mega = (1 << 20) 1048576 */
G /* Giga = (1 << 30) 1073741824 */
T /* Tera = (1 << 40) 1099511627776 */
P /* Peta = (1 << 50) 1125899906842624 */

minimum(expr,expr) Returns the smallest of the two parameters.

maximum(expr,expr) Returns the largest of the two parameters.

isempty(r) Returns True if the region is empty, otherwise False.

isdefinedsymbol(expr-symbol)Returns True if the expression symbol is defined,
otherwise False.

start(r) Returns the lowest address in the region.

end(r) Returns the highest address in the region.

size(r) Returns the size of the complete region.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

The linker configuration file
Description A number can be expressed either by normal C means or by suffixing it with a set of
useful suffixes, which provides a compact way of specifying numbers.

Example 1024 is the same as 0x400, which is the same as 1K.

Structural configuration
The structural directives provide means for creating structure within the configuration,
such as:

● Conditional inclusion

An if directive includes or excludes other directives depending on a condition,
which makes it possible to have directives for several different memory
configurations in the same file. See If directive, page 297.

● Dividing the linker configuration file into several different files

The include directive makes it possible to divide the configuration file into several
logically distinct files. See Include directive, page 298.

If directive

Syntax if (expr) {
 directives
[} else if (expr) {
 directives]
[} else {
 directives]
}

where expr is an expression, see Expressions, page 295.

Parameters

Description An if directive includes or excludes other directives depending on a condition, which
makes it possible to have directives for several different memory configurations, for
example both a banked and non-banked memory configuration, in the same file.

The directives inside an if part, else if part, or an else part are syntax checked and
processed regardless of whether the conditional expression was true or false, but only
the directives in the part where the conditional expression was true, or the else part if
none of the conditions were true, will have any effect outside the if directive. The if
directives can be nested.

directives Any ILINK directive.
DARM-2

Part 2. Reference information 297

298

Structural configuration
Example See Empty region, page 284.

Include directive

Syntax include filename;

Parameters

Description The include directive makes it possible to divide the configuration file into several
logically distinct files. For instance, files that you need to change often and files that you
seldom edit.

filename A string literal where both / and \ can be used as the directory
delimiter.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Section reference
The compiler places code and data into sections. Based on a configuration
specified in the linker configuration file, ILINK places sections in memory.

This chapter lists all predefined sections and blocks that are available for the
IAR build tools for ARM, as well as gives detailed reference information about
each section.

For more information about sections, see the chapter Modules and sections,
page 38.

Summary of sections
The table below lists the sections and blocks that are used by the IAR build tools:

Section Description

.bss Holds zero-initialized static and global variables.

CSTACK Holds the stack used by C or C++ programs.

.cstart Holds the startup code.

.data_memattr Holds __memattr static and global initialized variables, including the
initializers.

.difunct Holds pointers to code, typically C++ constructors, that should be
executed by the system startup code before main is called.

HEAP Holds the heap used for dynamically allocated data.

.iar.dynexit Holds the atexit table.

.intvec Holds the reset and interrupt vectors.

IRQ_STACK Holds the stack for interrupt requests, IRQ, and exceptions.

.noinit Holds __no_init static and global variables.

.rodata Holds constant data.

.text Holds the program code.

Table 37: Section summary
DARM-2

Part 2. Reference information 299

300

Descriptions of sections and blocks
Descriptions of sections and blocks
This section gives reference information about each section, where the:

● Description describes what type of content the section is holding and, where
required, how the section is treated by the linker

● Memory placement describes memory placement restrictions.

For information about how to allocate sections in memory by modifying the linker
configuration file, see Placing code and data—the linker configuration file, page 40.

.bss

Description Holds zero-initialized static and global variables.

Memory placement This section can be placed anywhere in memory.

CSTACK

Description Block that holds the internal data stack.

Memory placement This section can be placed anywhere in memory.

See also Setting up the stack, page 50.

.cstart

Description Holds the startup code.

Memory placement This section can be placed anywhere in memory.

.data

Description Holds static and global initialized variables inlcuding initializers.

Memory placement This section can be placed anywhere in memory.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Section reference
.data_init

Description Holds initializers for .data sections. This section is created by the linker.

Memory placement This section can be placed anywhere in memory.

.difunct

Description Holds the dynamic initialization vector used by C++.

Memory placement This section can be placed anywhere in memory.

HEAP

Description Holds the heap used for dynamically allocated data, in other words data allocated by
malloc and free, and in C++, new and delete.

Note: This section is only used when you use the DLIB library.

Memory placement This section can be placed anywhere in memory.

See also Setting up the heap, page 50.

.iar.dynexit

Description Holds the table of calls to be made at exit.

Memory placement This section can be placed anywhere in memory.

See also Setting up the atexit limit, page 50.

.intvec

Description Holds the reset vector and exceptions vectors which contain branch instructions to
cstartup, interrupt service routines etc.

Memory placement Must be placed at address range 0x00 to 0x3F.
DARM-2

Part 2. Reference information 301

302

Descriptions of sections and blocks
IRQ_STACK

Description Holds the stack which is used when servicing IRQ exceptions. Other stacks may be
added as needed for servicing other exception types: FIQ, SVC, ABT, and UND. The
cstartup.s file must be modified to initialize the exception stack pointers used.

Note: This section is not used when compiling for Cortex-M.

Memory placement This section can be placed anywhere in memory.

See also Exception stacks, page 112.

.noinit

Description Holds static and global __no_init variables.

Memory placement This section can be placed anywhere in memory.

.rodata

Description Holds __memattr constant data.

Memory placement This section can be placed anywhere in memory.

.text

Description Holds program code, except the code for system initialization.

Memory placement This section can be placed anywhere in memory.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
This chapter describes the IAR utilities that are available:

● The IAR Archive Builder—iarchive—creates a library (an archive) from a
number of ELF object files

● The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as fill, checksum, format conversions, etc)

● The IAR ELF Dumper for ARM—ielfdumparm—creates a text
representation of the contents of an ELF relocatable or executable image

● The IAR Absolute Symbol Exporter—isymexport—exports absolute
symbols from a ROM image file, so that they can be used when linking an
add-on application.

The IAR Archive Builder—iarchive
The IAR Archive Builder, iarchive, can create a library (an archive) file from a
number of ELF object files.

A library file contains a number of relocatable ELF object modules, each of which can
be independently used by a linker. In contrast with object modules specified directly to
the linker, each module in a library is only included if it is needed.

Note: To build a library in the IDE, see the IAR Embedded Workbench® IDE User
Guide for ARM®.

INVOCATION SYNTAX

The invocation syntax for the archive builder is:

iarchive libraryfile objectfile1 ... objectfileN

Parameters

The parameters are:

Parameter Description

libraryfile The file to which the module(s) in the object file(s) will be sent.

Table 38: iarchive parameters
DARM-2

Part 2. Reference information 303

304

The IAR Archive Builder—iarchive
Example

The following example creates a library file called mylibrary.o from the source object
files module1.o, module.2.o, and module3.o:

iarchive mylibrary.o module1.o module2.o module3.o.

SUMMARY OF IARCHIVE OPTIONS

The following table summarizes the iarchive command line options:

DESCRIPTIONS OF OPTIONS

The following section gives detailed reference information about each iarchive
option.

-o

Syntax -o libraryfile

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 150.

Description By default, iarchive assumes the first argument after the iarchive command to be
the name of the destination library. Use this option to explicitly specify a different
filename for the library.

objectfile1

objectfileN

The object file(s) containing the module(s) to build the library from.

Command line option Description

-o Specifies the library file.

-f Extends the command line.

--verbose, -V Reports all performed operations.

Table 39: iarchive options summary

Parameter Description

Table 38: iarchive parameters (Continued)
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
-f

Syntax -f filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 150.

Descriptions Use this option to make iarchive read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

--verbose, -V

Syntax --verbose
-V

Description Use this option to make iarchive report which operations it performs, in addition to
giving diagnostic messages.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iarchive:

La001: could not open file filename

iarchive failed to open an object file.

La002: illegal path pathname

The path pathname is not a valid path.

La003: filename is not an ELF file

The file filename does not appear to be an ELF file. The IAR Archive Builder can only
create an archive file from ELF files. If you need to create an archive containing other
kinds of files, use an ar tool, like the GNU one provided.
DARM-2

Part 2. Reference information 305

306

The IAR ELF Tool—ielftool
La004: ar header field width exceeded: string has more than n
characters

iarchive could not produce a valid archive file because the contents of one of the fields
of the directory part of the archive exceeded its field width.

Ms003: could not open file filename for writing

iarchive failed to open the archive file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file filename. A possible reason for this is that the
volume is full.

Ms005: problem closing file filename

An error occurred while closing the file filename.

The IAR ELF Tool—ielftool
The IAR ELF Tool, ielftool, can generate a checksum on specific ranges of
memories. This checksum can be compared with a checksum calculated on your
application.

The source code for ielftool and a Microsoft VisualStudio 2005 template project are
available in the arm\src\elfutils directory. If you have specific requirements for
how the checksum should be generated or requirements for format conversion, you can
modify the source code accordingly.

INVOCATION SYNTAX

The invocation syntax for the IAR ELF Tool is:

ielftool [options] inputfile outputfile [options]

The ielftool tool will first process all the fill options, then it will process all the
checksum options (from left to right).
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
Parameters

The parameters are:

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 150.

Example

The following example fills a memory range with 0xFF and then calculates a checksum
on the same range:

ielftool my_input.out my_output.out --fill 0xFF;0–0xFF
 --checksum __checksum:4,crc32;0–0xFF

SUMMARY OF IELFTOOL OPTIONS

The following table summarizes the ielftool command line options:

Parameter Description

inputfile An absolute ELF executable image produced by the ILINK linker.

options Any of the available command line options, see Summary of ielftool
options, page 307.

outputfile An absolute ELF executable image.

Table 40: ielftool parameters

Command line option Description

--bin Sets the format of the output file to binary.

--checksum Generates a checksum.

--fill Specifies fill requirements.

--ihex Sets the format of the output file to Intel hex.

--silent Sets silent operation.

--simple Sets the format of the output file to Simple code.

--srec Sets the format of the output file to Motorola S-records.

--srec-len Restricts the number of data bytes in each S-record.

--srec-s3only Restricts the S-record output to contain only a subset of records.

--strip Removes debug information.

--verbose Prints all performed operations.

Table 41: ielftool options summary
DARM-2

Part 2. Reference information 307

308

The IAR ELF Tool—ielftool
DESCRIPTIONS OF OPTIONS

The following section gives detailed reference information about each ielftool
option.

--bin

Syntax --bin

Description Sets the format of the output file to binary.

To set related options, choose:

Project>Options>Output converter

--checksum

Syntax --checksum symbol:size,algorithm[:flags][,start];range[;range...]

Parameters
symbol The name of the symbol where the checksum value should be stored.

Note that it must exist in the symbol table in the input ELF file.

size The number of bytes in the checksum: 1, 2, or 4; must not be longer
than the size of the checksum symbol.

algorithm The checksum algorithm used; one of the following:
• sum, simple arithmetic sum over 8-bit values
• sum32, simple arithmetic sum over 32-bit values
• crc16, CRC16 (generating polynomial 0x11021); used by default
• crc32, CRC32 (generating polynomial 0x104C11DB7)
• crc=n, CRC with a generating polynomial of n.

flags 1 specifies one's complement and 2 specifies two's complement. m
reverses the order of the bits within each byte when calculating the
checksum. For example, 2m.

start By default, the initial value of the checksum is 0. If you need to change
the initial value, use start to supply a different value.

range The address range on which the checksum should be calculated.
Hexadecimal and decimal notation is allowed (for example,
0x8002–0x8FFF).
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
Description Use this option to calculate a checksum with the specified algorithm for the specified
ranges. The checksum will then replace the original value in symbol. A new absolute
symbol will be generated; with the symbol name suffixed with _value containing the
calculated checksum. This symbol can be used for accessing the checksum value later
when needed, for example during debugging.

If the --checksum option is used more than once on the command line, the options are
evaluated from left to right. If a checksum is calculated for a symbol that is specified in
a later evaluated --checksum option, an error is issued.

To set related options, choose:

Project>Options>Linker>Checksum

--fill

Syntax --fill pattern;range[;range...]

Parameters

Description Use this option to fill all gaps in one or more ranges with a pattern, which can be either
an expression or a hexadecimal string. The contents will be calculated as if the fill
pattern was repeatedly filled from the start address until the end address has been passed,
then the real contents will overwrite that pattern.

If the --fill option is used more than once on the command line, the fill ranges cannot
overlap each other.

To set related options, choose:

Project>Options>Linker>Checksum

range Specifies the address range for the fill. Hexadecimal and decimal
notation is allowed (for example, 0x8002–0x8FFF). Note that each
address must be 4-byte aligned.

pattern A hexadecimal string with the 0x prefix (for example, 0xEF)
interpreted as a sequence of bytes, where each pair of digits
corresponds to one byte (for example 0x123456, for the sequence of
bytes 0x12, 0x34, and 0x56). This sequence is repeated over the fill
area. If the length of the fill pattern is greater than 1 byte, it is repeated
as if it started at address 0.
DARM-2

Part 2. Reference information 309

310

The IAR ELF Tool—ielftool
--ihex

Syntax --ihex

Description Sets the format of the output file to Intel hex.

To set related options, choose:

Project>Options>Linker>Output converter

--silent

Syntax --silent

Description Causes ielftool to operate without sending any messages to the standard output
stream.

By default, ielftool sends various insignificant messages via the standard output
stream. You can use this option to prevent this. ielftool sends error and warning
messages to the error output stream, so they are displayed regardless of this setting.

This option is not available in the IDE.

--simple

Syntax --simple

Description Sets the format of the output file to Simple code.

To set related options, choose:

Project>Options>Output converter

--srec

Syntax --srec

Description Sets the format of the output file to Motorola S-records.

To set related options, choose:

Project>Options>Output converter
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
--srec-len

Syntax --srec-len=length

Parameters

Description Restricts the number of data bytes in each S-record. This option can be used in
combination with the --srec option.

This option is not available in the IDE.

--srec-s3only

Syntax --srec-s3only

Description Restricts the S-record output to contain only a subset of records, that is S3 and S7
records. This option can be used in combination with the --srec option.

This option is not available in the IDE.

--strip

Syntax --strip

Description Removes debug information from the ELF output file. Note that ielftool needs an
unstripped input ELF image. If you use the --strip option in the linker, remove it and
use the --strip option in ielftool instead.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

--verbose

Syntax --verbose

Description Use this option to make ielftool report which operations it performs, in addition to
giving diagnostic messages.

This option is not available in the IDE because this setting is always enabled.

length The number of data bytes in each S-record.
DARM-2

Part 2. Reference information 311

312

The IAR ELF Dumper for ARM—ielfdumparm
The IAR ELF Dumper for ARM—ielfdumparm
The IAR ELF Dumper for ARM, ielfdumparm, can be used for creating a text
representation of the contents of a relocatable or absolute ELF file.

ielfdumparm can be used in one of three ways:

● To produce a listing of the general properties of the input file and the ELF segments
and ELF sections it contains. This is the default behavior when no command line
options are used.

● To also include a textual representation of the contents of each ELF section in the
input file. To select this behavior, use the command line option --all.

● To produce a textual representation of selected ELF sections from the input file. To
select this behavior, use the command line option --section.

INVOCATION SYNTAX

The invocation syntax for ielfdumparm is:

ielfdumparm filename

Note: ielfdumparm is a command line tool which is not primarily intended to be used
in the IDE.

Parameters

The parameters are:

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 150.

SUMMARY OF IELFDUMPARM OPTIONS

The following table summarizes the ielfdumparm command line options:

Parameter Description

filename An ELF relocatable or executable file to use as input.

Table 42: ielfdumparm parameters

Command line option Description

--all Generates output for all input sections regardless of their names or
numbers.

-o Specifies an output file.

Table 43: ielfdumparm options summary
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
DESCRIPTIONS OF OPTIONS

The following section gives detailed reference information about each ielfdumparm
option.

--all

Syntax --all

Description Use this option to include the contents of all ELF sections in the output, in addition to
the general properties of the input file. Sections are output in index order, except that
each relocation section is output immediately after the section it holds relocations for.

By default, no section contents are included in the output.

-o, --output

Syntax -o {filename|directory}
--output {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 188.

Description By default, output from the dumper is directed to the console. Use this option to direct
the output to a file instead.

If you specify a directory, the output file will be named the same as the input file, only
with an extra id extension.

--raw Uses the generic hex/ascii output format for the contents of any
selected section, instead of any dedicated output format for that
section.

--section/-s Generates output for selected input sections.

Command line option Description

Table 43: ielfdumparm options summary (Continued)
DARM-2

Part 2. Reference information 313

314

The IAR Absolute Symbol Exporter—isymexport
--section, -s

Syntax --section section_number|section_name[,...]

--s section_number|section_name[,...]

Parameters

Description Use this option to dump the contents of a section with the specified number, or any
section with the specified name. If a relocation section is associated with a selected
section, its contents are output as well.

If you use this option, the general properties of the input file will not be included in the
output.

You can specify multiple section numbers or names by separating them with commas,
or by using this option more than once.

By default, no section contents are included in the output.

Example -s 3,17 /* Sections #3 and #17
-s .debug_frame,42 /* Any sections named .debug_frame and
 also section #42 */

--raw

Syntax --raw

Description By default, many ELF sections will be dumped using a text format specific to a
particular kind of section. Use this option to dump each selected ELF section using the
generic text format.

The generic text format dumps each byte in the section in hexadecimal format, and
where appropriate, as ASCII text.

The IAR Absolute Symbol Exporter—isymexport
The IAR Absolute Symbol Exporter, isymexport, can export absolute symbols from a
ROM image file, so that they can be used when you link an add-on application.

section_number The number of the section to be dumped.

section_name The name of the section to be dumped.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
INVOCATION SYNTAX

The invocation syntax for the IAR Absolute Symbol Exporter is:

isymexport [options] inputfile outputfile [options]

Parameters

The parameters are:

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 150.

SUMMARY OF ISYMEXPORT OPTIONS

The following table summarizes the isymexport command line options:

DESCRIPTIONS OF OPTIONS

The following section gives detailed reference information about each isymexport
option.

--edit

Syntax --edit steering_file

Description Use this option to specify a steering file to control which symbols that are included in
the isymexport output file, and also to rename some of the symbols if that is desired.

Parameter Description

inputfile A ROM image in the form of an executable ELF file (output from
linking).

options Any of the available command line options, see Summary of ielftool
options, page 307.

outputfile A relocatable ELF file that can be used as input to linking, and which
contains all or a selection of the absolute symbols in the input file. The
output file contains only the symbols, not the actual code or data
sections. A steering file can be used to control which symbols that are
included, and also to rename some of the symbols if that is desired.

Table 44: ielftool parameters

Command line option Description

--edit Specifies a steering file.

-f Extends the command line; for more information, see -f, page 164.

Table 45: isymexport options summary
DARM-2

Part 2. Reference information 315

316

The IAR Absolute Symbol Exporter—isymexport
See also Steering files, page 316.

STEERING FILES

A steering file can be used for controlling which symbols that are included, and also to
rename some of the symbols if that is desired. In the file, you can use show and hide
directives to select which public symbols from the input file that are to be included in
the output file. rename directives can be used for changing the names of symbols in the
input file.

Syntax

The following syntax rules apply:

● Each directive is specified on a separate line.

● C comments (/*...*/) and C++ comments (//...) can be used.

● Patterns can contain wildcard characters that match more than one possible
character in a symbol name.

● The * character matches any sequence of zero or more characters in a symbol name.

● The ? character matches any single character in a symbol name.

Example

rename xxx_* as YYY_* /*Change symbol prefix from xxx_ to YYY_ */
show YYY_* /* Export all symbols from YYY package */
hide *_internal /* But do not export internal symbols */
show zzz? /* Export zzza, but not zzzaaa */
hide zzzx /* But do not export zzzx */

Show directive

Syntax show pattern

Parameters

Description A symbol with a name that matches the pattern will be included in the output file unless
this is overridden by a later hide directive.

Example /* Include all public symbols ending in _pub. */
show *_pub

pattern A pattern to match against a symbol name.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
Hide directive

Syntax hide pattern

Parameters

Description A symbol with a name that matches the pattern will not be included in the output file
unless this is overridden by a later show directive.

Example /* Do not include public symbols ending in _sys. */
hide *_sys

Rename directive

Syntax rename pattern1 pattern2

Parameters

Description Use this directive to rename symbols from the output file to the input file. No exported
symbol is allowed to match more than one rename pattern.

rename directives can be placed anywhere in the steering file, but they are executed
before any show and hide directives. Thus, if a symbol will be renamed, all show and
hide directives in the steering file must refer to the new name.

If the name of a symbol matches a pattern1 pattern that contains no wildcard
characters, the symbol will be renamed pattern2 in the output file.

If the name of a symbol matches a pattern1 pattern that contains a wildcard character,
the symbol will be renamed pattern2 in the output file, with part of the name matching
the wildcard character preserved.

Example /* xxx_start will be renamed Y_start_X in the output file,
 xxx_stop will be renamed Y_stop_X in the output file. */
rename xxx_* Y_*_X

pattern A pattern to match against a symbol name.

pattern1 A pattern used for finding symbols to be renamed. The pattern can
contain no more than one * or ? wildcard character.

pattern2 A pattern used for the new name for a symbol. If the pattern contains a
wildcard character, it must be of the same kind as in pattern1.
DARM-2

Part 2. Reference information 317

318

The IAR Absolute Symbol Exporter—isymexport
DIAGNOSTIC MESSAGES

This section lists the messages produced by isymexport:

Es001: could not open file filename

isymexport failed to open the specified file.

Es002: illegal path pathname

The path pathname is not a valid path.

Es003: format error: message

A problem occurred while reading the input file.

Es004: no input file

No input file was specified.

Es005: no output file

An input file, but no output file was specified.

Es006: too many input files

More than two files were specified.

Es007: input file is not an ELF executable

The input file is not an ELF executable file.

Es008: unknown directive: directive

The specified directive in the steering file is not recognized.

Es009: unexpected end of file

The steering file ended when more input was required.

Es010: unexpected end of line

A line in the steering file ended before the directive was complete.

Es011: unexpected text after end of directive

There is more text on the same line after the end of a steering file directive.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

IAR utilities
Es012: expected text

The specified text was not present in the steering file, but must be present for the
directive to be correct.

Es013: pattern can contain at most one * or ?

Each pattern in the current directive can contain at most one * or one ? wildcard
character.

Es014: rename patterns have different wildcards

Both patterns in the current directive must contain exactly the same kind of wildcard.
That is, both must either contain:

● No wildcards

● Exactly one *

● Exactly one ?

This error occurs if the patterns are not the same in this regard.

Es014: ambiguous pattern match: symbol matches more than one
rename pattern

There is a symbol in the input file that matches more than one rename pattern.
DARM-2

Part 2. Reference information 319

320

The IAR Absolute Symbol Exporter—isymexport
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Implementation-defined
behavior
This chapter describes how the compiler handles the implementation-defined
areas of the C language.

ISO 9899:1990, the International Organization for Standardization standard -
Programming Languages - C (revision and redesign of ANSI X3.159-1989,
American National Standard), changed by the ISO Amendment 1:1994,
Technical Corrigendum 1, and Technical Corrigendum 2, contains an appendix
called Portability Issues. The ISO appendix lists areas of the C language that ISO
leaves open to each particular implementation.

Note: The compiler adheres to a freestanding implementation of the ISO
standard for the C programming language. This means that parts of a standard
library can be excluded in the implementation.

Descriptions of implementation-defined behavior
This section follows the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.
DARM-2

Part 2. Reference information 321

322

Descriptions of implementation-defined behavior
ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. There is no prototype declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the IAR DLIB runtime environment, see Customizing
system initialization, page 74.

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.

IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.
However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set.

See Locale, page 79.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Implementation-defined behavior
Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT. The
standard include file limits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Converting multibyte characters (6.1.3.4)

The only locale supported—that is, the only locale supplied with the IAR C/C++
Compiler—is the ‘C’ locale. If you use the command line option
--enable_multibytes, the IAR DLIB Library will support multibyte characters if
you add a locale with multibyte support or a multibyte character scanner to the library.

See Locale, page 79.

Range of 'plain' char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.
DARM-2

Part 2. Reference information 323

324

Descriptions of implementation-defined behavior
INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Basic data types, page 200, for information about the ranges for the different integer
types.

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854–1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Floating-point types, page 203, for information about the ranges and sizes for the
different floating-point types: float and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Implementation-defined behavior
Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 205, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 205, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff_t, page 206, for information about the ptrdiff_t.

REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types, page 200, for information about the alignment
requirement for data objects.

Sign of 'plain' bitfields (6.5.2.1)

A 'plain' int bitfield is treated as a unsigned int bitfield. All integer types are allowed
as bitfields.
DARM-2

Part 2. Reference information 325

326

Descriptions of implementation-defined behavior
Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields can straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

DECLARATORS

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Implementation-defined behavior
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file has not been
found, the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, with the exception of escape
sequences. Thus, to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"

Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect:

alignment

baseaddr

basic_template_matching

building_runtime

can_instantiate

codeseg

cspy_support

define_type_info

do_not_instantiate

early_dynamic_initialization

function

hdrstop

important_typedef

instantiate

keep_definition

memory

module_name
DARM-2

Part 2. Reference information 327

328

Descriptions of implementation-defined behavior
no_pch

once

__printf_args

public_equ

__scanf_args

STDC

system_include

vector

warnings

Default __DATE__ and __TIME__ (6.8.8)

The definitions for __TIME__ and __DATE__ are always available.

IAR DLIB LIBRARY FUNCTIONS

The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod() is zero, the function returns NaN; errno is set to
EDOM.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Implementation-defined behavior
signal() (7.7.1.1)

The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 82.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 78.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 78.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 78.

%p in printf() (7.9.6.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.
DARM-2

Part 2. Reference information 329

330

Descriptions of implementation-defined behavior
%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)

The generated message is:

usersuppliedprefix:errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(), malloc(), and realloc() functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort() function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 81.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 81.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Implementation-defined behavior
Message returned by strerror() (7.11.6.2)

The messages returned by strerror() depending on the argument is:

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
83.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See Time, page 83.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Table 46: Message returned by strerror()—IAR DLIB library
DARM-2

Part 2. Reference information 331

332

Descriptions of implementation-defined behavior
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
Glossary
This is a general glossary for terms
relevant to embedded systems
programming. Some of the terms do not
apply to the IAR Embedded
Workbench® version that you are using.

A
Absolute location
A specific memory address for an object
specified in the source code, as opposed
to the object being assigned a location
by the IAR ILINK Linker.

Address expression
An expression which has an address as
its value.

AEABI
Embedded Application Binary Interface
for ARM, defined by ARM Limited.

Application
The program developed by the user of
the IAR Systems toolkit and which will
be run as an embedded application on a
target processor.

Ar
The GNU binary utility for creating,
modifying, and extracting from
archives, that is, libraries. Ar is one of
the library builder delivered with IAR
Embedded Workbench. See also
Iarchive.

Architecture
A term used by computer designers to
designate the structure of complex
information-processing systems. It
includes the kinds of instructions and

data used, the memory organization and
addressing, and the methods by which
the system is implemented. The two
main architecture types used in
processor design are Harvard
architecture and von Neumann
architecture.

Archive
See Library.

Assembler directives
The set of commands that control how
the assembler operates.

Assembler options
Parameters you can specify to change
the default behavior of the assembler.

Assembler language
A machine-specific set of mnemonics
used to specify operations to the target
processor and input or output registers
or data areas. Assembler language
might sometimes be preferred over
C/C++ to save memory or to enhance
the execution speed of the application.

Attributes
See Section attributes.

Auto variables
The term refers to the fact that each time
the function in which the variable is
declared is called, a new instance of the
variable is created automatically. This
can be compared with the behavior of
local variables in systems using static
overlay, where a local variable only
exists in one instance, even if the
function is called recursively. Also
called local variables. Compare Register
variables.
DARM-2

333

334
B
Backtrace
Information that allows the IAR
C-SPY® Debugger to show, without
any runtime penalty, the complete stack
of function calls wherever the program
counter is, provided that the code comes
from compiled C functions.

Bank
See Memory bank.

Bank switching
Switching between different sets of
memory banks. This software technique
is used to increase a computer's usable
memory by allowing different pieces of
memory to occupy the same address
space.

Banked code
Code that is distributed over several
banks of memory. Each function must
reside in only one bank.

Banked data
Data that is distributed over several
banks of memory. Each data object must
fit inside one memory bank.

Banked memory
Has multiple storage locations for the
same address. See also Memory bank.

Bank-switching routines
Code that selects a memory bank.

Batch files
A text file containing operating system
commands which are executed by the
command line interpreter. In Unix, this
is called a “shell script” because it is the

Unix shell which includes the command
line interpreter. Batch files can be used
as a simple way to combine existing
commands into new commands.

Bitfield
A group of bits considered as a unit.

Block, in linker configuration file
A continuous piece of code or data. It is
either built up of blocks, overlays, and
sections or it is empty. A block has a
name, and the start and end address of
the block can be referred to from the
application. It can have attributes such
as a maximum size, a specific size, or a
minimum alignment. The contents can
have a specific order or not.

Breakpoint
1. Code breakpoint. A point in a
program that, when reached, triggers
some special behavior useful to the
process of debugging. Generally,
breakpoints are used for stopping
program execution or dumping the
values of some or all of the program
variables. Breakpoints can be part of the
program itself, or they can be set by the
programmer as part of an interactive
session with a debugging tool for
scrutinizing the program's execution.

2. Data breakpoint. A point in memory
that, when accessed, triggers some
special behavior useful to the process of
debugging. Generally, data breakpoints
are used to stop program execution
when an address location is accessed
either by a read operation or a write
operation.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
3. Immediate breakpoint. A point in
memory that, when accessed, trigger
some special behavior useful in the
process of debugging. Immediate
breakpoints are generally used for
halting the program execution in the
middle of a memory access instruction
(before or after the actual memory
access depending on the access type)
while performing some user-specified
action. The execution is then resumed.
This feature is only available in the
simulator version of C-SPY.

C
Calling convention
A calling convention describes the way
one function in a program calls another
function. This includes how register
parameters are handled, how the return
value is returned, and which registers
that will be preserved by the called
function. The compiler handles this
automatically for all C and C++
functions. All code written in assembler
language must conform to the rules in
the calling convention in order to be
callable from C or C++, or to be able to
call C and C++ functions. The C calling
convention and the C++ calling
conventions are not necessarily the
same.

Cheap
As in cheap memory access. A cheap
memory access either requires few
cycles to perform, or few bytes of code
to implement. A cheap memory access
is said to have a low cost. See Memory
access cost.

Checksum
A computed value which depends on the
ROM content of the whole or parts of
the application, and which is stored
along with the application in order to
detect corruption of the data. The
checksum is produced by the linker to
be verified with the application. There
are several algorithms supported.
Compare CRC (cyclic redundancy
checking).

Code banking
See Banked code.

Code model
The code model controls how code is
generated for an application. Typically,
the code model controls behavior such
as how functions are called and in which
code section functions will be located.
All object files of an application must be
compiled using the same code model.

Code pointers
A code pointer is a function pointer. As
many cores allow several different
methods of calling a function, compilers
for embedded systems usually provide
the users with the ability to use all these
methods.

Do not confuse code pointers with data
pointers.

Code sections
Read-only sections that contain code.
See also Section.

Compilation unit
See Translation unit.

Compiler options
Parameters you can specify to change
the default behavior of the compiler.
DARM-2

335

336
Configuration
See ILINK configuration, and linker
configuration file.

Cost
See Memory access cost.

CRC (cyclic redundancy checking)
A number derived from, and stored
with, a block of data in order to detect
corruption. A CRC is based on
polynomials and is a more advanced
way of detecting errors than a simple
arithmetic checksum. Compare
Checksum.

C-SPY options
Parameters you can specify to change
the default behavior of the IAR C-SPY
Debugger.

Cstartup
Code that sets up the system before the
application starts executing.

C-style preprocessor
A preprocessor is either a stand-alone
application or an integrated part of a
compiler, that performs preprocessing
of the input stream before actual
compilation takes place. A C-style
preprocessor follows the rules set up in
the ANSI specification of the C
language and implements commands
like #define, #if, and #include, which
are used to handle textual macro
substitution, conditional compilation,
and inclusion of other files.

D
Data banking
See Banked data.

Data model
The data model specifies the default
memory type. This means that the data
model typically controls one or more of
the following: The method used and the
code generated to access static and
global variables, dynamically allocated
data, and the runtime stack. It also
controls the default pointer type and in
which data sections static and global
variables will be located. A project can
only use one data model at a time, and
the same model must be used by all user
modules and all library modules in the
project.

Data pointers
Many cores have different addressing
modes in order to access different
memory types or address spaces.
Compilers for embedded systems
usually have a set of different data
pointer types so they can access the
available memory efficiently.

Data representation
How different data types are laid out in
memory and what value ranges they
represent.

Declaration
A specification to the compiler that an
object, a variable or function, exists.
The object itself must be defined in
exactly one translation unit (source file).
An object must either be declared or
defined before it is used. Normally an
object that is used in many files is
defined in one source file. A declaration
is normally placed in a header file that is
included by the files that use the object.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
For example:

/* Variable "a" exists
somewhere. Function
 "b" takes two int parameters
and returns an
 int. */

extern int a;
int b(int, int);

Definition
The variable or function itself. Only one
definition can exist for each variable or
function in an application. See also
Tentative definition.

For example:

int a;
int b(int x, int y)
{
 return x + y;
}

Demangling
To restore a mangled name to the more
common C/C++ name. See also
Mangling.

Derivative
One of two or more processor variants
in a series or family of microprocessors
or microcontrollers.

Device description file
A file used by the IAR C-SPY Debugger
that contains various device-specific
information such as I/O registers (SFR)
definitions, interrupt vectors, and
control register definitions.

Device driver
Software that provides a high-level
programming interface to a particular
peripheral device.

Digital signal processor (DSP)
A device that is similar to a
microprocessor, except that the internal
CPU has been optimized for use in
applications involving discrete-time
signal processing. In addition to
standard microprocessor instructions,
digital signal processors usually support
a set of complex instructions to perform
common signal-processing
computations quickly.

Disassembly window
A C-SPY window that shows the
memory contents disassembled as
machine instructions, interspersed with
the corresponding C source code (if
available).

DWARF
An industry-standard debugging format
which supports source level debugging.
This is the format used by the IAR
ILINK Linker for representing debug
information in an object.

Dynamic initialization
Variables in a program written in C are
initialized during the initial phase of
execution, before the main function is
called. These variables are always
initialized with a static value, which is
determined either at compile time or at
link time. This is called static
initialization. In C++, variables might
require initialization to be performed by
executing code, for example, running
the constructor of global objects, or
performing dynamic memory
allocation.
DARM-2

337

338
Dynamic memory allocation
There are two main strategies for storing
variables: statically at link time, or
dynamically at runtime. Dynamic
memory allocation is often performed
from the heap and it is the size of the
heap that determines how much
memory that can be used for dynamic
objects and variables. The advantage of
dynamic memory allocation is that
several variables or objects that are not
active at the same time can be stored in
the same memory, thus reducing the
memory requirements of an application.
See also Heap memory.

Dynamic object
An object that is allocated, created,
destroyed, and released at runtime.
Dynamic objects are almost always
stored in memory that is dynamically
allocated. Compare Static object.

E
EEPROM
Electrically Erasable, Programmable
Read-Only Memory. A type of ROM
that can be erased electronically, and
then be re-programmed.

ELF
Executable and Linking Format, an
industry-standard object file format.
This is the format used by the IAR
ILINK Linker. The debug information
is formatted using DWARF.

EPROM
Erasable, Programmable Read-Only
Memory. A type of ROM that can be
erased by exposing it to ultraviolet light,
and then be re-programmed.

Embedded C++
A subset of the C++ programming
language, which is intended for
embedded systems programming. The
fact that performance and portability are
particularly important in embedded
systems development was considered
when defining the language.

Embedded system
A combination of hardware and
software, designed for a specific
purpose. Embedded systems are often
part of a larger system or product.

Emulator
An emulator is a hardware device that
performs emulation of one or more
derivatives of a processor family. An
emulator can often be used instead of
the actual core and connects directly to
the printed circuit board—where the
core would have been connected—via a
connecting device. An emulator always
behaves exactly as the processor it
emulates, and is used when debugging
requires all systems actuators, or when
debugging device drivers.

Enea OSE Load module format
A specific ELF format that is loadable
by the OSE operating system. See also
ELF.

Enumeration
A type which includes in its definition
an exhaustive list of possible values for
variables of that type. Common
examples include Boolean, which takes
values from the list [true, false], and
day-of-week which takes values
[Sunday, Monday, Tuesday,
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
Wednesday, Thursday, Friday,
Saturday]. Enumerated types are a
feature of typed languages, including C
and Ada.

Characters, (fixed-size) integers, and
even floating-point types might be (but
are not usually) considered to be (large)
enumerated types.

Executable image
Contains the executable image; the
result of linking several relocatable
object files and libraries. The file format
used for an object file is ELF with
embedded DWARF for debug
information.

Exceptions
An exception is an interrupt initiated by
the processor hardware, or hardware
that is tightly coupled with the
processor, for instance, a memory
management unit (MMU). The
exception signals a violation of the rules
of the architecture (access to protected
memory), or an extreme error condition
(division by zero).

Do not confuse this use of the word
exception with the term exception used
in the C++ language (but not in
Embedded C++).

Expensive
As in expensive memory access. An
expensive memory access either
requires many cycles to perform, or
many bytes of code to implement. An
expensive memory access is said to have
a high cost. See Memory access cost.

Extended keywords
Non-standard keywords in C and C++.
These usually control the definition and
declaration of objects (that is, data and
functions). See also Keywords.

F
Filling
How to fill up bytes—with a specific fill
pattern—that exists between the
sections in an executable image. These
bytes exist because of the alignment
demands on the sections.

Format specifiers
Used to specify the format of strings
sent by library functions such as printf.
In the following example, the function
call contains one format string with one
format specifier, %c, that prints the
value of a as a single ASCII character:

printf("a = %c", a);

G
General options
Parameters you can specify to change
the default behavior of all tools that are
included in the IAR Embedded
Workbench IDE.

Generic pointers
Pointers that have the ability to point to
all different memory types in, for
example, a core based on the Harvard
architecture.
DARM-2

339

340
H
Harvard architecture
A core based on the Harvard
architecture has separate data and
instruction buses. This allows execution
to occur in parallel. As an instruction is
being fetched, the current instruction is
executing on the data bus. Once the
current instruction is complete, the next
instruction is ready to go. This
theoretically allows for much faster
execution than a von Neumann
architecture, but there is some added
silicon complexity. Compare von
Neumann architecture.

Heap memory
The heap is a pool of memory in a
system that is reserved for dynamic
memory allocation. An application can
request parts of the heap for its own use;
once memory has been allocated from
the heap it remains valid until it is
explicitly released back to the heap by
the application. This type of memory is
useful when the number of objects is not
known until the application executes.
Note that this type of memory is risky to
use in systems with a limited amount of
memory or systems that are expected to
run for a very long time.

Heap size
Total size of memory that can be
dynamically allocated.

Host
The computer that communicates with
the target processor. The term is used to
distinguish the computer on which the
debugger is running from the core the
embedded application you develop runs
on.

I
Iarchive
The IAR utility for creating archives,
that is, libraries. Iarchive is delivered
with IAR Embedded Workbench. See
also Ar.

IDE (integrated development
environment)
A programming environment with all
necessary tools integrated into one
single application.

Ielfdumparm
The IAR utility for creating a text
representation of the contents of ELF
relocatable or executable image.

Ielftool
The IAR utility for performing various
transformations on an ELF executable
image, such as fill, checksum, and
format conversion.

ILINK
The IAR ILINK Linker which produces
absolute output in the ELF/DWARF
format.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
ILINK configuration
The definition of available physical
memories and the placement of
sections—pieces of code and data—into
those memories. ILINK requires a
configuration to build an executable
image.

linker configuration file
A file that contains a configuration used
by ILINK when building an executable
image. See also ILINK configuration.

Image
See Executable image.

Include file
A text file which is included into a
source file. This is often performed by
the preprocessor.

Initialization setup in linker
configuration file
Defines how to initialize RAM sections
with their initializers. Normally, only
non-constant non-noinit variables are
initialized but, for example, pieces of
code can be initialized as well.

Initialized sections
Read-write sections that should be
initialized with specific values at
startup. See also Section.

Inline assembler
Assembler language code that is
inserted directly between C statements.

Inlining
An optimization that replaces function
calls with the body of the called
function. This optimization increases
the execution speed and can even reduce
the size of the generated code.

Instruction mnemonics
A word or acronym used in assembler
language to represent a machine
instruction. Different processors have
different instruction sets and therefore
use a different set of mnemonics to
represent them, such as, ADD, BR
(branch), BLT (branch if less than),
MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be
executed, or a pointer that points to code
that will be executed when an interrupt
occurs.

Interrupt vector table
A table containing interrupt vectors,
indexed by interrupt type. This table
contains the processor's mapping
between interrupts and interrupt service
routines and must be initialized by the
programmer.

Interrupts
In embedded systems, the use of
interrupts is a method of detecting
external events immediately, for
example a timer overflow or the
pressing of a button.

Interrupts are asynchronous events that
suspend normal processing and
temporarily divert the flow of control
through an “interrupt handler” routine.
Interrupts can be caused by both
hardware (I/O, timer, machine check)
and software (supervisor, system call or
trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler
objects, properties, events, and
methods.
DARM-2

341

342
Intrinsic functions
1. Function calls that are directly
expanded into specific sequences of
machine code. 2. Functions called by
the compiler for internal purposes (that
is, floating point arithmetic etc.).

K
Key bindings
Key shortcuts for menu commands used
in the IAR Embedded Workbench IDE.

Keywords
A fixed set of symbols built into the
syntax of a programming language. All
keywords used in a language are
reserved—they cannot be used as
identifiers (in other words, user-defined
objects such as variables or procedures).
See also Extended keywords.

L
L-value
A value that can be found on the left side
of an assignment and thus be changed.
This includes plain variables and
de-referenced pointers. Expressions like
(x + 10) cannot be assigned a new value
and are therefore not L-values.

Language extensions
Target-specific extensions to the C
language.

Library
See Runtime library.

Linker configuration file
See linker configuration file.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

M
MAC (Multiply and accumulate)
A special instruction, or on-chip device,
that performs a multiplication together
with an addition. This is very useful
when performing signal processing
where many filters and transforms have
the form:

The accumulator of the MAC usually
has a higher precision (more bits) than
normal registers. See also Digital signal
processor (DSP).

Macro
1. Assembler macros are user-defined
sets of assembler lines that can be
expanded later in the source file by
referring to the given macro name.
Parameters will be substituted if
referred to.

2. C macro. A text substitution
mechanism used during preprocessing
of source files. Macros are defined using
the #define preprocessing directive. The
replacement text of each macro is then
substituted for any occurrences of the
macro name in the rest of the translation
unit.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
3. C-SPY macros are programs that you
can write to enhance the functionality of
the IAR C-SPY Debugger. A typical
application of C-SPY macros is to
associate them with breakpoints; when
such a breakpoint is hit, the macro is run
and can for example be used to simulate
peripheral devices, to evaluate complex
conditions, or to output a trace.

The C-SPY macro language is like a
simple dialect of C, but is less strict with
types.

Mailbox
A mailbox in an RTOS is a point of
communication between two or more
tasks. One task can send messages to
another task by placing the message in
the mailbox of the other task. Mailboxes
are also known as message queues or
message ports.

Mangling
Mangling is a technique used for
mapping a complex C/C++ name into a
simple name. It is possible to produce
mangled names as well as unmangled
names for C/C++ symbols in ILINK
messages.

Memory, in linker configuration
file
A physical memory. The number of
units it contains is defined in the linker
configuration file, as well as how many
bits a unit consists of. The memory is
always addressable from 0x0 to size -1.

Memory access cost
The cost of a memory access can be in
clock cycles, or in the number of bytes
of code needed to perform the access. A
memory which requires large

instructions or many instructions is said
to have a higher access cost than a
memory which can be accessed with
few, or small instructions.

Memory area
A region of the memory.

Memory bank
The smallest unit of continuous memory
in banked memory. One memory bank
at a time is visible in a core’s physical
address space.

Memory map
A map of the different memory areas
available to the core.

Memory model
Specifies the memory hierarchy and
how much memory the system can
handle. Your application must use only
one memory model at a time, and the
same model must be used by all user
modules and all library modules.

Microcontroller
A microprocessor on a single integrated
circuit intended to operate as an
embedded system. As well as a CPU, a
microcontroller typically includes small
amounts of RAM, PROM, timers, and
I/O ports.

Microprocessor
A CPU contained on one (or a small
number of) integrated circuits. A
single-chip microprocessor can include
other components such as memory,
memory management, caches,
floating-point unit, I/O ports and timers.
Such devices are also known as
microcontrollers.
DARM-2

343

344
Multi-file compilation
A technique which means that the
compiler compiles several source files
as one compilation unit, which enables
for interprocedural optimizations such
as inlining, cross call, and cross jump on
multiple source files in a compilation
unit.

Module
An object. An object file contains a
module and library contains one or more
objects. The basic unit of linking. A
module contains definitions for symbols
(exports) and references to external
symbols (imports). When you compile
C/C++, each translation unit produces
one module.

N
Nested interrupts
A system where an interrupt can be
interrupted by another interrupt is said
to have nested interrupts.

Non-banked memory
Has a single storage location for each
memory address in a core’s physical
address space.

Non-initialized memory
Memory that can contain any value at
reset, or in the case of a soft reset, can
remember the value it had before the
reset.

No-init sections
Read-write sections that should not be
initialized at startup. See also Section.

Non-volatile storage
Memory devices such as battery-backed
RAM, ROM, magnetic tape and
magnetic disks that can retain data when
electric power is shut off. Compare
Volatile storage.

NOP
No operation. This is an instruction that
does not perform anything, but is used to
create a delay. In pipelined
architectures, the NOP instruction can
be used for synchronizing the pipeline.
See also Pipeline.

O
Objcopy
A GNU binary utility for converting an
absolute object file in ELF format into
an absolute object file with, for example
the format Motorola-std or Intel-std. See
also Ielftool.

Object
An object file or a library member.

Object file, absolute
See Executable image.

Object file, relocatable
The result of compiling or assembling a
source file. The file format used for an
object file is ELF with embedded
DWARF for debug information.

Operator
A symbol used as a function, with infix
syntax if it has two arguments (+, for
example) or prefix syntax if it has only
one (for instance, bitwise negation, ~).
Many languages use operators for
built-in functions such as arithmetic and
logic.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
Operator precedence
Each operator has a precedence number
assigned to it that determines the order
in which the operator and its operands
are evaluated. The highest precedence
operators are evaluated first. Use
parentheses to group operators and
operands to control the order in which
the expressions are evaluated.

Output image
The resulting application after linking.
This term is equivalent to executable
image, which is the term used in the IAR
user documentation.

Overlay, in linker configuration file
Like a block, but it contains several
overlaid entities, each built up of blocks,
overlays, and sections. The size of an
overlay is determined by its largest
constituent.

P
Parameter passing
See Calling convention.

Peripheral
A hardware component other than the
processor, for example memory or an
I/O device.

Pipeline
A structure that consists of a sequence
of stages through which a computation
flows. New operations can be initiated
at the start of the pipeline even though
other operations are already in progress
through the pipeline.

Placement, in linker configuration
file
How to place blocks, overlays, and
sections into a region. It determines how
pieces of code and data are actually
placed in the available physical
memory.

Pointer
An object that contains an address to
another object of a specified type.

#pragma
During compilation of a C/C++
program, the #pragma preprocessing
directive causes the compiler to behave
in an implementation-defined manner.
This can include, for example,
producing output on the console,
changing the declaration of a
subsequent object, changing the
optimization level, or
enabling/disabling language extensions.

Pre-emptive multitasking
An RTOS task is allowed to run until a
higher priority process is activated. The
higher priority task might become active
as the result of an interrupt. The term
preemptive indicates that although a
task is allotted to run a given length of
time (a timeslice), it might lose the
processor at any time. Each time an
interrupt occurs, the task scheduler
looks for the highest priority task that is
active and switches to that task. If the
located task is different from the task
that was executing before the interrupt,
the previous task is suspended at the
point of interruption.

Compare Round Robin.
DARM-2

345

346
Preprocessing directives
A set of directives that are executed
before the parsing of the actual code is
started.

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the
compiler supports. See Derivative.

Program counter (PC)
A special processor register that is used
to address instructions. Compare
Program location counter (PLC).

Program location counter (PLC)
Used in the IAR Assembler to denote
the code address of the current
instruction. The PLC is represented by a
special symbol (typically $) that can be
used in arithmetic expressions. Also
called simply location counter (LC).

PROM
Programmable Read-Only Memory. A
type of ROM that can be programmed
only once.

Project
The user application development
project.

Project options
General options that apply to an entire
project, for example the target processor
that the application will run on.

Q
Qualifiers
See Type qualifiers.

R
Range, in linker configuration file
A range of consecutive addresses in a
memory. A region is built up of ranges.

R-value
A value that can be found on the right
side of an assignment. This is just a
plain value. See also L-value.

Read-only sections
Sections that contain code or constants.
See also Section.

Real-time operating system
(RTOS)
An operating system which guarantees
the latency between an interrupt being
triggered and the interrupt handler
starting, as well as how tasks are
scheduled. An RTOS is typically much
smaller than a normal desktop operating
system. Compare Real-time system.

Real-time system
A computer system whose processes are
time-sensitive. Compare Real-time
operating system (RTOS).

Region, in linker configuration file
A set of non-overlapping ranges. The
ranges can lie in one or more memories.
Blocks, overlays, and sections are
placed into regions in the linker
configuration file.

Region expression, in linker
configuration file
A region built up from region literals,
regions, and the common set operations
possible in the linker configuration file.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
Region literal, in linker
configuration file
A literal that defines a set of one or more
non-overlapping ranges in a memory.

Register constant
A register constant is a value that is
loaded into a dedicated processor
register when the system is initialized.
The compiler can then generate code
that assumes that the constants are
present in the dedicated registers.

Register
A small on-chip memory unit, usually
just one or a few bytes in size, which is
particularly efficient to access and
therefore often reserved as a temporary
storage area during program execution.

Register locking
Register locking means that the
compiler can be instructed that some
processor registers shall not be used
during normal code generation. This is
useful in a number of situations. For
example, some parts of a system might
be written in assembler language to gain
speed. These parts might be given
dedicated processor registers. Or the
register might be used by an operating
system, or by other third-party software.

Register variables
Typically, register variables are local
variables that have been placed in
registers instead of on the (stack) frame
of the function. Register variables are
much more efficient than other variables
because they do not require memory
accesses, so the compiler can use
shorter/faster instructions when
working with them. See also Auto
variables.

Relay
A synonym to veneer, see Veneer.

Relocatable sections
Sections that have no fixed location in
memory before linking.

Reset
A reset is a restart from the initial state
of a system. A reset can originate from
hardware (hard reset), or from software
(soft reset). A hard reset can usually not
be distinguished from the power-on
condition, which a soft reset can be.

ROM-monitor
A piece of embedded software that has
been designed specifically for use as a
debugging tool. It resides in the ROM of
the evaluation board chip and
communicates with a debugger via a
serial port or network connection. The
ROM-monitor provides a set of
primitive commands to view and
modify memory locations and registers,
create and remove breakpoints, and
execute your application. The debugger
combines these primitives to fulfill
higher-level requests like program
download and single-step.

Round Robin
Task scheduling in an operating system,
where all tasks have the same priority
level and are executed in turn, one after
the other. Compare Pre-emptive
multitasking.

RTOS
See Real-time operating system (RTOS).
DARM-2

347

348
Runtime library
A collection of relocatable object files
that will be included in the executable
image only if referred to from an object
file, in other words conditionally linked.

Runtime model attributes
A mechanism that is designed to prevent
modules that are not compatible to be
linked into an application. ILINK uses
the runtime model attributes when
automatically choosing library to verify
that the correct one is used.

S
Saturation arithmetics
Most, if not all, C and C++
implementations use mod–2N
2-complement-based arithmetics where
an overflow wraps the value in the value
domain, that is, (127 + 1) = -128.
Saturation arithmetics, on the other
hand, does not allow wrapping in the
value domain, for instance, (127 + 1) =
127, if 127 is the upper limit. Saturation
arithmetics is often used in signal
processing, where an overflow
condition would have been fatal if value
wrapping had been allowed.

Scheduler
The part of an RTOS that performs
task-switching. It is also responsible for
selecting which task that should be
allowed to run. There are many different
scheduling algorithms, but most of them
are either based on static scheduling
(performed at compile-time), or on
dynamic scheduling (where the actual
choice of which task to run next is taken
at runtime, depending on the state of the
system at the time of the task-switch).

Most real-time systems use static
scheduling, because it makes it possible
to prove that the system will not violate
the real-time requirements.

Scope
The section of an application where a
function or a variable can be referenced
by name. The scope of an item can be
limited to file, function, or block.

Section
An entity that either contains data or
text. Typically, one or more variables,
or functions. A section is the smallest
linkable unit.

Section attributes
Each section has a name and an
attribute. The attribute defines what a
section contains, that is, if the section
content is read-only, read/write, code,
data, etc.

Section fragment
A part of a section, typically a variable
or a function.

Section selection, in linker
configuration file
Defining a set of sections by using
section selectors. A section belongs to
the most restrictive section selector if
there are more than one selection it can
be part of. There are three different
selectors that can be used individually
or in conjunction to select the set of
sections: section attribute (selecting by
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
the section content), section name
(selecting by the section name), and
object name (selecting from a specific
object).

Semaphore
A semaphore is a type of flag that is
used for guaranteeing exclusive access
to resources. The resource can be a
hardware port, a configuration memory,
or a set of variables. If several different
tasks have to access the same resource,
the parts of the code (the critical
sections) that access the resource have
to be made exclusive for every task.
This is done by obtaining the semaphore
that protects that resource, thus blocking
all other tasks from it. If another task
wishes to use the resource, it also has to
obtain the semaphore. If the semaphore
is already in use, the second task has to
wait until the semaphore is released.
After the semaphore is released, the
second task is allowed to execute and
can obtain the semaphore for its own
exclusive access.

Severity level
The level of seriousness of the
diagnostic response from the assembler,
compiler, or debugger, when it notices
that something is wrong. Typical
severity levels are remarks, warnings,
errors, and fatal errors. A remark just
points to a possible problem, while a
fatal error means that the programming
tool exits without finishing.

Sharing, in linker configuration file
A physical memory that can be
addressed in several ways.

Short addressing
Many cores have special addressing
modes for efficient access to internal
RAM and memory mapped I/O. Short
addressing is therefore provided as an
extended feature by many compilers for
embedded systems. See also Data
pointers.

Side effect
An expression in C or C++ is said to
have a side-effect if it changes the state
of the system. Examples are
assignments to a variable, or using a
variable with the post-increment
operator. The C and C++ standards state
that a variable that is subject to a
side-effect should not be used more that
once in an expression. As an example,
this statement violates that rule:

*d++ = *d;

Signal
Signals provide event-based
communication between tasks. A task
can wait for one or more signals from
other tasks. Once a task receives a signal
it waits for, execution continues. A task
in an RTOS that waits for a signal does
not use any processing time, which
allows other tasks to execute.

Simulator
A debugging tool that runs on the host
and behaves as similar to the target
processor as possible. A simulator is
used to debug the application when the
hardware is unavailable, or not needed
for proper debugging. A simulator is
usually not connected to any physical
peripheral devices. A simulated
processor is often slower, or even much
slower, than the real hardware.
DARM-2

349

350
Single stepping
Executing one instruction or one C
statement at a time in the debugger.

Skeleton code
An incomplete code framework that
allows the user to specialize the code.

Special function register (SFR)
A register that is used to read and write
to the hardware components of the core.

Stack frames
Data structures containing data objects
as preserved registers, local variables,
and other data objects that need to be
stored temporary for a particular scope
(usually a function).

Earlier compilers usually had a fixed
size and layout on a stack frame
throughout a complete function, while
modern compilers might have a very
dynamic layout and size that can change
anywhere and anytime in a function.

Standard libraries
The C and C++ library functions as
specified by the C and C++ standard as
well as support routines for the
compiler, like floating-point routines.

Statically allocated memory
This kind of memory is allocated once
and for all at link-time, and remains
valid all through the execution of the
application. Variables that are either
global or declared static are allocated
this way.

Static object
An object whose memory is allocated at
link-time and is created during system
startup (or at first use). Compare
Dynamic object.

Static overlay
Instead of using a dynamic allocation
scheme for parameters and auto
variables, the linker allocates space for
parameters and auto variables at link
time. This generates a worst-case
scenario of stack usage, but might be
preferable for small chips with
expensive stack access or no stack
access at all.

Structure value
A collecting names for structs and
unions. A struct is a collection of data
object placed sequentially in memory
(possibly with pad bytes between them).
A union is a collection of data sharing
the same memory location.

Symbol
A name that represents a register, an
absolute value, or a memory address
(relative or absolute).

Symbol, exported, in linker
configuration file
A configuration symbol that can be
referred to from the executable image.
The symbol is defined to be used in the
configuration file and it has a constant
value.

Symbolic location
A location that uses a symbolic name
because the exact address is unknown.
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
T
Target
1. An architecture. 2. A piece of
hardware. The particular embedded
system you are developing the
application for. The term is usually used
to distinguish the system from the host
system.

Task (thread)
A task is an execution thread in a
system. Systems that contain many
tasks that execute in parallel are called
multitasking systems. Because a
processor only executes one instruction
stream at the time, most systems
implement some sort of task-switch
mechanism (often called context
switch) so that all tasks get their share of
processing time. The process of
determining which task that should be
allowed to run next is called scheduling.
Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in
multiple files, provided that the
definition is identical and that it is an
absolute variable.

Terminal I/O
A simulated terminal window in the
IAR C-SPY Debugger.

Timeslice
The (longest) time an RTOS allows a
task to run without running the
task-scheduling algorithm. It is possible
that a task will be allowed to execute
during several consecutive timeslices
before being switched out. It is also

possible that a task will not be allowed
to use its entire time slice, for example
if, in a preemptive system, a higher
priority task is activated by an interrupt.

Timer
A peripheral that counts independent of
the program execution.

Translation unit
A source file together with all the header
files and source files included via the
preprocessor directive #include, with
the exception of the lines skipped by
conditional preprocessor directives such
as #if and #ifdef.

Trap
A trap is an interrupt initiated by
inserting a special instruction into the
instruction stream. Many systems use
traps to call operating system functions.
Another name for trap is software
interrupt.

Type qualifiers
In standard C/C++, const or volatile.
IAR compilers usually add
target-specific type qualifiers for
memory and other type attributes.

U
UBROF (Universal Binary
Relocatable Object Format)
File format produced by some of the
IAR Systems programming tools,
however, not by these tools.
DARM-2

351

352
V
Value expressions, in linker
configuration file
A constant number that can be built up
out of expressions that has a syntax
similar to C expressions.

Veneer
A small piece of code that is inserted as
a springboard between caller and callee
when:

• There is a mismatch in mode, for
example ARM and Thumb

• The call instruction does not reach its
destination.

Virtual address (logical address)
An address that needs to be translated by
the compiler, linker or the runtime
system into a physical memory address
before it is used. The virtual address is
the address seen by the application,
which can be different from the address
seen by other parts of the system.

Virtual space
An IAR Embedded Workbench Editor
feature which allows you to place the
insertion point outside of the area where
there are actual characters.

Volatile storage
Data stored in a volatile storage device
is not retained when the power to the
device is turned off. In order to preserve
data during a power-down cycle, you
should store it in non-volatile storage.
This should not be confused with the C
keyword volatile. Compare Non-volatile
storage.

von Neumann architecture
A computer architecture where both
instructions and data are transferred
over a common data channel. Compare
Harvard architecture.

W
Watchpoints
Watchpoints keep track of the values of
C variables or expressions in the C-SPY
Watch window as the application is
being executed.

X
XLINK
The IAR XLINK Linker which uses the
UBROF output format.

Z
Zero-initialized sections
Sections that should be initialized to
zero at startup. See also Section.

Zero-overhead loop
A loop in which the loop condition,
including branching back to the
beginning of the loop, does not take any
time at all. This is usually implemented
as a special hardware feature of the
processor and is not available in all
architectures.

Zone
Different processors have widely
differing memory architectures. Zone is
the term C-SPY uses for a named
memory area. For example, on
processors with separately addressable
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Glossary
code and data memory there would be at
least two zones. A processor with an
intricate banked memory scheme might
have several zones.
DARM-2

353

354
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index

Index
A
--aapcs (compiler option) . 155
ABI, AEABI and IA64 . 118
abort

implementation-defined behavior (DLIB) 330
system termination (DLIB) . 73

absolute location
data, placing at (@) . 125
definition of . 333
language support for . 213
#pragma location . 239

address expression, definition of . 333
AEABI

definition of . 333
support for in IAR build tools 118

--aeabi (compiler option) . 155
_AEABI_PORTABILITY_LEVEL (preprocessor
symbol). 120
_AEABI_PORTABLE (preprocessor symbol) 120
algorithm (STL header file) . 275
alignment . 199

forcing stricter (#pragma data_alignment) 235
in structures (#pragma pack) . 241
of an object (__ALIGNOF__) 213
of data types. 199

alignment (pragma directive) . 327
__ALIGNOF__ (operator) . 213
--all (ielfdump option) . 313
anonymous structures . 123
anonymous symbols, creating . 215
application

definition of . 333
startup and termination (DLIB) 70

architecture
definition of . 333
of ARM . 25

archive, definition of . 333

ARM
and Thumb code, overview . 29
CPU mode . 20
memory layout . 25
supported devices. 6

--arm (compiler option). 155
__arm (extended keyword) . 225
__ARMVFP__ (predefined symbol) 266
__ARM4M__ (predefined symbol). 266
__ARM4TM__ (predefined symbol) 266
__ARM5__ (predefined symbol) 266
__ARM5E__ (predefined symbol) 266
__ARM6__ (predefined symbol) 266
__ARM7M__ (predefined symbol). 266
arrays

designated initializers in . 216
implementation-defined behavior. 325
incomplete at end of structs . 215
non-lvalue . 218
of incomplete types . 217
single-value initialization . 219

ar, definition of . 333
asm, __asm (language extension) 215
assembler code

calling from C . 92
calling from C++ . 94
inserting inline . 91

assembler directives
DC32 . 92
definition of . 333

assembler labels, making public (--public_equ) 177
assembler language interface . 89

calling convention. See assembler code
assembler language, definition of 333
assembler list file, generating . 166
assembler options, definition of . 333
assembler output file . 94
assembler, inline . 215
DARM-2

355

356
asserts . 83
implementation-defined behavior of, (DLIB). 328
including in application . 269

assert.h (DLIB header file) . 273
atexit . 84
atexit limit, setting up . 50
atexit, reserving space for calls . 50
atoll, C99 extension . 278
attributes

object . 223
type . 221

Attributes on sections, definition of 333, 348
auto variables . 26

at function entrance . 97
programming hints for efficient code 132

auto variables, definition of. 333

B
backtrace information, definition of 334
bank switching, definition of. 334
banked code, definition of. 334
banked data, definition of . 334
banked memory, definition of . 334
bank-switching routines, definition of. 334
Barr, Michael . xxx
baseaddr (pragma directive) . 327
__BASE_FILE__ (predefined symbol) 266
basic type names, using in preprocessor expressions
(--migration_preprocessor_extensions) 168
basic_template_matching (pragma directive) 327
batch files, definition of . 334
--BE8 (linker option) . 183
--BE32 (linker option). 183
big endian (byte order) . 21
__big_endian (extended keyword) 225
--bin (ielftool option) . 308
binary streams (DLIB) . 329
bit negation . 134

bitfields
data representation of. 202
hints . 122
implementation-defined behavior of 325
non-standard types in . 213

bitfields (pragma directive) . 234
bitfield, definition of . 334
Block, definition of . 334
bold style, in this guide . xxxi
bool (data type) . 200

adding support for in DLIB 273, 276
making available in C code . 277

breakpoints, definition of . 334
.bss (section) . 300
bubble sort function, defined in stdlib.h 278
building_runtime (pragma directive). 327
__BUILD_NUMBER__ (predefined symbol) 266
byte order . 21, 200

identifying (__LITTLE_ENDIAN__) 267
specifying (--endian) . 163

C
C and C++ linkage . 96
C/C++ calling convention. See calling convention
C header files . 273
call frame information . 101

in assembler list file . 93
in assembler list file (-lA) . 167

call stack . 101
callee-save registers, stored on stack. 26
calling convention

C++, requiring C linkage . 94
definition of . 335
in compiler. 95

calloc (library function) . 27
See also heap
implementation-defined behavior of (DLIB) 330

can_instantiate (pragma directive) 327
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
cassert (DLIB header file). 275
cast operators

in Extended EC++ . 104
missing from Embedded C++ 104

casting, of pointers and integers . 205
cctype (DLIB header file) . 275
cerrno (DLIB header file) . 275
cexit (system termination code)

in DLIB . 70
CFI (assembler directive) . 101
cfloat (DLIB header file). 275
char (data type) . 200

changing default representation (--char_is_signed) . . . 156
signed and unsigned. 201

characters, implementation-defined behavior of 322
character-based I/O

in DLIB . 75
overriding in runtime library . 67

--char_is_signed (compiler option) 156
cheap memory access, definition of 335
checksum

calculation of . 115
definition of . 335

--checksum (ielftool option) . 308
cinttypes (DLIB header file) . 275
classes. 105
climits (DLIB header file). 276
clocale (DLIB header file) . 276
clock (DLIB library function),
implementation-defined behavior of 331
clock.c . 83
__close (DLIB library function) . 79
clustering (compiler transformation). 132

disabling (--no_clustering) . 169
__CLZ (intrinsic function) . 250
cmain (system initialization code). 70
cmath (DLIB header file) . 276
code

ARM and Thumb, overview. 29
banked, definition of . 334

interruption of execution . 31
skeleton, definition of . 350

code model, definition of . 335
code motion (compiler transformation). 131

disabling (--no_code_motion) 169
code pointers, definition of . 335
code sections, definition of . 335
codeseg (pragma directive) . 327
CODE16 (assembler directive) . 92
CODE32 (assembler directive) . 92
command line options

part of compiler invocation syntax 141
part of linker invocation syntax 141
passing . 142
See also compiler options
See also linker options
typographic convention . xxxi

command prompt icon, in this guide xxxi
comments

after preprocessor directives. 219
C++ style, using in C code. 214

common block (call frame information) 101
common subexpr elimination (compiler transformation) . 130

disabling (--no_cse) . 169
compilation date

exact time of (__TIME__) . 267
identifying (__DATE__) . 266

compiler
environment variables . 143
invocation syntax . 141
output from . 144

compiler listing, generating (-l). 166
compiler object file . 12

including debug information in (--debug, -r) 158
compiler optimization levels . 129
compiler options . 149

definition of . 335
passing to compiler . 142
reading from file (-f) . 164, 188
DARM-2

357

358
setting . 149
specifying parameters . 151
summary . 152
Instruction scheduling . 132
syntax. 149
-l . 93
--warnings_affect_exit_code . 145

compiler platform, identifying . 267
compiler transformations . 128
compiler version number . 268
compiling

from the command line . 19
syntax. 141

complex numbers, supported in Embedded C++. 104
complex (library header file). 274
compound literals . 215
computer style, typographic convention xxxi
--config (linker option) . 184
--config_def (linker option). 184
configuration

basic project settings . 19
__low_level_init . 74

configuration file for linker
definition of . 336
See also linker configuration file 45

configuration for linker, definition of 341
configuration symbols

in library configuration files. 69
specifying for linker. 184

consistency, module . 85
const, declaring objects. 209
const_cast (cast operator) . 104
contents, of this guide . xxviii
conventions, used in this guide . xxxi
copyright notice . ii
__CORE__ (predefined symbol). 266
core

identifying . 266
selecting. 20

Cortex
special considerations for interrupt functions. 36
support for . 157

cost. See memory access cost
__cplusplus (predefined symbol) 266
--cpp_init_routine (linker option) 184
--cpu (compiler option) . 156
--cpu (linker option) . 185
CPU modes. 20

specifying on command line . 156
CPU variant, definition of . 337
CPU, specifying on command line 185
__CPU_MODE__ (predefined symbol) 266
--cpu_mode (compiler option) . 157
CRC, definition of. 336
csetjmp (DLIB header file) . 276
csignal (DLIB header file) . 276
cspy_support (pragma directive) . 327
CSTACK (section) . 300

example . 111
See also stack

.cstart (section) . 300
cstartup (system startup code)

customizing . 75
overriding in runtime library . 67

Cstartup, definition of . 336
cstartup.s. 70
cstdarg (DLIB header file) . 276
cstdbool (DLIB header file) . 276
cstddef (DLIB header file) . 276
cstdio (DLIB header file) . 276
cstdlib (DLIB header file) . 276
cstring (DLIB header file). 276
ctime (DLIB header file). 276
ctype.h (library header file). 273

added C functionality. 277
cwctype.h (library header file) . 276
C++

See also Embedded C++ and Extended Embedded C++
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
absolute location . 126–127
calling convention . 94
features excluded from EC++ 103
header files. 274
language extensions . 108
special function types. 36
static member variables . 126–127
support for . 5

C++ terminology. xxxi
C++-style comments . 214
C-SPY options, definition of. 336
C-style preprocessor, definition of 336
C_INCLUDE (environment variable) 143
C99 standard, added functionality from 276

D
-D (compiler option) . 157
data

alignment of. 199
different ways of storing . 25
located, declaring extern . 126
placing . 124, 178, 299

at absolute location . 125
representation of . 199
storage . 25

.data (section) . 300
data block (call frame information). 101
data model, definition of . 336
data pointers . 205
data pointers, definition of . 336
data representation, definition of. 336
data types . 200

floating point . 203
in C++ . 209
integers . 200

data_alignment (pragma directive) 235
.data_init (section) . 301
__DATE__ (predefined symbol) . 266

date (library function), configuring support for. 83
DC32 (assembler directive). 92
--debug (compiler option) . 158
debug information, including in object file 158, 177
debugger, low-level interface . 84
declarations

empty . 219
in for loops. 214
Kernighan & Ritchie . 134
of functions . 96

declarations and statements, mixing 214
declaration, definition of . 336
declarators, implementation-defined behavior 326
define block (linker directive) . 285
define overlay (linker directive) . 286
define symbol (linker directive) . 294
--define_symbol (linker option) . 185
define_type_info (pragma directive) 327
definition, definition of . 337
delete (keyword) . 27
demangling, definition of . 337
--dependencies (compiler option) 158
deque (STL header file) . 275
derivative, definition of . 337
destructors and interrupts, using . 107
device description files

definition of . 337
preconfigured. 6

device driver, definition of . 337
diagnostic messages . 146

classifying as errors 159, 170, 186, 192
classifying as remarks . 160, 186
classifying as warnings . 160, 187
disabling warnings . 173, 193
disabling wrapping of . 173, 194
enabling remarks . 177, 196
listing all used . 161, 187
suppressing . 160, 186
DARM-2

359

360
diagnostics
iarchive . 305
isymexport . 318

--diagnostics_tables (compiler option) 161, 187
diag_default (pragma directive) . 235
--diag_error (compiler option) 159, 186
--no_fragments (compiler option) 170, 192
diag_error (pragma directive) . 236
--diag_remark (compiler option). 160, 186
diag_remark (pragma directive) . 236
--diag_suppress (compiler option) 160, 186
diag_suppress (pragma directive) 236
--diag_warning (compiler option) 160, 187
diag_warning (pragma directive) 237
DIFUNCT (section) . 301
digital signal processor, definition of 337
directives. 279

pragma . 7, 233
to the linker . 279

directory, specifying as parameter. 150
__disable_fiq (intrinsic function) 250
__disable_interrupt (intrinsic function). 250
__disable_irq (intrinsic function) 250
Disassembly window, definition of 337
--discard_unused_publics (compiler option) 161
disclaimer . ii
DLIB. 22, 272

building customized library . 61
configurations . 61
configuring. 60, 162
reference information. See the online help system 271
runtime environment . 59

--dlib_config (compiler option). 162
DLIB_Config_Full.h (library configuration file) 69
DLIB_Config_Normal.h (library configuration file). 69
Dlib_defaults.h (library configuration file) 69
__DMB (intrinsic function) . 251
do not initialize (linker directive) 289
document conventions. xxxi

documentation, library . 271
domain errors, implementation-defined behavior 328
double (data type) . 203
double_t, C99 extension . 277
do_not_instantiate (pragma directive) 327
__DSB (intrinsic function) . 251
DSP. See digital signal processor
DWARF, definition of . 337
dynamic initialization . 70

definition of . 337
dynamic memory . 27
dynamic memory allocation, definition of 338
dynamic object, definition of . 338

E
-e (compiler option) . 162
early_initialization (pragma directive) 327
--ec++ (compiler option). 163
EC++ header files . 274
--edit (isymexport option) . 315
edition, of this guide . ii
--eec++ (compiler option) . 163
EEPROM, definition of. 338
Elf, definition of . 338
Embedded C++. 103

definition of . 338
differences from C++. 103
enabling . 163
function linkage . 96
language extensions . 103
overview . 103

Embedded C++ Technical Committee xxxi
embedded systems, IAR special support for 7
embedded system, definition of . 338
__embedded_cplusplus (predefined symbol) 266
empty region (in linker configuration file) 284
emulator (C-SPY version), definition of 338
__enable_fiq (intrinsic function). 251
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
__enable_interrupt (intrinsic function) 251
__enable_irq (intrinsic function). 252
--enable_multibytes (compiler option) 163
--endian (compiler option) . 163
Enea OSE load module format, definition of 338
--entry (linker option) . 187
entry label, program . 71
enumerations, implementation-defined behavior. 325
enumeration, definition of. 338
enums

data representation . 201
forward declarations of . 217

--enum_is_int (compiler option) . 164
environment

implementation-defined behavior. 322
runtime (DLIB) . 59

environment variables
C_INCLUDE . 143
ILINKARM_CMD_LINE . 143
QCCARM . 143

EPROM, definition of . 338
EQU (assembler directive) . 177
errno.h (library header file) . 273
error messages . 147

classifying . 159, 170, 186, 192
range . 55

error return codes . 145
--error_limit (compiler option) 164, 188
exception handling, missing from Embedded C++ 103
exception stacks . 112
exception (library header file) . 274
exceptions, definition of . 339
executable image, definition of . 339
_Exit (library function) . 73
exit (library function) . 73

implementation-defined behavior. 330
_exit (library function) . 73
__exit (library function) . 73
expensive memory access, definition of 339

export keyword, missing from Extended EC++ 106
export (linker directive). 295
--export_builtin_config (linker option) 188
expressions (in linker configuration file). 295
extended command line file 164, 188
Extended Embedded C++ . 104

enabling . 163
standard template library (STL) 275

extended keywords . 221, 303
definition of . 339
enabling (-e). 162
overview . 7
summary . 224
syntax

object attributes. 223
type attributes on data objects 222
type attributes on data pointers 222
type attributes on functions 222

extended-selectors (in linker configuration file) 293
extern "C" linkage. 106

F
-f (compiler option). 164, 188
fast interrupts . 32
fatal error messages . 148
fgetpos (library function), implementation-defined
behavior . 330
__FILE__ (predefined symbol). 266
file dependencies, tracking . 158
file paths, specifying for #include files 166
filename, of object executable image 174, 194–195
filename, specifying as parameter 150
--fill (ielftool option). 309
filling, definition of. 339
__fiq (extended keyword) . 225
float (data type). 203
floating-point constants

hexadecimal notation . 216
DARM-2

361

362
hints . 122
floating-point expressions,
using in preprocessor extensions. 168
floating-point format. 203

hints . 122
implementation-defined behavior. 324
special cases. 204
32-bits . 203
64-bits . 204

floating-point unit . 165
float.h (library header file) . 273
float_t, C99 extension . 277
fmod (library function),
implementation-defined behavior 328
for loops, declarations in. 214
--force_output (linker option) . 189
format specifiers, definition of . 339
formats

floating-point values . 203
standard IEEE (floating point) 203

fpclassify, C99 extension . 277
--fpu (compiler option) . 165
FP_INFINITE, C99 extension . 277
FP_NAN, C99 extension. 277
FP_NORMAL, C99 extension . 277
FP_SUBNORMAL, C99 extension 277
FP_ZERO, C99 extension. 277
fragmentation, of heap memory . 27
free (library function). See also heap 27
fstream (library header file) . 274
fstream.h (library header file) . 274
ftell (library function), implementation-defined behavior . 330
Full DLIB (library configuration) . 61
__func__ (predefined symbol) 220, 267
__FUNCTION__ (predefined symbol) 220, 267
function calls, calling convention . 95
function declarations, Kernighan & Ritchie 134
function execution, in RAM . 30
function inlining (compiler transformation) 131

disabling (--no_inline) . 170

function pointers . 205
function prototypes . 133

enforcing . 177
function (pragma directive). 327
functional (STL header file) . 275
functions . 29

C++ and special function types 36
declaring . 96, 133
inlining. 131, 133, 214, 238
interrupt . 31
intrinsic . 89, 133
intrinsic, definition of. 342
parameters . 97
placing in memory . 124, 127, 178
recursive

avoiding . 133
storing data on stack . 26–27

reentrancy (DLIB) . 272
related extensions. 29
return values from . 99
special function types. 30

G
general options, definition of . 339
generic pointers, definition of . 339
getenv (library function), configuring support for 81
getzone (library function), configuring support for 83
getzone.c. 83
__get_BASEPRI (intrinsic function). 252
__get_CONTROL (intrinsic function) 252
__get_CPSR (intrinsic function) . 252
__get_FAULTMASK (intrinsic function) 252
__get_interrupt_state (intrinsic function) 253
__get_PRIMASK (intrinsic function) 253
glossary. 333
guidelines, reading . xxvii
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
H
Harbison, Samuel P. . xxx
hardware support in compiler . 60
Harvard architecture, definition of 340
hash_map (STL header file) . 275
hash_set (STL header file) . 275
hdrstop (pragma directive) . 327
header files

C . 273
C++ . 274
EC++ . 274
library . 271
special function registers . 135
STL . 275
DLIB_Config_Full.h . 69
DLIB_Config_Normal.h . 69
Dlib_defaults.h. 69
intrinsics.h . 247
stdbool.h . 201, 273
stddef.h . 202

--header_context (compiler option). 165
heap

dynamic memory . 27
storing data . 25

heap memory, definition of . 340
heap size

and standard I/O. 113
changing default. 50
definition of . 340

HEAP (section). 113, 301
hide (isymexport directive) . 317
hints, optimization . 132
host, definition of . 340
HUGE_VALF, C99 extension . 277
HUGE_VALL, C99 extension. 277

I
-I (compiler option). 166
IAR Command Line Build Utility. 69
IAR Systems Technical Support . 148
iarbuild.exe (utility) . 69
iarchive . 303
-f (iarchive option) . 305
iarchive options. 304
Iarchive, definition of . 340
.iar.dynexit (section) . 301
__IAR_SYSTEMS_ICC__ (predefined symbol) 267
IA64 ABI . 118
__ICCARM__ (predefined symbol) 267
icons, in this guide . xxxi
identifiers, implementation-defined behavior 322
IDE, definition of . 340
IEEE format, floating-point values 203
ielfdump . 312
ielffumparm options . 313
ielftool . 306
ielftool options . 308
if (linker directive) . 297
--ihex (ielftool option). 310
ILINK

definition of . 340
output from . 145

ILINK options
See also linker options

ILINK options, typographic convention xxxi
ILINKARM_CMD_LINE (environment variable) 143
--image_input (linker option) . 189
implementation-defined behavior 321
important_typedef (pragma directive) 327
include files

definition of . 341
including before source files . 176
specifying . 143

include (linker directive) . 298
DARM-2

363

364
include_alias (pragma directive) . 237
infinity . 204
INFINITY, C99 extension. 277
inheritance, in Embedded C++ . 103
initialization

changing default. 51
dynamic . 70
manual . 52
packing algorithm for. 51
single-value . 219

initialization in ILINK config file, definition of 341
initialize (linker directive). 287
initialized sections, definition of . 341
initializers, static . 218
inline assembler . 91, 215

avoiding . 133
definition of . 341
See also assembler language interface

inline functions . 214
in compiler. 131

inline (pragma directive) . 238
inlining, definition of . 341
instantiate (pragma directive) . 327
instruction mnemonics, definition of. 341
Instruction scheduling (compiler option) 132
integer characteristics, adding . 277
integers . 200

casting . 205
implementation-defined behavior. 324
intptr_t . 206
ptrdiff_t . 206
size_t . 205
uintptr_t . 206

integral promotion. 134
Integrated Development Environment (IDE)
definition of . 340
Intel hex . 111
Intel IA64 ABI . 118
internal error . 148
interrupt functions. 31

fast interrupts . 32
in ARM Cortex . 36
nested interrupts. 33
operations . 35
software interrupts . 34

interrupt state, restoring . 259
interrupt vector

definition of . 341
interrupt vector table

definition of . 341
.intvec section . 301

interrupts
definition of . 341
nested, definition of . 344
processor state . 26
using with EC++ destructors . 107

--interwork (compiler option) . 166
__interwork (extended keyword) 226
interworking code . 21
intptr_t (integer type) . 206
__intrinsic (extended keyword). 226
intrinsic functions . 133

definition of . 342
overview . 89
summary . 247

intrinsics.h (header file) . 247
intrinsic, definition of . 341
introduction

linker configuration file . 279
linking . 37

inttypes.h (library header file). 273
inttypes.h, added C functionality 277
.intvec (section). 301
invocation syntax . 141
iomanip (library header file) . 274
iomanip.h (library header file) . 274
ios (library header file) . 274
iosfwd (library header file) . 274
iostream (library header file). 274
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
iostream.h (library header file) . 274
__irq (extended keyword) . 226
IRQ_STACK (section) . 302
__ISB (intrinsic function) . 253
isblank, C99 extension . 277
isfinite, C99 extension . 277
isgreater, C99 extension . 277
isinf, C99 extension . 277
islessequal, C99 extension . 277
islessgreater, C99 extension . 277
isless, C99 extension. 277
isnan, C99 extension . 277
isnormal, C99 extension . 277
ISO/ANSI C

compiler extensions . 211
C++ features excluded from EC++ 103
specifying strict usage . 179

iso646.h (library header file). 273
istream (library header file). 274
isunordered, C99 extension. 277
iswblank, C99 extension . 278
isymexport . 314
isymexport options . 315
italic style, in this guide . xxxi
iterator (STL header file) . 275
I/O debugging, support for . 84
I/O module, overriding in runtime library 67

K
--keep (linker option) . 190
keep (linker directive) . 290
keep_definition (pragma directive) 327
Kernighan & Ritchie function declarations 134

disallowing. 177
Kernighan, Brian W. xxx
key bindings, definition of . 342
keywords, definition of . 342
keywords, extended. 7

L
-l (compiler option). 93, 166
labels. 219

assembler, making public. 177
__program_start . 71

Labrosse, Jean J. xxx
Lajoie, Josée . xxx
language extensions

definition of . 342
descriptions . 211
Embedded C++ . 103
enabling . 238
enabling (-e). 162

language overview . 5
language (pragma directive) . 238
__LDREX (intrinsic function) . 253
--legacy (compiler option). 167
libraries

building DLIB . 61
runtime. 62
standard template library . 275

library configuration files
DLIB . 61
Dlib_defaults.h. 69
for Normal and Full . 69
modifying . 70
specifying . 162

library documentation . 271
library features, missing from Embedded C++ 104
library functions . 271

reference information. xxx
summary, DLIB . 273

library header files . 271
library modules

introduction . 38
overriding. 67

library object files . 271
library options, setting . 23
DARM-2

365

366
library project template . 22, 69
library, definition of . 348
lightbulb icon, in this guide. xxxii
limits.h (library header file) . 273
__LINE__ (predefined symbol) . 267
linkage, C and C++. 96
linker configuration file

definition of . 341
selecting. 45

linker object executable image
specifying filename of (-o). 174, 194–195

linker options . 181
summary . 181

linker. See ILINK
linking

from the command line . 19
the process for . 12

Lippman, Stanley B. xxx
list (STL header file). 275
listing, generating . 166
literals, compound. 215
literature, recommended . xxx
little endian (byte order) . 21
__LITTLE_ENDIAN__ (predefined symbol) 267
__little_endian (extended keyword) 226
llabs, C99 extension . 278
lldiv, C99 extension . 278
local variables, See auto variables
locale support

DLIB . 79
adding . 81
changing at runtime. 81
removing. 80

locale.h (library header file) . 273
located data, declaring extern . 126
location counter, definition of . 346
location (pragma directive) . 125, 239
--log (linker option) . 190
logical address, definition of . 352

--log_file (linker option) . 191
long double (data type) . 203
long float (data type), synonym for double 218
loop overhead, reducing . 173
loop unrolling (compiler transformation) 130

disabling . 173
loop-invariant expressions. 131
low-level processor operations 211, 247

accessing . 89
__low_level_init

customizing . 74
low_level_init.c. 70
__lseek (library function) . 79
L-value, definition of . 342

M
-map (linker option) . 191
macros

definition of . 342
variadic . 270

MAC, definition of . 342
mailbox (RTOS), definition of . 343
main (function), definition . 322
malloc (library function)

 See also heap . 27
implementation-defined behavior. 330

--mangled_names_in_messages (linker option) 191
mangling, definition of . 343
Mann, Bernhard . xxx
map file, producing . 191
map (STL header file) . 275
math.h (library header file) . 273
math.h, added C functionality . 277
MATH_ERREXCEPT, C99 extension 277
math_errhandling, C99 extension 277
MATH_ERRNO, C99 extension . 277
__MCR (intrinsic function). 254
member functions, pointers to. 107
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
memory
allocating in C++ . 27
definition of . 343
dynamic . 27
heap . 27
non-initialized . 137
RAM, saving . 133
releasing in C++. 27
stack. 26

saving . 133
used by global or static variables 25

memory access cost, definition of 343
memory area, definition of . 343
memory bank, definition of. 343
memory layout, ARM . 25
memory management, type-safe . 103
memory map, definition of . 343
memory model, definition of. 343
memory (pragma directive). 327
memory (STL header file). 275
message (pragma directive). 239
messages

disabling . 179, 197
forcing . 239

--mfc (compiler option). 168
microcontroller, definition of . 343
microprocessor, definition of . 343
--migration_preprocessor_extensions (compiler option) . . 168
--misrac (compiler option) . 153
--misrac (linker option) . 182
--misrac_verbose (compiler option) 153
--misrac_verbose (linker option) . 182
module consistency. 85

rtmodel. 243
modules

definition of . 344
introduction . 38

module_name (pragma directive) 327
Motorola S-records . 111

__MRC (intrinsic function). 254
multibyte character support. 163
multiple inheritance

in Extended EC++ . 104
missing from Embedded C++ 103

Multiply and accumulate, definition of 342
multitasking, definition of. 345
multi-file compilation . 128

definition of . 344
mutable attribute, in Extended EC++ 104, 106

N
names block (call frame information) 101
namespace support

in Extended EC++ . 104, 106
missing from Embedded C++ 104

naming conventions . xxxii
NAN, C99 extension . 277
NDEBUG (preprocessor symbol) 269
__nested (extended keyword) . 227
nested interrupts . 33
nested interrupts, definition of . 344
new (keyword) . 27
new (library header file) . 274
new.h (library header file) . 274
.noinit (section) . 302
non-banked memory, definition of 344
non-initialized memory, definition of 344
non-initialized variables, hints for. 137
non-scalar parameters, avoiding . 133
non-volatile storage, definition of 344
NOP (assembler instruction) . 255
NOP, definition of . 344
__noreturn (extended keyword) . 228
Normal DLIB (library configuration) 61
Not a number (NaN) . 204
no-init sections, definition of . 344
--no_clustering (compiler option) 169
DARM-2

367

368
--no_code_motion (compiler option) 169
--no_cse (compiler option) . 169
--no_guard_calls (compiler option). 170
__no_init (extended keyword) 137, 227
--no_inline (compiler option) . 170
--no_library_search (linker option) 192
--no_locals (linker option) . 193
__no_operation (intrinsic function). 255
--no_path_in_file_macros (compiler option). 171
no_pch (pragma directive) . 328
--no_remove (linker option) . 193
--no_scheduling (compiler option) 171
--no_typedefs_in_diagnostics (compiler option). 172
--no_unaligned_access (compiler option) 172
--no_unroll (compiler option) . 173
--no_veneer (linker option) . 193
--no_warnings (compiler option) 173, 193
--no_wrap_diagnostics (compiler option) 173, 194
NULL (macro), implementation-defined behavior 328
numbers (in linker configuration file) 296
numeric (STL header file). 275

O
-O (compiler option) . 174
-o (compiler option) . 174, 194, 313
-o (iarchive option) . 304
objcopy, definition of . 344
objdump, definition of . 340
object attributes. 223
object file (absolute), definition of 344
object file (relocatable), definition of 344
object filename, specifying174–175, 194–195, 313
object module, ose . 195
object, definition of. 344–345
object_attribute (pragma directive) 137, 240
once (pragma directive) . 328
--only_stdout (compiler option) 175, 194
__open (library function) . 79

operator precedence, definition of. 345
operators

@ . 125, 213
definition of . 344

optimization
clustering, disabling . 169
code motion, disabling . 169
common sub-expression elimination, disabling 169
configuration . 21
disabling . 130
function inlining, disabling (--no_inline) 170
hints . 132
loop unrolling, disabling . 173
scheduling, disabling . 171
specifying (-O). 174
summary . 129
techniques . 130
type-based alias analysis . 131
type-based alias analysis (compiler option)

disabling . 171
using pragma directive . 240

optimization levels . 129
optimize (pragma directive) . 240
option parameters . 149
options

compiler. See compiler options
iarchive . 304
ielfdumparm. 313
ielftool . 308
isymexport . 315
linker. See linker options

Oram, Andy . xxx
--ose_load_module (linker option) 195
ostream (library header file) . 274
--output (compiler option). 175, 195
output from linker

specifying file name. 19
output (preprocessor) . 176
overhead, reducing . 130–131
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
overlay, definition of . 345

P
pack (pragma directive) . 207, 241
__packed (extended keyword). 228
packed structure types. 207
parameters

function . 97
hidden . 98
non-scalar, avoiding . 133
register . 97–98
rules for specifying a file or directory 150
specifying . 151
stack. 97, 99
typographic convention . xxxi

part number, of this guide . ii
peripherals, definition of . 345
permanent registers . 97
perror (library function),
implementation-defined behavior 330
pipeline, definition of . 345
--pi_veneer (linker option) . 195
place at (linker directive) . 290
place in (linker directive) . 291
placement

code and data . 299
definition of . 345
in named sections. 127
of code and data, introduction to 40

--place_holder (linker option) . 195
pointer types . 205

mixing . 218
pointers

casting . 205
data . 205
definition of . 345
function . 205
implementation-defined behavior. 325

polymorphism, in Embedded C++ 103
porting, code containing pragma directives. 234
_Pragma (predefined symbol) . 269
#pragma directive, definition of . 345
pragma directives . 7

summary . 233
for absolute located data . 125
list of all recognized. 327
pack . 207, 241

precedence, definition of. 345
predefined symbols

overview . 7
summary . 266

--predef_macro (compiler option). 175
preemptive multitasking, definition of 345
--preinclude (compiler option) . 176
--preprocess (compiler option) . 176
preprocessor

definition of. See C-style preprocessor
output. 176
overview . 265

preprocessor directives
definition of . 346
implementation-defined behavior. 326

preprocessor extensions
compatibility . 168
#warning message . 270
__VA_ARGS__ . 270

preprocessor symbols . 266
defining . 157, 185

preserved registers . 97
__PRETTY_FUNCTION__ (predefined symbol). 267
primitives, for special functions . 30
print formatter, selecting . 66
printf (library function) . 65

choosing formatter . 65
configuration symbols . 77
implementation-defined behavior. 329

processor configuration. 20
DARM-2

369

370
processor operations
accessing . 89
low-level . 211, 247

processor variant, definition of . 346
program counter, definition of. 346
program entry label. 71
program location counter, definition of 346
programming hints . 132
__program_start (label). 71
project options, definition of . 346
projects

basic settings for . 19
definition of . 346

PROM, definition of . 346
prototypes, enforcing . 177
ptrdiff_t (integer type). 206
PUBLIC (assembler directive) . 177
publication date, of this guide . ii
--public_equ (compiler option) . 176
public_equ (pragma directive) . 328
putenv (library function), absent from DLIB 81

Q
__QADD (intrinsic function) . 255
__QADD8 (intrinsic function) . 255
__QADD16 (intrinsic function) . 255
__QASX (intrinsic function). 255
QCCARM (environment variable) 143
__QDADD (intrinsic function) . 255
__QDSUB (intrinsic function) . 256
__QFlag (intrinsic function) . 256
__QSAX (intrinsic function). 256
__QSUB (intrinsic function) . 256
__QSUB8 (intrinsic function) . 256
__QSUB16 (intrinsic function) . 256
qualifiers, definition of. See type qualifiers
qualifiers, implementation-defined behavior 326
queue (STL header file) . 275

R
-r (compiler option). 177
raise (library function), configuring support for 82
raise.c . 82
RAM

execution . 30
running code from . 54
saving memory. 133

__ramfunc (extended keyword). 30, 227
range errors. 55
range, definition of . 346
--raw (ielfdump option). 314
__read (library function) . 79

customizing . 75
read formatter, selecting . 67
reading guidelines. xxvii
reading, recommended . xxx
read-only sections, definition of . 346
realloc (library function)

implementation-defined behavior. 330
See also heap . 27

real-time operating system, definition of. 346
real-time system, definition of . 346
recursive functions

avoiding . 133
storing data on stack . 26–27

--redirect (linker option) . 196
reentrancy (DLIB). 272
reference information, typographic convention. xxxi
region expression (in linker configuration file) 283
region expression, definition of. 346
region literal (in linker configuration file). 281
region literal, definition of . 347
region, definition of . 346
register constant, definition of. 347
register locking, definition of . 347
register parameters . 97–98
register variables, definition of . 347
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
registered trademarks . ii
registers

assigning to parameters . 98
callee-save, stored on stack . 26
definition of . 347
implementation-defined behavior. 325
in assembler-level routines. 95
preserved . 97
scratch . 96

reinterpret_cast (cast operator) . 104
relay, definition of. 347
relocatable segments, definition of 347
relocation errors, resolving . 56
remark (diagnostic message)

classifying . 160, 186
enabling . 177, 196

--remarks (compiler option) 177, 196
remarks (diagnostic message) . 147
remove (library function) . 79

implementation-defined behavior. 329
rename (isymexport directive). 317
rename (library function) . 79

implementation-defined behavior. 329
__ReportAssert (library function) . 83
required (pragma directive). 242
--require_prototypes (compiler option) 177
reset, definition of . 347
__reset_Q_flag (intrinsic function) 257
return values, from functions . 99
__REV (intrinsic function) . 257
__REVSH (intrinsic function). 257
Ritchie, Dennis M. . xxx
.rodata (section) . 302
ROM to RAM, copying . 53
ROM-monitor, definition of . 347
__root (extended keyword) . 229
Round Robin, definition of . 347
routines, time-critical . 89, 211, 247
RTMODEL (assembler directive) . 87

rtmodel (pragma directive) . 243
RTOS, definition of. 346
rtti support, missing from STL . 104
runtime environment

DLIB . 59
setting options . 23

runtime libraries
choosing. 23
introduction . 271
definition of . 348
DLIB . 62

choosing . 63
customizing without rebuilding. 64
naming convention . 63
overriding modules in . 67

runtime model attributes . 85
definition of . 348

runtime model definitions . 243
runtime type information, missing from Embedded C++ . 104
R-value, definition of . 346

S
-s (ielfdump option) . 314
__SADD8 (intrinsic function). 257
__SADD16 (intrinsic function). 257
__SASX (intrinsic function) . 258
saturation arithmetics, definition of. 348
scanf (library function)

choosing formatter . 66
configuration symbols . 77
implementation-defined behavior. 330

scheduler (RTOS), definition of . 348
scheduling (compiler transformation)

disabling . 171
scope, definition of . 348
scratch registers . 96
section

allocation of . 40
DARM-2

371

372
definition of . 348
--section (ielfdump option) . 314
.text (section) . 302
section fragment, definition of . 348
section names

declaring . 244
specifying . 178

section selection, definition of . 348
section (pragma directive). 244
sections . 299

summary . 299
introduction . 38

section-selectors (in linker configuration file). 292
__section_begin (extended operator) 213
__section_end (extended operator) 213
segment (pragma directive). 244
__SEL (intrinsic function) . 258
semaphores, definition of . 349
--semihosting (linker option). 197
--separate_cluster_for_initialized_variables
 (compiler option) . 178
set (STL header file) . 275
setjmp.h (library header file). 273
setlocale (library function) . 81
settings, basic for project configuration 19
__set_BASEPRI (intrinsic function) 258
__set_CONTROL (intrinsic function). 258
__set_CPSR (intrinsic function) . 258
__set_FAULTMASK (intrinsic function) 259
__set_interrupt_state (intrinsic function) 259
__set_PRIMASK (intrinsic function) 259
severity level, definition of . 349
severity level, of diagnostic messages 147

specifying . 148
SFR (special function registers) . 135

declaring extern . 126
definition of . 350

__SHADD8 (intrinsic function) . 259
__SHADD16 (intrinsic function) 259
shared object . 145, 192

sharing, definition of. 349, 352
__SHASX (intrinsic function). 260
short addressing, definition of. 349
short (data type) . 200
show (isymexport directive) . 316
__SHSAX (intrinsic function). 260
__SHSUB8 (intrinsic function). 260
__SHSUB16 (intrinsic function). 260
side-effect, definition of . 349
signal (library function)

configuring support for . 82
implementation-defined behavior. 329

signals, definition of . 349
signal.c . 82
signal.h (library header file) . 273
signbit, C99 extension. 277
signed char (data type) . 200–201

specifying . 156
signed int (data type). 200
signed long long (data type) . 201
signed long (data type) . 201
signed short (data type). 200
--silent (compiler option) . 179, 197
--silent (ielftool option). 310
silent operation, specifying . 179, 197
--simple (ielftool option). 310
simulator, definition of . 349
64-bits (floating-point format) . 204
sizeof, using in preprocessor extensions 168
size_t (integer type) . 205
skeleton code, creating for assembler language interface . . 92
skeleton code, definition of . 350
skeleton.s (assembler source output). 93
slist (STL header file) . 275
__SMUL (intrinsic function) . 260
snprintf, C99 extension . 277
software interrupts . 34
source files, list all referred. 165
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
special function registers (SFR) . 135
definition of . 350

special function types . 30
overview . 7

sprintf (library function) . 65
choosing formatter . 65

--srec (ielftool option) . 310
--srec-len (ielftool option). 311
--srec-s3only (ielftool option) . 311
__SSAX (intrinsic function) . 261
sscanf (library function)

choosing formatter . 66
sstream (library header file) . 274
__SSUB8 (intrinsic function) . 261
__SSUB16 (intrinsic function) . 261
stack . 26

advantages and problems using 26
cleaning after function return . 100
contents of . 26
exception . 112
internal data . 300
layout . 99
saving space . 133
size. 111

stack frames, definition of. 350
stack parameters . 97, 99
stack pointer . 26
stack (STL header file) . 275
standard error . 175, 194
standard input . 75
standard libraries, definition of . 350
standard output . 75

specifying . 175, 194
standard template library (STL)

in Extended EC++ . 104, 106, 275
missing from Embedded C++ 104

startup system . 71
statements, implementation-defined behavior 326
static clustering (compiler transformation) 132

static objects, definition of . 350
static overlay, definition of . 350
static variables . 25

taking the address of . 133
statically allocated memory, definition of 350
static_cast (cast operator) . 104
std namespace, missing from EC++
and Extended EC++ . 107
stdarg.h (library header file) . 273
stdbool.h (library header file) 201, 273

added C functionality. 277
__STDC__ (predefined symbol) . 267
STDC (pragma directive) . 328
__STDC_VERSION__ (predefined symbol) 267
stddef.h (library header file) 202, 273
stderr. 79, 175, 194
stdexcept (library header file) . 274
stdin . 79

implementation-defined behavior. 329
stdint.h (library header file). 273, 276
stdint.h, added C functionality . 277
stdio.h (library header file) . 273
stdio.h, additional C functionality 277
stdlib.h (library header file). 273
stdlib.h, additional C functionality 278
stdout . 79, 175, 194

implementation-defined behavior. 329
Steele, Guy L. xxx
steering file, input to isymexport. 316
stepping, definition of . 350
STL. 106
streambuf (library header file). 274
streams, supported in Embedded C++. 104
strerror (library function)
implementation-defined behavior 331
__STREX (intrinsic function) . 261
--strict_ansi (compiler option). 179
string (library header file) . 274
strings, supported in Embedded C++ 104
string.h (library header file) . 273
DARM-2

373

374
--strip (ielftool option) . 311
--strip (linker option) . 197
Stroustrup, Bjarne . xxx
strstream (library header file) . 274
strtod (library function), configuring support for 83
strtod, in stdlib.h . 278
strtof, C99 extension . 278
strtold, C99 extension . 278
strtoll, C99 extension . 278
strtoull, C99 extension . 278
structure types

alignment . 206–207
layout of. 206
packed . 207

structure value, definition of . 350
structures

aligning . 241
anonymous. 123, 213
implementation-defined behavior. 325
incomplete arrays as last element. 215
packing and unpacking . 123

subnormal numbers. 203–204
support, technical . 148
SVC #immed, for software interrupts 34
__swi (extended keyword) . 229
swi_number (pragma directive). 244
symbol names, using in preprocessor extensions 168
symbol (exported), definition of . 350
symbolic location, definition of . 350
symbols

anonymous, creating . 215
definition of . 350
directing from one to another . 196
including in output . 242
overview of predefined. 7
preprocessor, defining . 157, 185

syntax
extended keywords. 222–223
for command line options . 149

system startup
customizing . 74
DLIB . 71

system termination
C-SPY interface to . 74
DLIB . 73

system (library function)
configuring support for . 81
implementation-defined behavior. 330

system_include (pragma directive) 328

T
target, definition of . 351
task, definition of . 351
technical support, IAR Systems . 148
template support

in Extended EC++ . 104, 106
missing from Embedded C++ 103

tentative definition, definition of . 351
Terminal I/O window

making available . 85
terminal I/O, definition of . 351
terminal output, speeding up. 85
termination, of system

DLIB . 73
terminology. xxxi, 333
32-bits (floating-point format) . 203
this (pointer) . 94
thread, definition of. 351
--thumb (compiler option). 179
__thumb (extended keyword) . 230
Thumb, CPU mode . 20
__TID__ (predefined symbol). 268
__TIME__ (predefined symbol) . 267
time zone (library function)
implementation-defined behavior 331
time (library function), configuring support for 83
timer, definition of . 351
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
timeslice, definition of . 351
time-critical routines . 89, 211, 247
time.c . 83
time.h (library header file) . 273
tips, programming. 132
tools icon, in this guide . xxxi
trademarks . ii
transformations, compiler . 128
translation unit, definition of. 351
translation, implementation-defined behavior 321
trap, definition of . 351
type attributes . 221

specifying . 245
type qualifiers

const and volatile . 208
definition of . 351

typedefs
excluding from diagnostics . 172
repeated . 218
using in preprocessor extensions 168

type-based alias analysis (compiler transformation) 131
disabling . 171

type-safe memory management . 103
type_attribute (pragma directive) 245
typographic conventions . xxxi

U
__UADD8 (intrinsic function) . 261
__UADD16 (intrinsic function) . 262
__UASX (intrinsic function). 262
UBROF, definition of . 351
__UHADD8 (intrinsic function) . 262
__UHADD16 (intrinsic function) 262
__UHASX (intrinsic function) . 262
uintptr_t (integer type) . 206
underflow range errors,
implementation-defined behavior 328

unions
anonymous. 123, 213
implementation-defined behavior. 325

unsigned char (data type) . 200–201
changing to signed char . 156

unsigned int (data type). 200
unsigned long long (data type) . 201
unsigned long (data type) . 201
unsigned short (data type) . 200
__UQADD8 (intrinsic function) . 263
__UQADD16 (intrinsic function) 263
__UQASX (intrinsic function) . 263
__UQSAX (intrinsic function) . 264
__UQSUB8 (intrinsic function) . 263
__UQSUB16 (intrinsic function) 263
__USAX (intrinsic function). 264
__USUB8 (intrinsic function) . 264
__USUB16 (intrinsic function) . 264
utility (STL header file) . 275

V
-V (iarchive option). 305
value expressions, definition of. 352
variables

auto . 26, 333
defined inside a function . 26
global, placement in memory. 25
hints for choosing . 132
local. See auto variables
non-initialized . 137
placing at absolute addresses . 127
placing in named sections . 127
static

placement in memory . 25
taking the address of . 133

vector floating-point unit . 165
vector (pragma directive) . 328
vector (STL header file) . 275
DARM-2

375

376
__vector_table, array holding vector table 36
veneers . 55
__VER__ (predefined symbol) . 268
--verbose (iarchive option) . 305
--verbose (ielftool option) . 311
version, IAR Embedded Workbench. ii
version, of compiler . 268
VFP. 165
vfscanf, C99 extension . 277
vfwscanf, C99 extension . 278
virtual address, definition of . 352
virtual space, definition of . 352
void, pointers to . 218
volatile storage, definition of . 352
volatile (keyword) . 135
volatile, declaring objects . 208
von Neumann architecture, definition of 352
vscanf, C99 extension . 277
vsnprintf, C99 extension . 277
vsscanf, C99 extension . 277
vswscanf, C99 extension. 278
vwscanf, C99 extension . 278

W
#warning message (preprocessor extension) 270
warnings . 147

classifying . 160, 187
disabling . 173, 193
exit code. 180, 198

warnings icon, in this guide . xxxii
warnings (pragma directive) . 328
--warnings_affect_exit_code (compiler option) 145
--warnings_are_errors (compiler option) 180, 198
watchpoints, definition of . 352
wchar.h (library header file) 273, 276
wchar.h, added C functionality . 278
wchar_t (data type), adding support for in C. 201
wcstof, C99 extension. 278

wcstolb, C99 extension . 278
wctype.h (library header file) . 273
wctype.h, added C functionality . 278
__weak (extended keyword) . 231
web sites, recommended . xxx
__write (library function) . 79

customizing . 75

X
XLINK, definition of . 352
xreportassert.c. 83

Z
zero-initialized sections, definition of 352
zero-overhead loop, definition of 352
zone, definition of . 352

Symbols
#include files, specifying . 143, 166
#pragma directive, definition of . 345
#warning message (preprocessor extension) 270
-D (compiler option) . 157
-e (compiler option) . 162
-f (compiler option). 164, 188
-f (iarchive option) . 305
-I (compiler option). 166
-l (compiler option). 93, 166
-O (compiler option) . 174
-o (compiler option) . 174, 194, 313
-o (iarchive option) . 304
-r (compiler option). 177
-s (ielfdump option) . 314
-V (iarchive option). 305
--aapcs (compiler option) . 155
--aeabi (compiler option) . 155
--all (ielfdump option) . 313
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
--arm (compiler option). 155
--BE32 (linker option). 183
--BE8 (linker option) . 183
--bin (ielftool option) . 308
--char_is_signed (compiler option) 156
--checksum (ielftool option) . 308
--config (linker option) . 184
--config_def (linker option). 184
--cpp_init_routine (linker option) 184
--cpu (compiler option) . 156
--cpu (linker option) . 185
--cpu_mode (compiler option) . 157
--debug (compiler option) . 158
--define_symbol (linker option) . 185
--dependencies (compiler option) 158
--diagnostics_tables (compiler option) 161, 187
--diag_error (compiler option) 159, 186
--diag_remark (compiler option). 160, 186
--diag_suppress (compiler option) 160, 186
--diag_warning (compiler option) 160, 187
--discard_unused_publics (compiler option) 161
--dlib_config (compiler option). 162
--ec++ (compiler option). 163
--edit (isymexport option) . 315
--eec++ (compiler option) . 163
--enable_multibytes (compiler option) 163
--endian (compiler option) . 163
--entry (linker option) . 187
--enum_is_int (compiler option) . 164
--error_limit (compiler option) 164, 188
--export_builtin_config (linker option) 188
--fill (ielftool option). 309
--force_output (linker option) . 189
--fpu (compiler option) . 165
--header_context (compiler option). 165
--ihex (ielftool option). 310
--image_input (linker option) . 189
--interwork (compiler option) . 166
--keep (linker option) . 190

--legacy (compiler option). 167
--log (linker option) . 190
--log_file (linker option) . 191
--mangled_names_in_messages (linker option) 191
--map (linker option). 191
--mfc (compiler option). 168
--migration_preprocessor_extensions (compiler option) . . 168
--misrac (compiler option) . 153
--misrac (linker option) . 182
--misrac_verbose (compiler option) 153
--misrac_verbose (linker option) . 182
--no_clustering (compiler option) 169
--no_code_motion (compiler option) 169
--no_cse (compiler option) . 169
--no_fragments (compiler option) 170
--no_fragments (linker option) . 192
--no_guard_calls (compiler option). 170
--no_inline (compiler option) . 170
--no_library_search (linker option) 192
--no_locals (linker option) . 193
--no_path_in_file_macros (compiler option). 171
--no_remove (linker option) . 193
--no_scheduling (compiler option) 171
--no_tbaa (compiler option) . 171
--no_typedefs_in_diagnostics (compiler option). 172
--no_unaligned_access (compiler option) 172
--no_unroll (compiler option) . 173
--no_veneer (linker option) . 193
--no_warnings (compiler option) 173, 193
--no_wrap_diagnostics (compiler option) 173, 194
--only_stdout (compiler option) 175, 194
--ose_load_module (linker option) 195
--output (compiler option). 175, 195
--pi_veneer (linker option) . 195
--place_holder (linker option) . 195
--predef_macro (compiler option). 175
--preinclude (compiler option) . 176
--preprocess (compiler option) . 176
--raw (ielfdump] option) . 314
DARM-2

377

378
--redirect (linker option) . 196
--remarks (compiler option) 177, 196
--require_prototypes (compiler option) 177
--section (compiler option) . 178
--section (ielfdump option) . 314
--semihosting (linker option). 197
--separate_cluster_for_initialized_variables
(compiler option) . 178
--silent (compiler option) . 179, 197
--silent (ielftool option). 310
--simple (ielftool option). 310
--srec (ielftool option) . 310
--srec-len (ielftool option). 311
--srec-s3only (ielftool option) . 311
--strict_ansi (compiler option). 179
--strip (ielftool option) . 311
--strip (linker option) . 197
--thumb (compiler option). 179
--verbose (iarchive option) . 305
--verbose (ielftool option) . 311
--warnings_affect_exit_code (compiler option) 145, 180, 198
--warnings_are_errors (compiler option) 180, 198
.bss (section) . 300
.cstart (section) . 300
.data (section) . 300
.data_init (section) . 301
.iar.dynexit (section) . 301
.intvec (section). 301
.noinit (section) . 302
.rodata (section) . 302
.text (section) . 302
@ (operator) . 125, 213
_AEABI_PORTABILITY_LEVEL (preprocessor
symbol). 120
_AEABI_PORTABLE (preprocessor symbol) 120
_Exit (library function) . 73
_exit (library function) . 73
_Exit, C99 extension. 278
_Pragma (predefined symbol) . 269
__ALIGNOF__ (operator) . 213

__arm (extended keyword) . 225
__ARMVFP__ (predefined symbol) 266
__ARM4M__ (predefined symbol). 266
__ARM4TM__ (predefined symbol) 266
__ARM5E__ (predefined symbol) 266
__ARM5__ (predefined symbol) 266
__ARM6__ (predefined symbol) 266
__ARM7M__ (predefined symbol). 266
__asm (language extension) . 215
__BASE_FILE__ (predefined symbol) 266
__big_endian (extended keyword) 225
__BUILD_NUMBER__ (predefined symbol) 266
__close (library function) . 79
__CLZ (intrinsic function) . 250
__CORE__ (predefined symbol). 266
__cplusplus (predefined symbol) 266
__CPU_MODE__ (predefined symbol) 266
__DATE__ (predefined symbol) . 266
__disable_fiq (intrinsic function) 250
__disable_interrupt (intrinsic function). 250
__disable_irq (intrinsic function) 250
__DMB (intrinsic function) . 251
__DSB (intrinsic function) . 251
__embedded_cplusplus (predefined symbol) 266
__enable_fiq (intrinsic function). 251
__enable_interrupt (intrinsic function) 251
__enable_irq (intrinsic function). 252
__exit (library function) . 73
__FILE__ (predefined symbol). 266
__fiq (extended keyword) . 225
__FUNCTION__ (predefined symbol) 220, 267
__func__ (predefined symbol) 220, 267
__gets, in stdio.h. 278
__get_BASEPRI (intrinsic function). 252
__get_CONTROL (intrinsic function) 252
__get_CPSR (intrinsic function) . 252
__get_FAULTMASK (intrinsic function) 252
__get_interrupt_state (intrinsic function) 253
__get_PRIMASK (intrinsic function) 253
DARM-2

IAR C/C++ Development Guide
Compiling and linking

Index
__iar_maximum_atexit_calls . 50
__IAR_SYSTEMS_ICC__ (predefined symbol) 267
__ICCARM__ (predefined symbol) 267
__interwork (extended keyword) 226
__intrinsic (extended keyword). 226
__irq (extended keyword) . 226
__ISB (intrinsic function) . 253
__LDREX (intrinsic function) . 253
__LINE__ (predefined symbol) . 267
__little_endian (extended keyword) 226
__LITTLE_ENDIAN__ (predefined symbol) 267
__low_level_init

initialization phase . 15
__low_level_init, customizing . 74
__lseek (library function) . 79
__MCR (intrinsic function). 254
__MRC (intrinsic function). 254
__nested (extended keyword) . 227
__noreturn (extended keyword) . 228
__no_init (extended keyword) 137, 227
__no_operation (intrinsic function). 255
__open (library function) . 79
__packed (extended keyword). 228
__PRETTY_FUNCTION__ (predefined symbol). 267
__printf_args (pragma directive). 242, 328
__program_start (label). 71
__QADD (intrinsic function) . 255
__QADD8 (intrinsic function) . 255
__QADD16 (intrinsic function) . 255
__QASX (intrinsic function). 255
__QDADD (intrinsic function) . 255
__QDSUB (intrinsic function) . 256
__QFlag (intrinsic function) . 256
__QSAX (intrinsic function). 256
__qsortbbl, C99 extension. 278
__QSUB (intrinsic function) . 256
__QSUB8 (intrinsic function) . 256
__QSUB16 (intrinsic function) . 256
__ramfunc (extended keyword). 227

__ramfunc (extended keyword), executing in RAM 30
__read (library function) . 79

customizing . 75
__ReportAssert (library function) . 83
__reset_Q_flag (intrinsic function) 257
__REV (intrinsic function) . 257
__REVSH (intrinsic function). 257
__root (extended keyword) . 229
__SADD8 (intrinsic function). 257
__SADD16 (intrinsic function). 257
__SASX (intrinsic function) . 258
__scanf_args (pragma directive) 243, 328
__section_begin (extended operator) 213
__section_end (extended operator) 213
__SEL (intrinsic function) . 258
__set_BASEPRI (intrinsic function) 258
__set_CONTROL (intrinsic function). 258
__set_CPSR (intrinsic function) . 258
__set_FAULTMASK (intrinsic function) 259
__set_interrupt_state (intrinsic function) 259
__set_PRIMASK (intrinsic function) 259
__SHADD8 (intrinsic function) . 259
__SHADD16 (intrinsic function) 259
__SHASX (intrinsic function). 260
__SHSAX (intrinsic function). 260
__SHSUB8 (intrinsic function). 260
__SHSUB16 (intrinsic function). 260
__SMUL (intrinsic function) . 260
__SSAX (intrinsic function) . 261
__SSUB8 (intrinsic function) . 261
__SSUB16 (intrinsic function) . 261
__STDC_VERSION__ (predefined symbol) 267
__STDC__ (predefined symbol) . 267
__STREX (intrinsic function) . 261
__swi (extended keyword) . 229
__thumb (extended keyword) . 230
__TID__ (predefined symbol). 268
__TIME__ (predefined symbol) . 267
__UADD8 (intrinsic function) . 261
DARM-2

379

380
__UADD16 (intrinsic function) . 262
__UASX (intrinsic function). 262
__UHADD8 (intrinsic function) . 262
__UHADD16 (intrinsic function) 262
__UHASX (intrinsic function) . 262
__ungetchar, in stdio.h . 278
__UQADD8 (intrinsic function) . 263
__UQADD16 (intrinsic function) 263
__UQASX (intrinsic function) . 263
__UQSAX (intrinsic function) . 264
__UQSUB8 (intrinsic function) . 263
__UQSUB16 (intrinsic function) 263
__USAX (intrinsic function). 264
__USUB8 (intrinsic function) . 264
__USUB16 (intrinsic function) . 264
__VA_ARGS__ (preprocessor extension). 270
__VER__ (predefined symbol) . 268
__weak (extended keyword) . 231
__write (library function) . 79

customizing . 75
__write_array, in stdio.h . 278
__write_buffered (DLIB library function). 85

Numerics
32-bits (floating-point format) . 203
64-bits (floating-point format) . 204
DARM-2

IAR C/C++ Development Guide
Compiling and linking

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Using the build tools
	Part 2. Reference information
	Glossary

	Other documentation
	Further reading

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the build tools
	Introduction to the IAR build tools
	The IAR build tools-an overview
	IAR C/C++ Compiler
	IAR Assembler
	The IAR ILINK Linker
	Specific ELF tools
	External tools

	IAR language overview
	Device support
	Supported ARM devices
	Preconfigured support files
	Header files for I/O
	Device description files

	Examples for getting started

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Special function types
	Accessing low-level features

	Developing embedded applications
	Developing embedded software using IAR build tools
	Mapping of internal and external memory
	Communication with peripheral units
	Event handling
	System startup
	Real-time operating systems
	Interoperability with other build tools

	The build process-an overview
	The translation process
	The linking process
	After linking

	Application execution-an overview
	The initialization phase
	The execution phase
	The termination phase

	Basic project configuration
	Processor configuration
	Processor variant
	CPU mode
	Interworking
	VFP and floating-point arithmetic
	Byte order

	Optimization for speed and size
	Runtime environment
	Setting up for the runtime environment in the IDE
	Setting up for the runtime environment from the command line
	Setting library and runtime environment options

	Data storage
	Introduction
	Different ways to store data

	Auto variables-on the stack
	The stack
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	ARM and Thumb code
	Execution in RAM
	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Installing exception functions
	Interrupts and fast interrupts
	Nested interrupts
	Software interrupts
	Calling a software interrupt function
	The software interrupt handler and functions
	The software interrupt functions
	Setting up the software interrupt stack pointer

	Interrupt operations
	Interrupts for ARM Cortex-M
	C++ and special function types

	Linking using ILINK
	Linking-an overview
	Modules and sections
	The linking process
	Placing code and data-the linker configuration file
	A simple example of a configuration file

	Initialization at system startup
	The initialization process

	Linking your application
	Linking considerations
	Choosing a linker configuration file
	Defining your own memory areas
	Adding an additional region
	Merging different areas into one region
	Adding a region in a new memory
	Defining the unit size for a new memory
	Sharing memories

	Placing sections
	Placing a section at a specific address in memory
	Placing a section first or last in a region
	Define and place your own sections

	Reserving space in RAM
	Keeping modules
	Keeping symbols and sections
	Application startup
	Setting up the stack
	Setting up the heap
	Setting up the atexit limit
	Changing the default initialization
	Choosing packing algorithm
	Overriding default copy-initialize function
	Manual initialization
	Initializing code-copying ROM to RAM
	Running all code from RAM

	Interaction between ILINK and the application
	Standard library handling
	Producing other output formats than ELF/DWARF
	Veneers

	Hints for troubleshooting
	Relocation errors
	Possible solutions

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Library selection
	Situations that require library building
	Library configurations
	Low-level interface for debug support

	Using a prebuilt library
	Library filename syntax
	Library files for C/C++ standard library functions
	Library files for runtime support functions
	Library files for debug support functions

	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing printf formatter
	Specifying the print formatter in the IDE
	Specifying printf formatter from the command line

	Choosing scanf formatter
	Specifying scanf formatter in the IDE
	Specifying scanf formatter from the command line

	Overriding library modules
	Overriding library modules using the IDE
	Overriding library modules from the command line

	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write and _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	Signal and raise
	Time
	Strtod
	Assert
	Atexit
	C-SPY runtime interface
	Low-level debugger runtime interface
	The debugger terminal I/O window
	Speeding up terminal output

	Checking module consistency
	Runtime model attributes
	Using runtime model attributes

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Stack layout at function exit
	Return address handling

	Examples

	Call frame information

	Using C++
	Overview
	Standard Embedded C++
	Extended Embedded C++
	Enabling C++ support

	Feature descriptions
	Classes
	Functions
	Templates
	The standard template library

	Variants of casts
	Mutable
	Namespace
	The STD namespace
	Pointer to member functions
	Using interrupts and EC++ destructors

	C++ language extensions

	Application-related considerations
	Output format considerations
	Stack considerations
	Exception stacks

	Heap considerations
	Heap size and standard I/O

	Interaction between the tools and your application
	Checksum calculation
	Calculating a checksum
	Creating a place for the calculated checksum
	Running ichecksum

	Adding a checksum function to your source code
	A function for checksum calculation
	Checksum calculation

	Things to remember

	AEABI compliance
	Linking AEABI compliant modules using the IAR ILINK Linker
	Linking AEABI compliant modules using a linker from a different vendor
	Enabling AEABI compliance in the compiler

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Alignment of elements in a structure
	Anonymous structs and unions

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in sections
	Examples of placing variables in named sections
	Examples of placing functions in named sections

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units

	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis
	Static clustering
	Instruction scheduling

	Writing efficient code
	Saving stack space and RAM memory
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Passing values between C and assembler objects
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	ILINK invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	ILINK output
	Diagnostics
	Message format for the compiler
	Message format for the linker
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of options
	--aapcs
	--aeabi
	--arm
	--char_is_signed
	--cpu
	--cpu_mode
	-D
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--discard_unused_publics
	--dlib_config
	-e
	--ec++
	--eec++
	--enable_multibytes
	--endian
	--enum_is_int
	--error_limit
	-f
	--fpu
	--header_context
	-I
	--interwork
	-l
	--legacy
	--mfc
	--migration_preprocessor_extensions
	--no_clustering
	--no_code_motion
	--no_cse
	--no_fragments
	--no_guard_calls
	--no_inline
	--no_path_in_file_macros
	--no_scheduling
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_unaligned_access
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	-O
	-o, --output
	--only_stdout
	--output, -o
	--predef_macros
	--preinclude
	--preprocess
	--public_equ
	-r, --debug
	--remarks
	--require_prototypes
	--section
	--separate_cluster_for_initialized_variables
	--silent
	--strict_ansi
	--thumb
	--warnings_affect_exit_code
	--warnings_are_errors

	Linker options
	Summary of linker options
	Descriptions of options
	--BE8
	--BE32
	--config
	--config_def
	--cpp_init_routine
	--cpu
	--define_symbol
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--entry
	--error_limit
	--export_builtin_config
	-f
	--force_output
	--image_input
	--keep
	--log
	--log_file
	--mangled_names_in_messages
	--map
	--no_fragments
	--no_library_search
	--no_locals
	--no_remove
	--no_veneers
	--no_warnings
	--no_wrap_diagnostics
	-o, --output
	--only_stdout
	--ose_load_module
	--output, -o
	--pi_veneers
	--place_holder
	--redirect
	--remarks
	--semihosting
	--silent
	--strip
	--warnings_affect_exit_code
	--warnings_are_errors

	Data representation
	Alignment
	Alignment on the ARM core

	Byte order
	Basic data types
	Integer types
	Bool
	The enum type
	The char type
	The wchar_t type
	Bitfields

	Floating-point types
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects const

	Data types in C++

	Compiler extensions
	Compiler extensions overview
	Enabling language extensions

	C language extensions
	Important language extensions
	Useful language extensions
	Inline assembler
	Compound literals
	Incomplete arrays at end of structs
	Hexadecimal floating-point constants
	Designated initializers in structures and arrays

	Minor language extensions

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes on data pointers
	Syntax for type attributes on functions

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _arm
	_ _big_endian
	_ _fiq
	_ _interwork
	_ _intrinsic
	_ _irq
	_ _little_endian
	_ _nested
	_ _no_init
	_ _ramfunc
	_ _noreturn
	_ _packed
	_ _root
	_ _swi
	_ _thumb
	_ _weak

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	bitfields
	data_alignment
	diag_default
	diag_error
	diag_remark
	diag_suppress
	diag_warning
	include_alias
	inline
	language
	location
	message
	object_attribute
	optimize
	pack
	_ _printf_args
	required
	rtmodel
	_ _scanf_args
	section
	swi_number
	type_attribute

	Intrinsic functions
	Summary of intrinsic functions
	Descriptions of intrinsic functions
	_ _CLZ
	_ _disable_fiq
	_ _disable_interrupt
	_ _disable_irq
	_ _DMB
	_ _DSB
	_ _enable_fiq
	_ _enable_interrupt
	_ _enable_irq
	_ _get_BASEPRI
	_ _get_CONTROL
	_ _get_CPSR
	_ _get_FAULTMASK
	_ _get_interrupt_state
	_ _get_PRIMASK
	_ _ISB
	_ _LDREX
	_ _MCR
	_ _MRC
	_ _no_operation
	_ _QADD
	_ _QADD8
	_ _QADD16
	_ _QASX
	_ _QDADD
	_ _QDSUB
	_ _QFlag
	_ _QSUB
	_ _QSUB8
	_ _QSUB16
	_ _QSAX
	_ _reset_Q_flag
	_ _REV
	_ _REVSH
	_ _SADD8
	_ _SADD16
	_ _SASX
	_ _SEL
	_ _set_BASEPRI
	_ _set_CONTROL
	_ _set_CPSR
	_ _set_FAULTMASK
	_ _set_interrupt_state
	_ _set_PRIMASK
	_ _SHADD8
	_ _SHADD16
	_ _SHASX
	_ _SHSUB8
	_ _SHSUB16
	_ _SHSAX
	_ _SMUL
	_ _SSUB8
	_ _SSUB16
	_ _SSAX
	_ _STREX
	_ _UADD8
	_ _UADD16
	_ _UASX
	_ _UHADD8
	_ _UHADD16
	_ _UHASX
	_ _UQADD8
	_ _UQADD16
	_ _UQASX
	_ _UQSUB8
	_ _UQSUB16
	_ _UQSAX
	_ _USAX
	_ _USUB8
	_ _USUB16

	The preprocessor
	Overview of the preprocessor
	Descriptions of predefined preprocessor symbols
	_ _TID_ _

	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	_Pragma()
	#warning message
	_ _VA_ARGS_ _

	Library functions
	Introduction
	Header files
	Library object files
	Reentrancy

	IAR DLIB Library
	C header files
	C++ header files
	Embedded C++
	Extended Embedded C++ standard template library
	Using standard C libraries in C++

	Library functions as intrinsic functions
	Added C functionality
	ctype.h
	inttypes.h
	math.h
	stdbool.h
	stdint.h
	stdio.h
	stdlib.h
	wchar.h
	wctype.h

	The linker configuration file
	Overview
	Defining memories and regions
	Define memory directive
	Define region directive

	Regions
	Region literal
	Region expression
	Empty region

	Section handling
	Define block directive
	Define overlay directive
	Initialize directive
	Do not initialize directive
	Keep directive
	Place at directive
	Place in directive

	Section selection
	Section-selectors
	Extended-selectors

	Using symbols, expressions, and numbers
	Define symbol directive
	Export directive
	Expressions
	Numbers

	Structural configuration
	If directive
	Include directive

	Section reference
	Summary of sections
	Descriptions of sections and blocks
	.bss
	CSTACK
	.cstart
	.data
	.data_init
	.difunct
	HEAP
	.iar.dynexit
	.intvec
	IRQ_STACK
	.noinit
	.rodata
	.text

	IAR utilities
	The IAR Archive Builder-iarchive
	Invocation syntax
	Parameters
	Example

	Summary of iarchive options
	Descriptions of options
	-o
	-f
	--verbose, -V
	Diagnostic messages
	La001: could not open file filename
	La002: illegal path pathname
	La003: filename is not an ELF file
	La004: ar header field width exceeded: string has more than n characters
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR ELF Tool-ielftool
	Invocation syntax
	Parameters
	Example

	Summary of ielftool options
	Descriptions of options
	--bin
	--checksum
	--fill
	--ihex
	--silent
	--simple
	--srec
	--srec-len
	--srec-s3only
	--strip
	--verbose

	The IAR ELF Dumper for ARM-ielfdumparm
	Invocation syntax
	Parameters

	Summary of ielfdumparm options
	Descriptions of options
	--all
	-o, --output
	--section, -s
	--raw

	The IAR Absolute Symbol Exporter-isymexport
	Invocation syntax
	Parameters

	Summary of isymexport options
	Descriptions of options
	--edit
	Steering files
	Syntax
	Example

	Show directive
	Hide directive
	Rename directive
	Diagnostic messages
	Es001: could not open file filename
	Es002: illegal path pathname
	Es003: format error: message
	Es004: no input file
	Es005: no output file
	Es006: too many input files
	Es007: input file is not an ELF executable
	Es008: unknown directive: directive
	Es009: unexpected end of file
	Es010: unexpected end of line
	Es011: unexpected text after end of directive
	Es012: expected text
	Es013: pattern can contain at most one * or ?
	Es014: rename patterns have different wildcards
	Es014: ambiguous pattern match: symbol matches more than one rename pattern

	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	IAR DLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

