[vtkusers] vtk/Examples/Medical/Medical3.cxx, bug or not?

kdsfinger at gmail.com kdsfinger at gmail.com
Thu Sep 7 21:26:33 EDT 2006


hi, vtk users

The vtk/Examples/Medical/Medical3.cxx runs good as is. However, if the
SetDisplayExtent() changes to the other values, it has great chances
to display pure white plane with no texture written on. This result
has been reproduced on 2 different linux machines. Is this a bug or
not?

Attached is the copy of the Medical3.cxx. If you change
saggital->SetDisplayExtent(32,32, 0,63, 0,92); to
saggital->SetDisplayExtent(20,20, 0,63, 0,92);

or change
coronal->SetDisplayExtent(0,63, 32,32, 0,92); to
coronal->SetDisplayExtent(0,63, 20,20, 0,92);

compile and run the program again, you will see what I am saying. On
the machine I tested, any position less than 25 will show only pure
white plane. Please help.

zl2k

---------------------------------------------------
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    $RCSfile: Medical3.cxx,v $

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

//
// This example reads a volume dataset, extracts two isosurfaces that
// represent the skin and bone, creates three orthogonal planes
// (saggital, axial, coronal), and displays them.
//
#include "vtkRenderer.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkVolume16Reader.h"
#include "vtkPolyDataMapper.h"
#include "vtkActor.h"
#include "vtkOutlineFilter.h"
#include "vtkCamera.h"
#include "vtkStripper.h"
#include "vtkLookupTable.h"
#include "vtkImageDataGeometryFilter.h"
#include "vtkProperty.h"
#include "vtkPolyDataNormals.h"
#include "vtkContourFilter.h"
#include "vtkImageData.h"
#include "vtkImageMapToColors.h"
#include "vtkImageActor.h"

int main (int argc, char **argv)
{
  if (argc < 2)
    {
      cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
    return 1;
    }

  // Create the renderer, the render window, and the interactor. The
  // renderer draws into the render window, the interactor enables
  // mouse- and keyboard-based interaction with the data within the
  // render window.
  //
  vtkRenderer *aRenderer = vtkRenderer::New();
  vtkRenderWindow *renWin = vtkRenderWindow::New();
    renWin->AddRenderer(aRenderer);
  vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
    iren->SetRenderWindow(renWin);

  // The following reader is used to read a series of 2D slices (images)
  // that compose the volume. The slice dimensions are set, and the
  // pixel spacing. The data Endianness must also be specified. The
  // reader usese the FilePrefix in combination with the slice number to
  // construct filenames using the format FilePrefix.%d. (In this case
  // the FilePrefix is the root name of the file: quarter.)
  vtkVolume16Reader *v16 = vtkVolume16Reader::New();
    v16->SetDataDimensions(64,64);
    v16->SetDataByteOrderToLittleEndian();
    v16->SetFilePrefix (argv[1]);
    v16->SetImageRange(1, 93);
    v16->SetDataSpacing (3.2, 3.2, 1.5);

  // An isosurface, or contour value of 500 is known to correspond to
  // the skin of the patient. Once generated, a vtkPolyDataNormals
  // filter is is used to create normals for smooth surface shading
  // during rendering.  The triangle stripper is used to create triangle
  // strips from the isosurface; these render much faster on may
  // systems.
  vtkContourFilter *skinExtractor = vtkContourFilter::New();
    skinExtractor->SetInputConnection( v16->GetOutputPort());
    skinExtractor->SetValue(0, 500);
  vtkPolyDataNormals *skinNormals = vtkPolyDataNormals::New();
    skinNormals->SetInputConnection(skinExtractor->GetOutputPort());
    skinNormals->SetFeatureAngle(60.0);
  vtkStripper *skinStripper = vtkStripper::New();
    skinStripper->SetInputConnection(skinNormals->GetOutputPort());
  vtkPolyDataMapper *skinMapper = vtkPolyDataMapper::New();
    skinMapper->SetInputConnection(skinStripper->GetOutputPort());
    skinMapper->ScalarVisibilityOff();
  vtkActor *skin = vtkActor::New();
    skin->SetMapper(skinMapper);
    skin->GetProperty()->SetDiffuseColor(1, .49, .25);
    skin->GetProperty()->SetSpecular(.3);
    skin->GetProperty()->SetSpecularPower(20);

  // An isosurface, or contour value of 1150 is known to correspond to
  // the skin of the patient. Once generated, a vtkPolyDataNormals
  // filter is is used to create normals for smooth surface shading
  // during rendering.  The triangle stripper is used to create triangle
  // strips from the isosurface; these render much faster on may
  // systems.
  vtkContourFilter *boneExtractor = vtkContourFilter::New();
    boneExtractor->SetInputConnection(v16->GetOutputPort());
    boneExtractor->SetValue(0, 1150);
  vtkPolyDataNormals *boneNormals = vtkPolyDataNormals::New();
    boneNormals->SetInputConnection(boneExtractor->GetOutputPort());
    boneNormals->SetFeatureAngle(60.0);
  vtkStripper *boneStripper = vtkStripper::New();
    boneStripper->SetInputConnection(boneNormals->GetOutputPort());
  vtkPolyDataMapper *boneMapper = vtkPolyDataMapper::New();
    boneMapper->SetInputConnection(boneStripper->GetOutputPort());
    boneMapper->ScalarVisibilityOff();
  vtkActor *bone = vtkActor::New();
    bone->SetMapper(boneMapper);
    bone->GetProperty()->SetDiffuseColor(1, 1, .9412);

  // An outline provides context around the data.
  //
  vtkOutlineFilter *outlineData = vtkOutlineFilter::New();
    outlineData->SetInputConnection(v16->GetOutputPort());
  vtkPolyDataMapper *mapOutline = vtkPolyDataMapper::New();
    mapOutline->SetInputConnection(outlineData->GetOutputPort());
  vtkActor *outline = vtkActor::New();
    outline->SetMapper(mapOutline);
    outline->GetProperty()->SetColor(0,0,0);

  // Now we are creating three orthogonal planes passing through the
  // volume. Each plane uses a different texture map and therefore has
  // diferent coloration.

  // Start by creatin a black/white lookup table.
  vtkLookupTable *bwLut = vtkLookupTable::New();
    bwLut->SetTableRange (0, 2000);
    bwLut->SetSaturationRange (0, 0);
    bwLut->SetHueRange (0, 0);
    bwLut->SetValueRange (0, 1);
    bwLut->Build(); //effective built

  // Now create a lookup table that consists of the full hue circle
  // (from HSV).
  vtkLookupTable *hueLut = vtkLookupTable::New();
    hueLut->SetTableRange (0, 2000);
    hueLut->SetHueRange (0, 1);
    hueLut->SetSaturationRange (1, 1);
    hueLut->SetValueRange (1, 1);
    hueLut->Build(); //effective built

  // Finally, create a lookup table with a single hue but having a range
  // in the saturation of the hue.
  vtkLookupTable *satLut = vtkLookupTable::New();
    satLut->SetTableRange (0, 2000);
    satLut->SetHueRange (.6, .6);
    satLut->SetSaturationRange (0, 1);
    satLut->SetValueRange (1, 1);
    satLut->Build(); //effective built

  // Create the first of the three planes. The filter vtkImageMapToColors
  // maps the data through the corresponding lookup table created above.  The
  // vtkImageActor is a type of vtkProp and conveniently displays an image on
  // a single quadrilateral plane. It does this using texture mapping and as
  // a result is quite fast. (Note: the input image has to be unsigned char
  // values, which the vtkImageMapToColors produces.) Note also that by
  // specifying the DisplayExtent, the pipeline requests data of this extent
  // and the vtkImageMapToColors only processes a slice of data.
  vtkImageMapToColors *saggitalColors = vtkImageMapToColors::New();
    saggitalColors->SetInputConnection(v16->GetOutputPort());
    saggitalColors->SetLookupTable(bwLut);
  vtkImageActor *saggital = vtkImageActor::New();
    saggital->SetInput(saggitalColors->GetOutput());
    saggital->SetDisplayExtent(32,32, 0,63, 0,92);

  // Create the second (axial) plane of the three planes. We use the
  // same approach as before except that the extent differs.
  vtkImageMapToColors *axialColors = vtkImageMapToColors::New();
    axialColors->SetInputConnection(v16->GetOutputPort());
    axialColors->SetLookupTable(hueLut);
  vtkImageActor *axial = vtkImageActor::New();
    axial->SetInput(axialColors->GetOutput());
    axial->SetDisplayExtent(0,63, 0,63, 46,46);

  // Create the third (coronal) plane of the three planes. We use
  // the same approach as before except that the extent differs.
  vtkImageMapToColors *coronalColors = vtkImageMapToColors::New();
    coronalColors->SetInputConnection(v16->GetOutputPort());
    coronalColors->SetLookupTable(satLut);
  vtkImageActor *coronal = vtkImageActor::New();
    coronal->SetInput(coronalColors->GetOutput());
    coronal->SetDisplayExtent(0,63, 32,32, 0,92);

  // It is convenient to create an initial view of the data. The
  // FocalPoint and Position form a vector direction. Later on
  // (ResetCamera() method) this vector is used to position the camera
  // to look at the data in this direction.
  vtkCamera *aCamera = vtkCamera::New();
    aCamera->SetViewUp (0, 0, -1);
    aCamera->SetPosition (0, 1, 0);
    aCamera->SetFocalPoint (0, 0, 0);
    aCamera->ComputeViewPlaneNormal();

  // Actors are added to the renderer.
  aRenderer->AddActor(outline);
  aRenderer->AddActor(saggital);
  aRenderer->AddActor(axial);
  aRenderer->AddActor(coronal);
  aRenderer->AddActor(axial);
  aRenderer->AddActor(coronal);
  aRenderer->AddActor(skin);
  aRenderer->AddActor(bone);

  // Turn off bone for this example.
  bone->VisibilityOff();

  // Set skin to semi-transparent.
  skin->GetProperty()->SetOpacity(0.5);

  // An initial camera view is created.  The Dolly() method moves
  // the camera towards the FocalPoint, thereby enlarging the image.
  aRenderer->SetActiveCamera(aCamera);
  aRenderer->Render();
  aRenderer->ResetCamera ();
  aCamera->Dolly(1.5);

  // Set a background color for the renderer and set the size of the
  // render window (expressed in pixels).
  aRenderer->SetBackground(1,1,1);
  renWin->SetSize(640, 480);

  // Note that when camera movement occurs (as it does in the Dolly()
  // method), the clipping planes often need adjusting. Clipping planes
  // consist of two planes: near and far along the view direction. The
  // near plane clips out objects in front of the plane; the far plane
  // clips out objects behind the plane. This way only what is drawn
  // between the planes is actually rendered.
  aRenderer->ResetCameraClippingRange ();

  // interact with data
  iren->Initialize();
  iren->Start();

  // It is important to delete all objects created previously to prevent
  // memory leaks. In this case, since the program is on its way to
  // exiting, it is not so important. But in applications it is
  // essential.
  v16->Delete();
  skinExtractor->Delete();
  skinNormals->Delete();
  skinStripper->Delete();
  skinMapper->Delete();
  skin->Delete();
  boneExtractor->Delete();
  boneNormals->Delete();
  boneStripper->Delete();
  boneMapper->Delete();
  bone->Delete();
  outlineData->Delete();
  mapOutline->Delete();
  outline->Delete();
  bwLut->Delete();
  hueLut->Delete();
  satLut->Delete();
  saggitalColors->Delete();
  saggital->Delete();
  axialColors->Delete();
  axial->Delete();
  coronalColors->Delete();
  coronal->Delete();
  aCamera->Delete();
  aRenderer->Delete();
  renWin->Delete();
  iren->Delete();

  return 0;
}



More information about the vtkusers mailing list