<div dir="ltr"><div>Hi Dr. Thompson,</div><div><br></div><div>I have finished the point inversion and projection algorithm for both 1-d, 2-d and 3-d NURBS.</div><div>We can turn to more dedicated algorithms now.</div><div><br></div><div>Best,</div><div>Lin</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Sun, Aug 9, 2015 at 2:47 PM, Lin M <span dir="ltr"><<a href="mailto:majcjc@gmail.com" target="_blank">majcjc@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi Dr. Thompson,<div><br></div><div>I have pushed new methods to compute point inversion and projection to gitlab.</div><div>It took longer time than I expected. It would be really helpful if you could review the code a little bit. Thanks!</div><div><br></div><div>Best,</div><div>Lin</div></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Aug 3, 2015 at 10:50 AM, David Thompson <span dir="ltr"><<a href="mailto:david.thompson@kitware.com" target="_blank">david.thompson@kitware.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;padding-left:1ex;border-left-color:rgb(204,204,204);border-left-width:1px;border-left-style:solid"><div dir="auto"><div>Hi Lin,</div><div><br></div><div>Yes, that is correct. Inserting knot values does not change the polynomial degree or shape, it just adds control points so that the weights are uniform (as required by the Bézier basis). So, the underlying parameterization is unchanged... it just has more piecewise segments.</div><span><font color="#888888"><div><br></div><div> David <br><br><br></div></font></span><span><div><br>On Aug 2, 2015, at 22:38, Lin M <<a href="mailto:majcjc@gmail.com" target="_blank">majcjc@gmail.com</a>> wrote:<br><br></div><blockquote type="cite"><div><div dir="ltr">Hi Dr. Thompson,<div><br></div><div>I have a question about the inversion and projection. Currently, we evaluate the NURBS by inserting knots and making it into Bezier forms. My question is that if I evaluate u = 0.2 in original knot vector [0,1,2,3], would it be the same to evaluate u = 0.2 in the new knot vector which is a bezier form?</div><div><br></div><div>Best,</div><div>Lin</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Jul 27, 2015 at 1:26 AM, Lin M <span dir="ltr"><<a href="mailto:majcjc@gmail.com" target="_blank">majcjc@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;padding-left:1ex;border-left-color:rgb(204,204,204);border-left-width:1px;border-left-style:solid"><div dir="ltr">Hi Dr. Thompson,<div><br></div><div>I have added new method vtkPatachInterpolation::InterpolateOnSimplicialPatch() and pushed to gitlab.</div><div><br></div><div>I'm now working on the point inversion part.</div><div><br></div><div>Best,</div><div>Lin</div></div><div><div><div class="gmail_extra"><br><div class="gmail_quote">On Sun, Jul 26, 2015 at 8:05 PM, David Thompson <span dir="ltr"><<a href="mailto:david.thompson@kitware.com" target="_blank">david.thompson@kitware.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;padding-left:1ex;border-left-color:rgb(204,204,204);border-left-width:1px;border-left-style:solid">Hi Lin,<br>
<br>
How is triangular/tetrahedral patch interpolation going? They will be a basic building block of the contouring and cutting algorithms. By identifying points on edges, edges on surfaces, and surfaces in volumes that take on a single value, a single patch can be decomposed into sections that are inside, outside, or on an isosurface. Not all of these pieces can be expressed as brick patches, but they can be expressed as simplicial patches.<br>
<span><font color="#888888"><br>
David</font></span></blockquote></div><br></div>
</div></div></blockquote></div><br></div>
</div></blockquote></span></div></blockquote></div><br></div>
</div></div></blockquote></div><br></div>