
A Hyper Tree Grid Implementation for AMR
Mesh Manipulation and Visualization in VTK∗

Thierry Carrard1, Charles Law2, and Philippe Pébay2

1 Commissariat à l’Énergie Atomique et aux Énergies Alternatives
thierry.carrard@cea.fr

2 Kitware
{charles.law,philippe.pebay}@kitware.com

Summary. Adaptive Mesh Refinement (AMR) grids are particularily efficient to
mitigate the tension between numerical accuracy and computational cost. The Vi-
sualization Toolkit (VTK) offers data structures and algorithms to treat 2D and 3D
AMR meshes, either “patch-based” or as binary trees. This paper summarizes our
extension of the former capability to the case of generic subdivision and arbitrary
rectilinear geometry, using an optimized, generic tree traversal technique together
with a fast dual grid construction.

1 Introduction

At the DIF center of Commissariat à l’Énergie Atomique et aux Énergies Al-
ternatives (CEA), massive numerical simulations are routinely run on petas-
cale supercomputers such as Tera100 [1]. Consequently, a dedicated parallel
visualization tool (Love [3]) based on VTK [4] and ParaView [6] was devel-
oped at CEA/DIF. Among supported CEA simulation codes, Adaptive Mesh
Refinement (AMR) ones such as Hera [5], a tree-based AMR hydrodynamics
simulation code, are of particular interest to track fine details in a large do-
main. The goal of the work presented hereafter was thus to add support in
VTK for generic tree-based AMR data sets.

AMR enables a trade-off between numerical accuracy and computational
cost, by refining the mesh only in regions where criteria based on error esti-
mation. Since the first description of an AMR methodology with the Berger-
Oliger [2] type, several implementations have been proposed and developed,
such as [5]. Our work was aimed at supporting tree-based AMR grids, which
have a lower memory footprint at the cost of more complex processing al-
gorithms. Moreover, when AMR meshes are to be used as the input of an
unstructured grid algorithm such as iso-contouring, topological irregularities

∗This work was supported by CEA, Direction des Applications Militaires Île-de-
France (DIF), Bruyères-le-Châtel, 91297 Arpajon, France.



2 Thierry Carrard, Charles Law, and Philippe Pébay

Fig. 1. Example of partly connected vertices (in red) and the corresponding cracks
appearing after a contour algorithm is applied

resulting in strong visual artifacts, e.g., cracks, may appear. These are caused
by the very nature of AMR meshes where neighboring cells at different refine-
ment levels result in partly connected vertices (“T-junctions”). Linear inter-
polation, commonly used by visualization algorithms, produces discontinuities
across T-Junctions, which in turn result incorrect outputs surface and thus
visual artifacts, as shown in Figure 1.

VTK is an open-source, C++ toolkit used by thousands of users, which
supports many data types and hundreds of algorithms. Prior to this work
VTK mostly supported block-structured AMR data sets, with only limited
support for binary tree-based AMR based on an octree refinement scheme [7].
However, simulation codes such as Hera can use ternary subdivisions, and
start from an arbitrary rectilinear grid at the root level, and neither of these
features was supported. These simulations could thus not be post-processed
with VTK. This paper henceforth describes the design and implementation
of the novel vtkHyperTreeDataSet which tackles both geometric (arbitrary
rectilinear root cells) and topological (genericity of the subdivision) issues.

2 Method

To avoid errors such as those described in §1, two distinct approaches are
possible: either implement specialized algorithms for tree-based AMR grids,
or transform the input to a conforming unstructured grid, allowing for reuse
of existing algorithms. We chose the latter approach using a dual grid con-
struction, upon which all filters designed for vertex-centered attributes can
natively operate and produce correct results.

Our dual grid transformation for AMR grids is easy to understand: a dual
vertex is defined in the center of every leaf in the tree. In 2D (resp. 3D),
two dual vertices are connected by a dual edge if and only if the correspond-
ing leaf cells share an edge (resp. a face) or a portion thereof. Dual cells are
defined accordingly. Furthermore, our construction displaces dual boundary
entities onto the primal boundary, in order to avoid near-boundary artifacts
when applying visualization algorithms to the dual, as shown in Figure 2.



The Hyper Tree Grid Implementation in VTK 3

Fig. 2. Left: a 2D ternary tree-based AMR grid, overlaid with its dual. Center: a
3D binary tree-based AMR grid overlaid with its dual. Right: dual cells shrunk.

Since the dual grid is well behaved and has no T-junctions, attributes can be
interpolated over the dual mesh without creating discontinuities. Moreover,
the dual grid provides an efficient solution to extending existing visualization
algorithms to AMR data by implicitly converting cell attributes into vertex at-
tributes. This avoids explicit re-sampling of attribute fields which is expensive
computationally and in memory, and tends to average and smooth fields.

In order to support the widest variety of visualization algorithms, our
data model has a double API, as some visualization filters work best pro-
cessing dual grid cells, whereas others execute most efficiently accessing the
primal tree. Filters also have the option of using an iterator to loop through
cells, or using a random access API to retrieve cells by an index. Although
our implementation supports random cell access as required by the VTK API,
we strongly discourage its use, which triggers a conversion to a fully described
unstructured grid, canceling the benefits of tree-based storage. As an alter-
native, the data structure provides an iterator that traverses dual cell with
a depth first search. Such traversal of trees is efficient but does not provide
spatial neighborhood information that many visualization operations require.
As a consequence, the ability to provide surrounding cells of a central leaf
while traversing the tree is crucial.

To provide neighborhood information we devised and implemented a com-
pound iterator that tracks a neighborhood of cursors while traversing the tree,
using a 33 grid of cursors. The center cursor simply follows a depth first search
of the nodes, while the surrounding 26 point to its adjacent nodes. During tree
search, a pre-computed traversal look-up table tells for each child being vis-
ited, how to populate the new grid of cursors. If a neighboring node is a leaf,
its corresponding cursor value does not change. Multiple neighborhood cursors
may end up pointing to the same leaf. The cursor is initiated using a region
of the top level grid of roots. On the boundaries of the data set, some cursors
will be set to null values, which are used to detect boundaries that need to be
handled with special processing. Maintaining a neighborhood of cursors does
not impact the efficiency of the depth first search much, but solves the need
for easy access to immediately adjacent leaves.

A dual grid is generally more complex than the primal tree: e.g., 3D dual
grids contain pyramidal and wedge cells in addition to hexahedral cells. In



4 Thierry Carrard, Charles Law, and Philippe Pébay

order to handle this difficulty, we first assign ownership of dual vertices to a
single leaf, which allows for a depth first search to process vertices without
duplication. Out of the 8 leaves that potentially touch a vertex in 3D (resp. 4
in 2D), the deepest leaf is assigned ownership, breaking ties by choosing the
leaf with the smallest leaf index. In addition, we use degenerate hexahedra
(resp. quadrilaterals) to represent all dual grid cells, as the compound iterator
naturally supplies the 8 (resp. 4) surrounding leaves for each a vertex. Cases
where cursors point to the same leaves are ignored. The only extra processing
required is to filter out degenerate cells created by subsequent visualization
algorithms: e.g., iso-contouring the dual grid will produce some degenerate
triangles that are then removed to clean the resulting iso-surface mesh.

3 Results

The first noticeable result is the availability in VTK of a novel data object for
non-uniform rectilinear, tree-based AMR data sets with generic subdivision,
the first and only publicly available such capability, in our knowledge.

Fig. 3. Left: a 3D ternary tree-based AMR grid with 3x4x2 root cells, non-uniform
geometry, and various levels of subdivisions, direction) planar cut thereof. Right:
iso-contour across a 3D binary tree-based AMR grid overlaid over the edges of the
wireframe representation of the dual mesh.

Figure 3, left, shows 3D AMR grid with 3x4x2 root cells, and non-uniform
geometry in each direction, generated with various levels of ternary subdi-
visions within a VTK pipeline: to the left is shown a surface rendering of
the object, using the specialized outside geometry extraction filter which we
developed as well. Note that this data object currently only supports cell-
based data, which in this case were generated using a combination of Eu-
clidean distance to center with local index-based noise. Together with this
vtkHyperTreeGrid instance is shown its intersection with a plane normal to
the z-axis, computed by of another filter specifically devised for that type of
input. Note that both specialized filters produce simpler VTK types and can
thus be directly hooked downstream to standard VTK pipelines, for subse-
quent analysis, rendering, and interaction.



The Hyper Tree Grid Implementation in VTK 5

In §1, we discussed with iso-contouring the typical difficulties that AMR
meshes pose to visualization algorithm. Iso-contouring thus provides a typical
test case to demonstrate the advantages of our approach based on duality:
Figure 3, right, shows the output of an iso-contouring algorithm taking as
input the dual grid of the vtkHyperTreeGrid instance shown in Figure 2.
In that case, although the primal grid does indeed contain a number of T-
junctions, the computed iso-contour does not have cracks. The same approach
works generically for both binary and ternary subdivision, and for an arbitrary
number of hyper tree root cells with non-uniform geometry along each axis.

4 Conclusion

We presented a new generic hyper tree grid object for binary and ternary
AMR non-uniform rectilinear grids. Our implementation took care of lowering
the memory impact and keep a high computational efficiency, thus rendering
processing of generic tree-based AMR meshes practicable for common visual-
ization needs. This new data object, along with the specialized algorithms we
discussed here, and some test programs, are all part of VTK. Please refer to
http://www.vtk.org/Wiki/VTK for details on obtaining and building VTK.

In addition, we created a tree-based AMR grid generator to exercise and
illustrate the properties of this data object, which can also be used for the
prototyping and development of additional specialized filters. In can be found
in the Examples/HyperTree/Cxx directory of VTK, and has multiple options
allowing for the creation of synthetic vtkHyperTreeGrid instances with arbi-
trary size, depth, and subdivision scheme.

References

1. CEA’s Tera supercomputer. http://www-hpc.cea.fr/en/complexe/tera.htm.
2. M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial

differential equations. J. Comput. Phys., 53(3):484–512, 1984.
3. D. Aguilera et al. Parallel software and hardware for capability visualization of

HPC results. ASTRONUM, 2007.
4. L. Avila et al. The VTK User’s Guide. Kitware, Inc., eleventh edition, 2010. ISBN

978-1-930934-23-8. http://www.kitware.com/products/books/vtkguide.html.
5. H. Jourdren. Hera: A hydrodynamic amr platform for multi-physics simulations.

In Adaptive Mesh Refinement Theory and Application, volume 41 of LNCSE,
pages 283–294. Springer, 2005.

6. A. Squillacote. The ParaView Guide: A Parallel Visualization Application. Kit-
ware Inc., 2007. ISBN 1-930934-21-1, http://www.paraview.org.

7. M.-M. Yau and S. N. Srihari. A hierarchical data structure for multidimensional
digital images. Communications of the ACM, 26(7):504–515, July 1983.


