
I’d like to toss around the idea of a directory reorganization to address a few problems
we’ve been having with VTK. The problems are:

1. Graphics is so large that the Microsoft compiler cannot incrementally link it. So
the build process break it into multiple libraries Graphics0, 1, 2… which is a nasty
process and leads random link errors when a new class is added because it caused
other classes to “jump” from one library to another. It also leads to problems
where someone creates a project that links against all the current graphics libraries
0-4 but then a new class is added creating graphics5 and then all their project files
must be modified.

2. Graphics is so large that a MSVC project file cannot be created for it that also
wraps Tcl/ Java/ Python. This is because of the number of custom rules required
to wrap all the classes in graphics is too large for MSVC.

3. Contrib is a confused directory. It mainly holds classes that require both graphics
and imaging because there is no other place to put them. There are also a few
“optional” classes that tend to be rarely used. I’d rather break this into two
directories, one called hybrid which is designed to hold hybrid algorithms and a
second directory called extra which holds a few extra classes that people, if they
want to, can add to their local directory.

4. Switching to Cmake (a cross platform build tool developed for the Insight project)
requires a smaller graphics directory.

5. Graphics was getting to be a bit of a zoo with over 300 classes in it. Ideally I’d
like to break that down into pieces with more like 100 classes or less.

Here is one possible structure that would work. I have done a build with the following
structure and everything works. The new graphics directory ends up with about 115
classes in it, with the balance going into filtering, rendering, and IO. All of the directories
between (and including) common and IO would always be compiled. The other
directories would be optional to build but dependent on other directories as shown. (e.g.
you cannot build hybrid without rendering.)

Common
Same as before

Filtering
Base classes for all filters

Graphics
Graphics filters

Imaging
Imaging filters

IO
Readers and writers

Rendering
All rendering classes for poly and images

Hybrid
Hybrid algorithms that require rendering or

both imaging and graphics

Local
Same as before

Parallel
Same as before

Extra
Not part of the build process,

just a place to keep optional or
extra files that could be put into

local if desired

