<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">Hi David,<div class=""><br class=""></div><div class="">Excellant question. Either removal would result in loop elimination. I guess one way of discriminating the two would be based on lengths (assuming we are removing “high” frequency edges). We could choose to keep the shorter of the two edge choices so in that case edge CE and EF would be kept over the other edges.</div><div class=""><br class=""></div><div class="">Does that make sense?</div><div class=""><br class=""></div><div class="">Bob</div><div class=""><br class=""><div class="">
<div style="color: rgb(0, 0, 0); font-family: Helvetica; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><div class="">Robert M. O'Bara, MEng.<br class="">Assistant Director of Scientific Computing<br class=""><br class="">Kitware Inc.<br class="">28 Corporate Drive<br class="">Suite 101<br class="">Clifton Park, NY 12065<br class=""><br class="">Phone: (518) 881- 4931</div><div class=""><br class=""></div></div><br class="Apple-interchange-newline"><br class="Apple-interchange-newline">
</div>
<br class=""><div><blockquote type="cite" class=""><div class="">On Oct 9, 2015, at 10:05 AM, David Thompson <<a href="mailto:david.thompson@kitware.com" class="">david.thompson@kitware.com</a>> wrote:</div><br class="Apple-interchange-newline"><div class="">Hi Bob,<br class=""><br class="">I have a question about eliminating edges only used by small loops which we wish to kill. I'm working on a sweepline algorithm to discern loops and nesting incrementally and the attached picture (which is like the one you drew in the CMB core meeting) shows a conundrum when sweeping left-to-right... when I get to point E (where the small loop b-C-E-b is closed by the algorithm) should I eliminate edge C-E or edge C-b-E? Similarly, at point F, should I eliminate E-F or E-d-F? The decisions are arbitrary, although my best guess is that the edges with the shorter arc-length should be kept (minimizing curvature energy seems consistent with eliminating loops with small areas).<br class=""><br class="">You had mentioned eliminating edges unused by other loops, but the sweepline algorithm won't necessarily have other loops determined yet.<br class=""><br class=""><span class="Apple-tab-span" style="white-space:pre"> </span>David<br class=""><span id="cid:65C48C88-5270-417F-8DB2-8F91495A3216@kitware.com"><loop-conundrum.pdf></span></div></blockquote></div><br class=""></div></body></html>