<html><head></head><body><div style="color:#000; background-color:#fff; font-family:HelveticaNeue, Helvetica Neue, Helvetica, Arial, Lucida Grande, sans-serif;font-size:14px"><div id="yui_3_16_0_ym19_1_1478018323282_15982">Hello RTK users and developers,</div><div id="yui_3_16_0_ym19_1_1478018323282_15982"><br></div><div id="yui_3_16_0_ym19_1_1478018323282_15982">I already implemented the RTK and reconstructed some images with the FDK algorithm implemented in RTK. It works well. Thanks to RTK developers.<br></div><div id="yui_3_16_0_ym19_1_1478018323282_17709" dir="ltr">Now, I am trying to develop a model-based image reconstruction for our cone-beam micro-CT. I see already that some iterative algorithms like ART and its modifications and conjugate-gradient (CG) method are implemented in the RTK. I want to develop a model-based reconstruction through the Newton/quasi-Newton optimizations methods. I was wondering is it possible to extract the gradient of least square function from implemented algorithms like CG module? Any recommendation will be appreciated. </div><div id="yui_3_16_0_ym19_1_1478018323282_17709" dir="ltr"><br></div><div id="yui_3_16_0_ym19_1_1478018323282_17709" dir="ltr">Best Regards,</div><div id="yui_3_16_0_ym19_1_1478018323282_17709" dir="ltr">Vahid</div><div dir="ltr" id="yui_3_16_0_ym19_1_1478018323282_17710"><br id="yui_3_16_0_ym19_1_1478018323282_17711"></div></div></body></html>