<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Hello Howard,<br>
    <br>
    Good to hear that you're using RTK :)<br>
    I'll try to answer all your questions, and give you some advice:<br>
    - In general, you can expect some improvement over rtkfdk, but not a
    huge one<br>
    - You can find the calculations in my PhD thesis
    <a class="moz-txt-link-freetext" href="https://tel.archives-ouvertes.fr/tel-00985728">https://tel.archives-ouvertes.fr/tel-00985728</a> (in English. Only the
    introduction is in French)<br>
    - Adjusting the parameters is, in itself, a research topic (sorry
    !). Alpha controls the amount of regularization and only that (the
    higher, the more regularization). Beta, theoretically, should only
    change the convergence speed, provided you do an infinite number of
    iterations (I know it doesn't help, sorry again !). In practice,
    beta is ubiquitous and appears everywhere in the calculations,
    therefore it is hard to predict what effect an increase/decrease of
    beta will give on the images. I would keep it as is, and play on
    alpha<br>
    - 3 iterations is way too little. I typically used 30 iterations.
    Using the CUDA forward and back projectors helped a lot maintain the
    computation time manageable<br>
    - The quality of the results depends a lot on the nature of the
    image you are trying to reconstruct. In a nutshell, the algorithm
    assumes that the image you are reconstructing has a certain form of
    regularity, and discards the potential solutions that do not have
    it. This assumption partly compensates for the lack of data. ADMM TV
    assumes that the image you are reconstructing is piecewise constant,
    i.e. has large uniform areas separated by sharp borders. If your
    image is a phantom, it should give good results. If it is a real
    patient, you should probably change to another algorithm that
    assumes another form of regularity in the images (try
    rtkadmmwavelets)<br>
    - You can find out whether you typical images can benefit from TV
    regularization by reconstructing from all projections with rtkfdk,
    then applying rtktotalvariationdenoising on the reconstructed volume
    (try 50 iterations and adjust the gamma parameter: high gamma means
    high regularization). If this denoising implies an unacceptable loss
    of quality, stay away from TV for these images, and try wavelets<br>
    <br>
    I hope this helps<br>
    <br>
    Looking forward to reading you again,<br>
    Cyril<br>
    <br>
    <div class="moz-cite-prefix">On 12/12/2014 06:42 PM, Howard wrote:<br>
    </div>
    <blockquote
cite="mid:CAKr9h5XXvAE_qjDc=Gnog4FFQ3L6Y0w0Te1Q7USLFS3AZ8Ukxw@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div>I am testing the ADMM total variation reconstruction with
          sparse data sample. I could reconstruct but the results were
          not as good as expected. In other words, it didn't show much
          improvement compared to fdk reconstruction using the same
          sparse projection data. </div>
        <div> </div>
        <div>The parameters I used in ADMMTV were the following:</div>
        <div> </div>
        <div>--spacing 2,2,2 --dimension 250,100,250 --alpha 1 --beta
          1000 -n 3</div>
        <div> </div>
        <div>while the fdk reconstruction parameters are:</div>
        <div> </div>
        <div>--spacing 2,2,2 --dimension 250,100,250 --pad 0.1 --hann
          0.5</div>
        <div> </div>
        <div>The dimensions were chosen to include the entire anatomy.
          72 projections were selected out of 646 projections for a 360
          degree scan for both calculations.</div>
        <div> </div>
        <div>What parameters and how can I adjust (like alpha, beta, or
          iterations?) to improve the ADMMTV reconstruction? There is
          not much description of this application from the wiki page.</div>
        <div> </div>
        <div>Thanks,</div>
        <div> </div>
        <div>-howard</div>
        <div> </div>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
      <pre wrap="">_______________________________________________
Rtk-users mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Rtk-users@public.kitware.com">Rtk-users@public.kitware.com</a>
<a class="moz-txt-link-freetext" href="http://public.kitware.com/mailman/listinfo/rtk-users">http://public.kitware.com/mailman/listinfo/rtk-users</a>
</pre>
    </blockquote>
    <br>
    <pre class="moz-signature" cols="72">-- 
--
Cyril Mory, Post-doc
CREATIS
Leon Berard cancer treatment center
28 rue Laënnec
69373 Lyon cedex 08 FRANCE

Mobile: +33 6 69 46 73 79</pre>
  </body>
</html>