<div dir="ltr">Thanks!</div><div class="gmail_extra"><br><br><div class="gmail_quote">On Mon, May 13, 2013 at 4:18 AM, Simon Rit <span dir="ltr"><<a href="mailto:simon.rit@creatis.insa-lyon.fr" target="_blank">simon.rit@creatis.insa-lyon.fr</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">There are many, it has been one of the big topics in tomography for<br>
the past ten years. The first one I have is<br>
Noo, F.; Clackdoyle, R. & Pack, J.<br>
A two-step Hilbert transform method for 2D image reconstruction<br>
Phys Med Biol, 2004, 49, 3903-3923<br>
Note that there have been other algorithms proposed to cope with<br>
truncated projections. There is a review here:<br>
Clackdoyle, R. & Defrise, M.<br>
Tomographic Reconstruction in the 21st Century<br>
IEEE Signal Proc. Mag., 2010, 27, 60-80<br>
<div class="HOEnZb"><div class="h5"><br>
On Sun, May 12, 2013 at 6:50 PM, Taylor Braun-Jones<br>
<<a href="mailto:taylor@braun-jones.org">taylor@braun-jones.org</a>> wrote:<br>
> On Sat, May 11, 2013 at 8:12 PM, Simon Rit <<a href="mailto:simon.rit@creatis.insa-lyon.fr">simon.rit@creatis.insa-lyon.fr</a>><br>
> wrote:<br>
>><br>
>> We don't have the Noo algorithm implemented yet (two steps,<br>
>> differentiated backprojection) but we have a project to work on this<br>
>> next year.<br>
><br>
><br>
> Do you have a link/reference for the Noo algorithm you are referring to? I'm<br>
> not aware of it.<br>
><br>
> Thanks,<br>
> Taylor<br>
</div></div></blockquote></div><br></div>