
Server Manager

The ParaView server manager is responsible for handling communication between the client

and the server(s) as well as maintaining a copy of the state of the server(s). It was created to

simplify the development of distributed visualization applications. The important components

of the server manager are as follows.

Proxies: vtkSMProxy and its subclasses provide placeholders for VTK objects

(vtkObject and its subclasses) that reside on the server(s). Proxies are responsible for the

following tasks.

 Creating the server-side VTK objects

 Maintaining references to server-side VTK objects using vtkClientServerID’s

 Maintaining a copy of the state of the server-side objects using properties (see

below)

Properties: vtkSMProperty and its subclasses provide the client access to the interface of

server-side objects represented by proxies. Each property has one or more commands and

optionally values that are passed as arguments to the command(s).

Domains: vtkSMDomain and its subclasses represent the possible values properties can

have. For example, the resolution of a sphere may be limited to a range of values between 2

and positive infinity.

1.1 General Information

Most server manager objects are subclasses of vtkSMObject. vtkSMObject provides

access to the following two singletons.

static vtkSMProxyManager* GetProxyManager();

static vtkSMApplication* GetApplication();

The vtkSMProxyManager and vtkSMApplication singletons must be created and

assigned at the beginning of the application.

void vtkSMApplication::Initialize()

{

 // ...

 vtkSMProxyManager* proxyM = vtkSMProxyManager::New();

 this->SetProxyManager(proxyM);

 this->SetApplication(this);

 // ...

}

1.2 Proxy Creation and Management

vtkSMProxyManager is a singleton that creates and manages proxies. It maintains a map

of XML elements (populated by the XML parser) from which it can create and initialize

proxies and properties. Once a proxy is created, it can either be managed by the user code or

the proxy manager. In the latter case, pass the control of the proxy to the manager with

RegisterProxy() and call UnRegister() on the proxy. At destruction, the proxy

manager deletes all managed proxies.

The server manager configuration is stored in XML files (described in detail in section 1.6).

These XML files, and possibly additional user- or developer-specified ones, are parsed by

vtkSMXMLParser in ParaView’s initialization stage using the following methods.

(vtkPVXMLParser is the superclass of vtkSMXMLParser, and vtkXMLParser is its

superclass.)

void vtkSMXMLParser::ProcessConfiguration(

 vtkSMProxyManager* manager);

void vtkPVXMLParser::SetFileName(const char* fileName);

int vtkSMXMLParser::Parse(const char* xml_string);

Shown below is an example of using these methods in vtkSMApplication’s

ParseConfigurationFile() method.

int vtkSMApplication::ParseConfigurationFile(

 const char* fname, const char* dir)

{

 // ...

 vtkSMProxyManager* proxyM = this->GetProxyManager();

 vtksys_ios::ostringstream tmppath;

 tmppath << dir << “/” << fname << ends;

 vtkSMXMLParser* parser = vtkSMXMLParser::New();

 parser->SetFileName(tmppath.str().c_str());

 int res = parser->Parse();

 parser->ProcessConfiguration(proxyM);

 parser->Delete()

 return res;

}

Once an XML file or string is parsed, the configuration is stored in the proxy manager as a

hierarchy of vtkPVXMLElement’s. Internally, this is a stored as

map<vtkStdString,

 map<vtkStdString, vtkSmartPointer<vtkPVXMLElement> >

where the first vtkStdString is a unique group name, and the second vtkStdString is a

unique proxy name. An example XML file demonstrating this is shown below.

<ServerManagerConfiguration>

 <ProxyGroup name="filters">

 <SourceProxy name="AllToN">

 </SourceProxy>

 </ProxyGroup>

</ServerManagerConfiguration>

Proxy groups (see the ProxyGroup XML element above) are only used for organizational

purposes; it is perfectly valid to store all proxy descriptions in one group. Note that these are

not actual proxies but proxy descriptions stored in vtkPVXMLElement objects. To actually

create proxies, the following method is used.

vtkSMProxy* vtkSMProxyManager::NewProxy(

 const char* groupName, const char* proxyName);

This method creates and initializes a proxy from the given group and with the given proxy

name. The vtkSMProxy* returned has a reference count of 1. At this point, the developer

can choose to maintain this reference to the proxy by passing the proxy back to the proxy

manager with the RegisterProxy() method.

void vtkSMProxyManager::RegisterProxy(

 const char* groupName, const char* name,

 vtkSMProxy* proxy);

Once RegisterProxy() is called, the proxy manager will maintain a reference to the

proxy so the developer can safely call UnRegister() on it. Note that the group name and

name passed to RegisterProxy() are not necessarily the same as the ones passed to

NewProxy(). For RegisterProxy(), the group name points to a map in which proxy

instances are stored (as opposed to XML representations), and the name is the key used for

retrieving the proxy from this map using the first method shown below. The second method

looks for the proxy in all groups and returns the first match.

vtkSMProxy* vtkSMProxyManager::GetProxy(

 const char* groupName, const char* name);

vtkSMProxy* vtkSMProxyManager::GetProxy(const char* name);

The groups in this case (used by RegisterProxy() and GetProxy()) are used for more

than simply organizational purposes. Grouping instances allows a domain (see section 1.4) to

list only a sub-group of all instances. For examples, all sources that can be used as glyphs by

the Glyph filter (i.e., cone, sphere, arrow, etc.) can be stored in a group called

glyph_sources.

To cause the proxy manager to release its reference to a previously registered proxy, one of

the following is called. The first method releases its reference to the proxy pointed to by

proxy with the given groupName and name. The second method releases its reference to

the proxy with the given groupName and name. The third one releases its reference to the

first proxy in any group with the specified name. The last method releases its references to all

proxies that have been registered with it.

void vtkSMProxyManager::UnRegisterProxy(

 const char* groupName, const char* name, vtkSMProxy* proxy);

void vtkSMProxyManager::UnRegisterProxy(

 const char* groupName, const char* name);

void vtkSMProxyManager::UnRegisterProxy(const char* name);

void vtkSMProxyManager::UnRegisterProxies();

Finally, the proxy manager provides the following utility method.

void vtkSMProxyManager::InstantiateGroupPrototypes(

 const char* groupName);

Given the specified group name, this function creates one proxy instance per proxy

representation in the group. It stores all these instances in an instance group called

groupName_prototypes. This function is commonly used for automatically creating

prototypes for an entire group. The prototypes can then be used for accessing information

about the proxies not easily available from the proxy descriptions.

Figure 1. Partial class hierarchy for proxies

1.3 Properties

Each instance of vtkSMProperty (or of one of its subclasses) represents a method and any

associated arguments of a VTK object stored on one or more client, server manager, data

server, or render server nodes. It may have a state and can push this state to the VTK object to

which it refers. vtkSMProperty only supports methods with no arguments. Use one of its

subclasses for a method with arguments. Different types of arguments are supported by

different subclasses. A list of the property class names and the type(s) of arguments they

support follows. ParaView’s on-line documentation, created with Doxygen, provides

information about the interfaces to these classes; it can be found at

http://www.paraview.org/ParaView3/Doc/Nightly/html/classes.html.

vtkSMObject

vtkSMProxy

vtkSMViewProxy vtkSMPart vtkSMSourceProxy

 vtkSMProperty: no arguments

 vtkSMProxyProperty: proxy argument

 vtkSMInputProperty (a subclass of vtkSMProxyProperty): proxy

argument

 vtkSMVectorProperty: abstract superclass for vector properties, contains one

or more arguments of the type specified by the subclass

 vtkSMDoubleVectorProperty: vector of double’s

 vtkSMIntVectorProperty: vector of int’s

 vtkSMStringVectorProperty: vector of strings or some combination of

strings, int’s, and double’s

 vtkSMIdTypeVectorProperty: vector of vtkIdType’s (a type in VTK used

for point and cell ids)

Usually, the developer does not directly create properties. The properties are created and

assigned when the XML configuration file(s) and/or string(s) are parsed. Example XML code

to be parsed by ParaView for a single proxy and its associated properties is shown below. A

thorough description of the XML used in the server manager is described in section 1.6.

<SourceProxy name="CubeSource" class="vtkCubeSource">

 <DoubleVectorProperty

 name="XLength"

 command="SetXLength"

 number_of_elements="1"

 default_values="1.0" >

 <DoubleRangeDomain name="range" min="0" />

 </DoubleVectorProperty>

 <DoubleVectorProperty

 name="YLength"

 command="SetYLength"

 number_of_elements="1"

 default_values="1.0" >

 <DoubleRangeDomain name="range" min="0" />

 </DoubleVectorProperty>

 <DoubleVectorProperty

 name="ZLength"

 command="SetZLength"

 number_of_elements="1"

 default_values="1.0" >

 <DoubleRangeDomain name="range" min="0" />

 </DoubleVectorProperty>

 <DoubleVectorProperty

 name="Center"

 command="SetCenter"

 number_of_elements="3"

 default_values="0.0 0.0 0.0" >

 <DoubleRangeDomain name="range"/>

 </DoubleVectorProperty>

 <!-- End Box -->

</SourceProxy>

If you need to create and add your own properties, the following method can be used.

void vtkSMProxy::AddProperty(const char* name,

 vtkSMProperty* prop);

The property can then be retrieved with this method.

vtkSMProperty* vtkSMProxy::GetProperty(const char* name);

This is true for properties created through XML parsing as well.

vtkSMProxy has two important methods related to properties.

// Update the VTK object on the server by pushing the

// values of all modified properties (unmodified

// properties are ignored). If the object has not been

// created, it will be created first.

virtual void UpdateVTKObjects();

// Updates all property information by calling

// UpdateInformation() and populating the values. This

// method also calls UpdateDependentDomains() on all

// properties to make sure that domains that depend on the

// information are updated.

virtual void UpdatePropertyInformation();

Below is a C++ example of how properties are used.

someProxy->UpdatePropertyInformation();

vtkSMDoubleVectorProperty* info =

 vtkSMDoubleVectorProperty::SafeDownCast(

 someProxy->GetProperty("some information property"));

// do something with the values of the double vector

// property obtained from the server

vtkSMDoubleVectorProperty* prop =

 vtkSMDoubleVectorProperty::SafeDownCast(

 someProxy->GetProperty("some property"));

prop->SetElement(0, 5.17);

// Note that the property value is not pushed to the

// server until the following is called

someProxy->UpdateVTKObjects();

vtkSMProperty

vtkSMProperty is the superclass of all server manager properties. All subclasses of

vtkSMProperty overwrite at least two virtual methods defined in this class.

// Append a command to update the VTK object with the

// property values(s). The proxy objects create a stream

// by calling this method on all the modified properties.

virtual void AppendCommandToStream(

 vtkSMProxy*, vtkClientServerStream* stream,

 vtkClientServerID objectId);

// Set the appropriate instance variables from the XML

// element. This should be overwritten by any subclass if

// adding instance variables.

virtual int ReadXMLAttributes(vtkSMProxy* parent,

 vtkPVXMLElement* element);

The other methods and instance variables of this class are documented on-line at

http://www.paraview.org/ParaView3/Doc/Nightly/html/classvtkSMProperty.html. The

documentation was generated from the source code by Doxygen.

vtkSMProxyProperty

vtkSMProxyProperty is a concrete subclass of vtkSMProperty representing

pointer(s) to vtkObject(s) (through vtkSMProxy). Note that if the proxy has multiple

IDs, they are all appended to the command stream. If UpdateSelf (an instance variable of

vtkSMProperty) is true, the proxy ids (as opposed to the server object ids) are passed to

the stream. This instance variable is set through ParaView’s server manager XML. (See

section 1.6.)

vtkSMInputProperty

vtkSMInputProperty is a concrete subclass of vtkSMProperty representing inputs to

a filter (through vtkSMProxy). It is a special property that always calls AddInput on a

vtkSMSourceProxy. This property is further discussed in section 1.5.

Information properties

If the InformationOnly instance variable (in vtkSMProperty) of a property is set

(information_only="1" in XML), the property behaves as an information property.

Information properties are used to obtain information from the server (i.e., pull) as opposed to

sending information (i.e., push). Since there can be more than one way of filling a property

with values, the property delegates this functionality of retrieving information to a helper that

is configured in the XML. The C++ code to do this and the corresponding XML are shown

below.

void vtkSMProperty::UpdateInformation(

 vtkIdType cid, int serverIds, vtkClientServerID objectId)

{

 if (!this->InformationOnly)

 {

 return;

 }

 if (this->InformationHelper)

 {

 this->InformationHelper->UpdateProperty(cid,

 serverIds,

 objectId,

 this);

 }

}

<IntVectorProperty

 name="TimeStepRangeInfo"

 command="GetTimeStepRange"

 information_only="1">

 <SimpleIntInformationHelper/>

</IntVectorProperty>

In the simplest case (i.e., vtkSMSimpleIntInformationHelper), an information

helper calls the command and assigns the values returned by the server to the individual

elements of the vtkSMIntVectorProperty. There are also more sophisticated

information helpers. For example, vtkSMArraySelectionInformationHelper

instantiates a helper class called vtkPVServerArraySelection on the server and uses

it to collect information across nodes about the arrays available in a data set.

Figure 2. Class hierarchy for properties

vtkSMObject

vtkSMProperty

vtkSMProxyProperty

vtkSMInputProperty

vtkSMVectorProperty

vtkSMDoubleVectorProperty

vtkSMIdTypeVectorProperty

vtkSMIntVectorProperty

vtkSMStringVectorProperty

Figure 3. Partial class hierarchy for information helpers

1.4 Domains

vtkSMDomain is an abstract class that describes the domain of a property. A domain is a

collection of possible values a property can have. Each domain can depend on one or more

properties to compute its values. These are called required properties and can be set in the

XML configuration file.

Properties are generic; there are only a few types of them. Alone, they are not sufficient to

provide all the information related to a VTK object property. For example, a

vtkSMIntVectorProperty can represent a single value from a list of enumeration

values, or it can represent a vector of values, each of which is constrained between a

minimum and a maximum value. The property itself has no way to differentiate between the

two cases. This ambiguity is the reason for domains. Each property can have one or more

domains described in its XML.

<InputProperty name="Input" command="AddInputConnection"

 clean_command="RemoveAllInputs"

 multiple_input="1">

 <ProxyGroupDomain name="groups">

 <Group name="sources"/>

 <Group name="filters"/>

 </ProxyGroupDomain>

 <DataTypeDomain name="input_type">

 <DataType value="vtkDataSet"/>

vtkSMObject

vtkSMInformationHelper

vtkSMSimpleDoubleInformationHelper

vtkSMSimpleIntInformationHelper

vtkSMXdmfInformationHelper

vtkSMArraySelectionInformationHelper

 </DataTypeDomain>

</InputProperty>

There are a large number of domain types: more than one corresponding to each property

type. Domains have multiple uses as described below.

1. They provide more information about a property (e.g., enumeration values, range,

etc.).

2. They restrict the values to which the property may be set.

The second use of domains is accomplished as follows. In SetElement() (or a similar

method), the argument passed is copied into an "unchecked" element. Then

vtkSMProperty::IsInDomains() is called. This method in turn calls

vtkSMDomain::IsInDomain() on all domains passing the property (this pointer in

C++) as an argument. The domains then each look at the unchecked element and return 1 if

the value is acceptable according to this domain and 0 if not. If any of the domains do not

contain the value of the unchecked element, the value is not copied to the actual element, and

0 is returned (from SetElement() or its equivalent). Otherwise, the value is copied to the

actual element, and 1 is returned. The unchecked elements are never pushed to the server, and

changing them does not modify the property.

Some domains are specialized to update their values based on properties. This happens as

follows. Each domain may have one or more properties on which it depends

(RequiredProperties in XML). This is demonstrated below.

<StringVectorProperty

 name="SelectInputScalars"

 command="SetInputArrayToProcess"

 number_of_elements="5"

 element_types=”0 0 0 0 2”>

 <ArrayListDomain name="array_list"

 attribute_type="Scalars">

 <RequiredProperties>

 <Property name="Input" function="Input"/>

 </RequiredProperties>

 </ArrayListDomain>

</StringVectorProperty>

When a required property is added to domain, a two-way connection is made between the

property and the domain.

void vtkSMDomain::AddRequiredProperty(vtkSMProperty *prop,

 const char *function)

{

 if (!prop)

 {

 return;

 }

 if (!function)

 {

 vtkErrorMacro("Missing name of function for new required

property.");

 return;

 }

 prop->AddDependent(this);

 this->Internals->RequiredProperties[function] = prop;

}

Then vtkSMProperty::UpdateDependentDomains() is called when the property

value changes. An example follows.

void void vtkSMXYPlotRepresentationProxy::Update(

 vtkXMViewProxy* view)

{

 if (!this->ObjectsCreated)

 {

 vtkErrorMacro(“Objects not created yet!”);

 return;

 }

 this->Superclass::Update(view);

 vtkSMProxy *subProxy =

 this->GetSubProxy(“DummyConsumer”);

 vtkSMProxyProperty *pp =

 vtkSMProxyProperty::SafeDownCast(

 subProxy->GetProperty(“Input”);

 pp->UpdateDependentDomains();

}

Note: Do not confuse a property on which the domain depends with the property that actually

contains that domain.

<InputProperty name="Input" command="AddInputConnection"

 clean_command="RemoveAllInputs"

 multiple_input="1">

 <ProxyGroupDomain name="groups">

 <Group name="sources"/>

 <Group name="filters"/>

 </ProxyGroupDomain>

 <DataTypeDomain name="input_type">

 <DataType value="vtkDataSet"/>

 </DataTypeDomain>

</InputProperty>

<StringVectorProperty

 name="SelectInputScalars"

 command="SetInputArrayToProcess"

 number_of_elements="5"

 element_types=”0 0 0 0 2”>

 <ArrayListDomain name="array_list"

 attribute_type="Scalars">

 <RequiredProperties>

 <Property name="Input" function="Input"/>

 </RequiredProperties>

 </ArrayListDomain>

</StringVectorProperty>

Figure 4. Class hierarchy for domains

1.5 Advanced Features

vtkSMSourceProxy

vtkSMSourceProxy manages VTK source(s) that are created on a server using the proxy

pattern. In addition to functionality provided by vtkSMProxy, vtkSMSourceProxy

provides methods to connect and update sources. Each source proxy has one or more parts

(vtkSMPart). Each part represents one output of one filter. These are created automatically

when vtkSMSourceProxy::CreateParts() is called by the source. Each

vtkSMSourceProxy creates a property called DataInformation. This property is a

composite property that provides information about the output(s) of the VTK sources

(obtained from the server).

vtkSMInputProperty is different from other properties in that it always calls methods on

the source proxy that contains it, never on the server-side objects.

Note: By default, all input properties immediately push their values to the server. This is

safest because much internal functionality depends on the input being set. (See the section

later in this chapter on multiple parts.) However, this causes a side-effect for multiple input

filters; every time a new input is added to an input property, the following occurs.

It is possible to avoid this by setting ImmediateUpdate to 0 for each input for a multiple

input filter and manually updating the filter using the UpdateVTKObjects() method of

vtkSMProxy after all inputs have been added.

1.6 Server Manager XML

ParaView parses XML files to make the appropriate readers, writers, sources, and filters

available within ParaView. The XML for ParaView’s server manager determines how the

values changed by various user interface controls affect the underlying sources, filters, etc.

The server manager XML files are located in the

ParaView/Servers/ServerManager/Resources directory. To obtain the class

name of the server manager properties, domains, and information helpers discussed in this

section, prepend vtkSM to the name listed in the text. These classes are located in the

ParaView/Servers/ServerManager directory.

<ServerManagerConfiguration> </ServerManagerConfiguration>: These

are the tags that begin and end each server manager XML file.

The type of the only direct sub-element of ServerManagerConfiguration is

ProxyGroup. The ProxyGroup element has one attribute, name, which is used by the

proxy manager to refer to a group of proxies. The valid value of this attribute for the

readers.xml and sources.xml files is "sources". The filters.xml file uses

"filters", the rendering.xml file uses "rendering", and the writers.xml file

uses "writers". There are several proxy groups in utilities.xml; their names include

"lookup_tables", "implicit_functions", "transforms", "matrices", and

"data_arrays".

Readers, Sources, and Filters

Each reader, source, and filter is represented by a SourceProxy element (a sub-element of

ProxyGroup). The SourceProxy element has the following three attributes.

 name: This is the unique identifier of this source proxy. It must match that attribute

of the corresponding Module element in the user interface XML files. (See the

previous section.)

 class: This is the name of the VTK class to be created.

 label: This is the text label to display in ParaView’s user interface (e.g., the

Sources and Filters menus).

Each user interface element for a source, filter, or reader typically corresponds to a single

server manager property. These properties are sub-elements of SourceProxy. The

following attributes are valid for all server manager properties. (The first two are required.)

 name: This is the name of this server manager property specified by the property

attribute in the user interface XML. It is used to access the property from the proxy

containing it. The corresponding instance variable in vtkSMProperty is

XMLName.

 command: This attribute lists the name of the method to invoke on the reader,

source, or filter containing this property. The corresponding instance variable in

vtkSMProperty is Command.

 information_only: Use this attribute to specify that this property is for

retrieving information instead of setting it (i.e., information_only="1"). It

defaults to "0". The corresponding instance variable in vtkSMProperty is

InformationOnly; it defaults to 0.

 information_property: List the name of a property (with

information_only set to "1") that is being used to obtain information for this

property. The associated instance variable in vtkSMProperty is

InformationProperty.

 immediate_update: If this attribute is set to "1", the property value is passed to

the server as soon as the property is modified. (This is determined by the value of

vtkCommand::ModifiedEvent. Warning: If this attribute is set to "1", any

ModifiedEvent – regardless of whether it was caused by this reader, source, or

filter – will cause the value of the property to be passed to the server.) This

attribute’s default value is "0". The associated instance variable in

vtkSMProperty is ImmediateUpdate; its default value is "0".

 update_self: If this attribute is set to "1", then the command is called on the

proxy using this property rather than on the VTK object residing on the server. This

can be used for exposing a method of the proxy through the property interface. The

corresponding instance variable in vtkSMProperty is UpdateSelf; it defaults

to "0".

 animateable: The value of this attribute determines whether the property value

can be animated. (See chapter Error! Reference source not found. for a discussion

of animation in ParaView.) A value of "0" means that the property is not

animateable; a value of "1" means that the property is animateable. The

corresponding instance variable in vtkSMProperty is Animateable.

The four vector properties, DoubleVectorProperty, IntVectorProperty,

IdTypeVectorProperty, and StringVectorProperty, each represent a list of one

or more values of the type indicated by the property name. The common superclass of the four

types of vector properties is vtkSMVectorProperty. These property types have several

additional XML attributes in common.

 clean_command: This attribute specifies a command to remove all the values of a

property. This attribute is typically used when repeat_command is set to "1".

(See below for a description of repeat_command.) If the clean_command

attribute is set, this command is called before the main command (set using the

command attribute).

 default_values: This attribute allows the user to specify default values for each

element in this property. For example, for a DoubleVectorProperty containing

three elements, setting this attribute to "0.0 0.0 0.0" would initialize all three

of these elements to 0.0.

 number_of_elements: The value of this attribute is the length of the list of

values contained in this property.

 number_of_elements_per_command: This attribute determines the number

of elements that should be passed as parameters of command each time command is

called. For example, if this property with command SetFoo has four elements,

repeat_command="1", and this attribute has a value of "2", then command

would be called twice: once with the first two elements (e.g., 0 and 1) and once with

the second two (e.g., 5 and 9) as shown below the description of

repeat_command. The instance variable in vtkSMVectorProperty

associated with this attribute is NumberOfElementsPerCommand; it defaults to

1.

 repeat_command: If this attribute is set to "1", then the command for this

property should be called once per number_of_elements_per_command

elements. This attribute’s default value is "0". The instance variable in

vtkSMVectorProperty associated with this attribute is RepeatCommand; it

defaults to 0.

objID SetFoo 0 1

objID SetFoo 5 9

 use_index: If this attribute and repeat_command have values of "1", then an

integer index will be included as the first parameter to this command. For example, if

the command is SetValue, there are four elements (0.0, 1.0, 2.0, and 3.0),

two per command, and use_index is set to "1", then the command will be called

twice as shown below. The associated instance variable in

vtkSMVectorProperty is UseIndex; it defaults to 0.

objID SetValue 0 0.0 1.0

objID SetValue 1 2.0 3.0

Following is a description of the XML for each type of server manager property, including a

description of the domain and information helper types used with each property. Both

domains and information helpers are sub-elements of their respective properties.

Each domain type is associated with only one type of property. Domains represent the

possible values a property may have. A property may have more than one domain. Some

domains also have required properties on which they depend. (For example, a domain which

lists the possible scalar arrays on which a filter operates may also depend on the

InputProperty of that filter.) Any domain may use the attribute optional with a value

of "1" to indicate that this domain provides information (e.g., to initialize the user interface)

rather than to restrict the value of the property.

An information helper is only used with server manager properties whose

information_only attribute is set to "1". It gathers the required information from the

server for the property with which it is associated.

DoubleVectorProperty

The DoubleVectorProperty represents a list of one or more values of type double. It

supports two additional XML attributes.

 argument_is_array: If set to "1", the list of values is passed to the command

as a single double*, not each value as an individual parameter. The associated

instance variable in vtkSMDoubleVectorProperty is ArgumentIsArray;

it defaults to 0.

 set_number_command: If set, this attribute contains the name of a command to

call before the one indicated by the command attribute. The value of the parameter

passed to this additional command is number_of_elements /

number_of_elements_per_command. An example

DoubleVectorProperty that uses this attribute is shown below.

<DoubleVectorProperty

 name="ContourValues"

 command="SetValue"

 set_number_command="SetNumberOfContours"

 number_of_elements="0"

 repeat_command="1"

 number_of_elements_per_command="1"

 use_index="1">

</DoubleVectorProperty>

If the vector values for the above example are 5, 7, and 9.5, then the following

methods are called.

contourId SetNumberOfContours 3

contourId SetValue 0 5

contourId SetValue 0 7

contourId SetValue 0 9.5

The DoubleVectorProperty supports the following types of domains and information

helpers.

 ArrayRangeDomain: If the range of values for this variable depends on the range

of values in a particular data array (i.e., a data set attribute), use the

ArrayRangeDomain. The only attribute for this domain is name. It has two

required properties: input (as described below for the BoundsDomain) and a

StringVectorProperty associated with the array selection menu determining

which array’s range to use. The function for the StringVectorProperty

must be "ArraySelection".

<ArrayRangeDomain name="scalar_range">

 <RequiredProperties>

 <Property name="Input" function="Input"/>

 <Property name="SelectInputScalars"

 function="ArraySelection"/>

 </RequiredProperties>

</ArrayRangeDomain>

 BoundsDomain: To appropriately set some variables, it is necessary to know

information about the bounds (an axis-aligned bounding box) of the data set being

manipulated. To provide this information, we use a BoundsDomain. This domain

has three attributes: name, mode, and scale_factor. The possible values of the

mode attribute are "normal" (i.e., the values of the domain are the bounds of the

data set) and "magnitude" (i.e., the values are the diagonal of the bounding box

and its negative). The default value is "normal".

To use this domain, an InputProperty must also be specified. Because it is a

required property for this domain, it must be enclosed in

<RequiredProperties> </RequiredProperties> tags as shown below.

The value of the name attribute must match that of the InputProperty of the

filter being described. The function attribute is used in looking up a particular

required property. For the BoundsDomain, its value must be "Input".

<BoundsDomain name="bounds">

 <RequiredProperties>

 <Property name="Input" function="Input"/>

 </RequiredProperties>

</BoundsDomain>

 DoubleRangeDomain: This domain provides the minimum and/or the maximum

value of this property. Its attributes are name, min, and max.

 SimpleDoubleInformationHelper: This information helper calls its

property’s command on the appropriate server and uses the values returned to

populate the property. It does not have any XML attributes.

 TimeStepsInformationHelper: This information helper retrieves the time

step values (using vtkPVServerTimeSteps) from the server and uses the

returned values to populate the DoubleVectorProperty. Server helper objects

such as vtkPVServerTimeSteps are discussed in section Error! Reference source

not found..

IntVectorProperty and IdTypeVectorProperty

The IntVectorProperty represents a list of one or more values of type int.

(IdTypeVectorProperty should be used instead when the number of bytes in the integer

value is unknown.) It supports the following additional XML attribute.

 argument_is_array: If set to "1", the list of values is passed to the command

as a single int*, not each value as an individual parameter. The associated instance

variable in vtkSMIntVectorProperty (or

vtkSMIdTypeVectorProperty) is ArgumentIsArray; it defaults to 0.

It supports the following domains and information helpers.

 BooleanDomain: Use this domain if this IntVectorProperty can only have

the values "0" or "1" (e.g., if this property is associated with a toggle button). The

only XML attribute for this domain is name.

 EnumerationDomain: An EnumerationDomain contains a list of acceptable

integer values for this property and an associated text string for each value. An

Entry sub-element for each value/text pair must be provided. An example of the

XML for doing this is shown below.

<EnumerationDomain>

 <Entry value="0" text="X Min"/>

 <Entry value="1" text="Y Min"/>

 <Entry value="2" text="Z Min"/>

 <Entry value="3" text="X Max"/>

 <Entry value="4" text="Y Max"/>

 <Entry value="5" text="Z Max"/>

</EnumerationDomain>

 ExtentDomain: This domain can be used with structured data sets to provide

information about the extents of the data set. This domain only has a name attribute.

It is required to have an InputProperty. The XML specification for this is

described in the section about the BoundsDomain of the

DoubleVectorProperty.

 IntRangeDomain: This domain provides the minimum and/or the maximum

value of this property. Its attributes are name, min, and max.

 SimpleIntInformationHelper: This information helper calls its property’s

command on the appropriate server and uses the values returned to populate the

property. It does not have any XML attributes.

StringVectorProperty

StringVectorProperty represents a list of text strings. This property is also used when

the parameters to a function do not all have the same data type. It supports the following

attributes, domains, and information helpers.

 element_types: If an instance of StringVectorProperty will have non-

string elements, this attribute allows you to specify which type(s) to use. To specify

multiple elements, provide a space-separated list. A StringVectorProperty

can handle elements of type int (="0"), double (="1"), and string (="2"). For

example, if the parameters to your command are two strings followed by an int, this

attribute would be set to "2 2 0". If the element type is not string, it is converted

to a string before it is sent to the server(s). This is most commonly used for

commands that have a hybrid list of arguments. For example,

void vtkArrayCalculator::AddScalarVariable(

 const char* variableName,

 const char* arrayName,

 int component);

can be accessed through XML as follows.

<StringVectorProperty

 name="AddScalarVariable"

 command="AddScalarVariable"

 number_of_elements="3"

 repeat_command="1"

 number_of_elements_per_command="3"

 element_types="2 2 0" />

Note that converting a floating-point number to a string will cause a loss of

precision; try to avoid using StringVectorProperty in this case.

 ArrayListDomain: The ArrayListDomain contains a list of arrays obtained

from the input to the filter using this property. The attributes supported by this

domain are name, attribute_type (one of "Scalars", "Vectors",

"Normals", or "TCoords", indicating the attribute type of the array names to

include), and input_domain_name (lists the name of the appropriate

InputArrayDomain if the input has more than one of them).

The ArrayListDomain also has a required property: an input property.

<ArrayListDomain name="array_list"

 attribute_type="Scalars">

 <RequiredProperties>

 <Property name="Input" function="Input"/>

 </RequiredProperties>

</ArrayListDomain>

 ArraySelectionDomain: An ArraySelectionDomain lists array names

that are valid text strings for this property. Its only attribute is name. Its required

property is a StringVectorProperty (an information property) from which it

retrieves the list of array names. This domain is used when selecting which data

arrays to load from a file.

 FieldDataDomain: This domain provides information about whether any valid

arrays in the data set are point- ("Point Data") or cell-centered ("Cell

Data"). This domain only has a name attribute. It is required to have an

InputProperty. The XML specification for this is described in the section about

the BoundsDomain of the DoubleVectorProperty.

 StringListDomain: As the name implies, this type of domain contains a list of

text strings that are valid values for this property. It may include a required

StringVectorProperty from which to obtain the list of strings. It is required

to have a name attribute.

 XDMFPropertyDomain: This domain contains a list of strings for use with the

XDMF reader. It supports the name attribute. It has a required

StringVectorProperty from which it obtains this information. That property

must have an XDMFInformationHelper (described below).

 FileListDomain: The FileListDomain provides a list of file names that are

valid values for the associated StringVectorProperty. Its only attribute is

name.

 ArraySelectionInformationHelper: This information helper retrieves

information from the server about the names of the attribute arrays contained in the

data set being loaded by the reader using this property. (This information helper is

only used with readers, not sources or filters.) The only attribute supported by this

information helper is attribute_name. The acceptable values of

attribute_name are "Cell" and "Point", indicating cell-centered or point-

centered data arrays.

 SimpleStringInformationHelper: This information helper calls its

property’s command on the appropriate server and uses the values returned to

populate the property. It does not have any XML attributes.

 XDMFInformationHelper: The XDMFInformationHelper obtains XDMF

parameters from the data server. This information is propagated to the

XDMFPropertyDomain. This information helper does not require any XML

attributes.

ProxyProperty

The ProxyProperty represents pointer(s) to object(s). This property supports the

ProxyGroupDomain and the ProxyListDomain.

 ProxyGroupDomain: This domain contains a list of proxy groups on which this

property operates. Its only attribute is name. It contains one sub-element called

Group per appropriate proxy group. The only attribute of the Group element is its

name, which must match the name of the proxy group containing proxies

appropriate for the task performed by this property.

<ProxyGroupDomain name="groups">

 <Group name="sources"/>

 <Group name="filters"/>

</ProxyGroupDomain>

 ProxyListDomain: A ProxyListDomain provides a list pf proxy types that

are valid values for the associated ProxyProperty. Its only attribute is name.

Each of its sub-elements lists the group and name of a valid proxy type for the

ProxyProperty.

InputProperty

The InputProperty represents the input to a filter. This property supports the following

attributes and domains in addition to the ProxyGroupDomain (described above). This

domain can be used by two properties because it is defined for vtkSMProxyProperty, the

superclass of vtkSMInputProperty.

 clean_command: The value of this attribute is a command to remove the inputs to

the filter using this InputProperty. (The name of the command is passed as the

parameter to the vtkSMSourceProxy::CleanInputs method.) If this attribute

is set, the clean_command will be called before the command is called.

 multiple_input: Setting the value of this attribute is set to "1" indicates that

the filter using this InputProperty accepts multiple inputs (e.g., the Append

filter or the Stream Tracer filter). The instance variable in

vtkSMInputProperty associated with this attribute is MultipleInput; it

defaults to 0.

 DataTypeDomain: This domain is used to specify which data set types are

appropriate for this InputProperty. Its only attribute is name. It has one sub-

element called DataType per data set type; its only attribute is value, which

indicates the name of the VTK class for that data set type. If a filter can accept any

data set type (except vtkMultiGroupDataSet and its subclasses) as input, value

should be set to "vtkDataSet".

<DataTypeDomain name="input_type">

 <DataType value="vtkImageData"/>

 <DataType value="vtkRectilinearGrid"/>

 <DataType value="vtkStructuredPoints"/>

 <DataType value="vtkStructuredGrid"/>

</DataTypeDomain>

 FixedTypeDomain: This domain is necessary when a filter accepts multiple types

of data sets as input, but the type cannot change once it has been initially set. Its only

attribute is its name.

 InputArrayDomain: The InputArrayDomain requires that an input to this

filter must have one or more attribute arrays. Besides the name attribute, this domain

also supports attribute_type ("point" or "cell" to indicate whether the

arrays must be point- or cell-centered), number_of_components, and

optional. Neither attribute_type nor number_of_components are

required in all cases. Additionally, this domain may have a required

IntVectorProperty (like that used for the ArrayListDomain) to determine

whether the arrays are point- or cell-centered.

 NumberOfGroupsDomain: The NumberOfGroupsDomain restricts whether

the filter using this property operates on multi-group data sets containing only on a

single data set or containing only a group of data sets. In addition to the name

attribute, this domain also uses an attribute called multiplicity. The possible

values for multiplicity are "single" and "multiple".

 NumberOfPartsDomain: The NumberOfPartsDomain restricts whether the

filter using this property operates only on a single input or only on a group of inputs

(a multi-part data set). In addition to the name attribute, this domain also uses an

attribute called multiplicity. The possible values for multiplicity are

"single" and "multiple".

In addition to various Property elements, Proxy elements can also have SubProxy

elements. The exposed properties of the subproxy can be accessed by calling the

GetProperty method on the parent proxy. The SubProxy element must contain a Proxy

sub-element, as demonstrated in the following excerpt from rendering.xml.

<PVRepresentationProxy

 name=”UnstructuredGridRepresentation”

 base_proxygroup=”representation”

 base_proxyname=”PVRepresentationBase”>

...

 <SubProxy>

 <Proxy name=”VolumeRepresentation”

 proxygroup=”representations”

 proxyname=”UnstructuredGridVolumeRepresentation”/>

 <ShareProperties subproxy=”SurfaceRepresentation”>

 <Exception name=”Input”/>

 <Exception name=”Visibility”/>

 </ShareProperties>

 <ExposedProperties>

 <Property name=”ScalarOpacityFunction”/>

 <Property name=”ScalarOpacityUnitDistance”/>

 </ExposedProperties>

 </SubProxy>

</PVRepresentationproxy>

If the subproxy has been defined elsewhere (in this or another server manager XML file), then

you can reference that Proxy definition rather than duplicating it, as demonstrated in the

above example. There are three required attributes to the Proxy sub-element of the

SubProxy element.

 name: This attribute identifies the subproxy and must be unique within the parent

Proxy element.

 proxygroup: This attribute must match the name attribute of the ProxyGroup

element within which the Proxy element we are referencing is contained.

 proxyname: This attribute lists the name attribute of the Proxy element being

referenced.

If a particular parent Proxy element has more than one subproxy, and the values of particular

properties should always be the same for two subproxies, then the ShareProperties sub-

element of the SubProxy element should be used. Any properties between these two proxies

whose values should not necessarily match should be listed using an Exception element, as

shown above. In our example, all the properties of VolumeRepresentation and

SurfaceRepresentation should match except the Input and Visibility

properties.

Only the properties listed as ExposedProperties will be accessible by calling

GetProperty on the parent proxy. In the above example, the

ScalarOpacityFunction and ScalarOpacityUnitDistance properties of the

VolumeRepresentation subproxy are exposed.

Writers, Rendering, and Utilities

The writers.xml, rendering.xml, and utilities.xml files provide XML descriptions of proxies,

properties, etc., used in ParaView’s file writing, rendering, and various other capacities.

Several new proxies (new subclasses of vtkSMProxy) are introduced as needed, but the

same properties, domains, and information helpers are used as in the previous section. The

Proxy elements corresponding to the various proxies used are sub-elements of several

different ProxyGroup elements.

1.6 Server Manager XML 28

